
HAL Id: hal-01451687
https://hal.univ-reunion.fr/hal-01451687v1

Submitted on 5 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Termination analysis of floating-point programs using
parameterizable rational approximations

Fonenantsoa Maurica Andrianampoizinimaro, Frédéric Mesnard, Etienne
Payet

To cite this version:
Fonenantsoa Maurica Andrianampoizinimaro, Frédéric Mesnard, Etienne Payet. Termination analysis
of floating-point programs using parameterizable rational approximations. 31st Annual ACM Sympo-
sium on Applied Computing (SAC), Apr 2016, Pise, Italy. pp.1674–1679, �10.1145/2851613.2851834�.
�hal-01451687�

https://hal.univ-reunion.fr/hal-01451687v1
https://hal.archives-ouvertes.fr

Termination analysis of floating-point programs using
parameterizable rational approximations

Fonenantsoa Maurica
Université de La Réunion

LIM
France

fonenantsoa.maurica@
gmail.com

Frédéric Mesnard
Université de La Réunion

LIM
France

frederic.mesnard@univ-
reunion.fr

Étienne Payet
Université de La Réunion

LIM
France

etienne.payet@univ-
reunion.fr

ABSTRACT
Analysis of floating-point programs is a topic that received
an increasing attention the past few years. However, only
very few works have been done regarding their termination
analysis. We address that problem in this paper. We present
a technique that takes advantage of the already existing
works on termination analysis of rational programs. Our
approach consists in translating the floating-point programs
into rational ones by means of sound approximations. We
approximate the floating-point expressions using piecewise
linear functions. Our approximation differs from the already
existing ones in the sense that it can be as precise as needed.

CCS Concepts
•Software and its engineering → Formal methods;
Software verification;

Keywords
Termination analysis, Floating-point arithmetic, Lineariza-
tion

1. INTRODUCTION
Termination analysis of programs is a hot research topic that
has already produced many techniques. Some of the most
innovative ones are the synthesis of linear ranking functions
for simple loops [15], the generalization to eventual linear
functions [1], the polyranking [6], and Chen’s algorithm [7].

Unfortunately, none of these techniques can be used for
the termination analysis of floating-point programs since
floating-point computations are highly non-linear due to the
rounding errors. To our knowledge, there is only very lim-
ited work on that topic. [16] extends the adornments-based

ACM 978-1-4503-3738-0.
http://dx.doi.org/10.1145/0000000.0000000

approach. [8] reduces the termination problem to a second-
order satisfiability problem.

This paper develops a new technique that helps addressing
that lack of work. Its main advantage is that, through the
use of an innovative rational approximation, it transposes
the termination analysis of floating-point loops into termi-
nation analysis of rational loops, which is already very well
covered in the literature.

The rest of the paper is organized as follows. First, we
quickly introduce the basics of floating-point arithmetic in
Section 2. Then, we give the details of our rational approx-
imation in Section 3. We end by presenting its application
to termination analysis in Section 4.

2. FLOATING-POINT ARITHMETIC
A real number x ∈ R is approximated in machine by a
floating-point number x̂ ∈ F. The IEEE-754 standard de-
fines the floating-point arithmetic. A floating-point number
is represented by the triplet (s,m, e) such that:

x̂ = (−1)s · βe ·m

where s ∈ {0, 1} is the sign, β ∈ {2, 10} is the radix, e ∈
[emin, emax] is the exponent, the fractional number m =
m0.m1m2...mp−1 is the significand and is written in p digits
where p is called precision.

We call machine epsilon ε the distance between 1 and the
floating-point number following 1. We call unit in the last
place, or ulp, of x̂ the value the least significant digit repre-
sents: ulp(x̂) = ε · βe.

If x̂ is such that |x̂| ≥ βemin , x̂ is called a normal number.
Otherwise, x̂ is called a subnormal number. We call smin
the smallest positive subnormal, nmin the smallest positive
normal and nmax the biggest positive normal.

IEEE-754 requires floating-point arithmetic operations to be
correctly rounded. That is to say, giving a rounding mode
2, a real arithmetic operation ?, its floating-point equivalent
?© and 2 floating-point numbers x̂1, x̂2, the following holds:
x̂1 ?©x̂2 = 2(x̂1 ? x̂2).

Apart from the format of the representation and the round-
ing modes, IEEE-754 also defines special numbers and ex-
ception handling. However, for simplicity, we will only con-
sider the rounding to nearest ties to even. Moreover, we will

consider that there is no special value in our representation
and that no exception will occur in our computations, no-
tably no overflow.

As illustrative example, consider the extremely simple type
myfloat presented in Figure 1 where β = 10, p = 2, emin =
0, emax = 1.

0 0.1

smin

step : 0.1

1

nmin

ε

1.1

step : 0.1

10 11

step : 1

99

nmax

subnormals normals

Figure 1: A personalized floating-point type,
myfloat. Symmetry to the origin for the negatives.

A more complete introduction to floating-point computa-
tions can be found in [10].

3. RATIONAL APPROXIMATION
The common method for approximating x̂ is to use the ab-
solute error and the relative error. We recall the definition
of the absolute error A (x) = |x − x̂| and the relative er-

ror R(x) = |x−x̂|
|x| , more details can be found in [11, Section

2.1]. The linear expressions of these errors vary according
to the range of the floating-point numbers that are studied,
resulting in piecewise linear approximations.

To our knowledge, literature mainly approximates by dis-
tinguishing the range of the normals from the range of the
subnormals. Such is the case for example of [4, 5] where
the absolute error is used for the subnormals and the rel-
ative error for the normals. Sometimes a mix of the two
errors is used, resulting in a single approximation for both
the subnormals and the normals, like in [2, 14].

Though these approximations are correct, they may be too
imprecise to be of use. Thus, more precise approximations
are needed. However, the optimal bound for the absolute
error has long been known and the optimal bound for the
relative error has very recently been proved in [12]. Hence,
the traditional approximations cited above cannot be refined
anymore.

The novelty of our approximation is threefold. Firstly, it can
be as precise as needed, until the equivalence between the
floating-point expression and its approximation is reached.
Secondly, it unifies the different types of current linear ap-
proximations (approximation by absolute error, by relative
error, by combination of both) under a single framework in
which they are classified hierarchically. Thirdly, it gives an-
other proof for the optimality of the error bound of floating-
point roundings.

3.1 Approximation of x̂ with parameterizable
precision

For easily understanding our idea, let us study the approxi-
mation of a real x by x̂ = o(x) for the particular case of the
type myfloat when the rounding to nearest ties to even is
used. The rounding function o is exactly defined as follows:
o : R → Fmyfloat

x 7→ o(x) = x̂ =

99 98.5 < x < 99.5
98 97.5 ≤ x ≤ 98.5
97 96.5 < x < 97.5
...
0 −0.05 ≤ x ≤ 0.05
...
−99 −99.5 < x < −98.5

The key point is to notice that o is already a piecewise linear
function, a piecewise constant function actually. As such, o
is not different from the approximations by absolute/relative
error which are also piecewise linear functions.

Thus, in the same way we can approximate floating-point
arithmetic operations using the absolute/relative error ap-
proximations, we can also approximate using the exact defi-
nition of the rounding function, which will lead to the equiv-
alence between the initial expression and its approximation.

However, the number of pieces used in the exact definition
equals the number N of the floating-point possible values,
N = 2 · βp−1 · (emax − emin + 2)− 1 for our case, which is a
ridiculously big number. Hence, even if it may be of interest
theoretically, the exact definition is hardly useful practically.

Here comes the idea of linear approximation with param-
eterizable precision. It can be easily understood that no
piecewise linear function with a number of pieces fewer than
N can exactly define x̂. Approximations are used instead.
Reducing the number of pieces will strictly reduce the pre-
cision of the approximation while increasing the number of
pieces will strictly increase it.

The problem of approximating optimally x̂ using linear func-
tions defined in k pieces formally consists of finding the up-
per approximation function µk and the lower approximation
function νk such that: minimize(

∫
X

(µk(x)− x̂)dx)
µk(x) = {ai · x+ bi, x ∈ Xi

k}1≤i≤k
x̂ ≤ µk(x)

(1)

and minimize(
∫
X

(x̂− νk(x))dx)
νk(x) = {ci · x+ di, x ∈ Xi

k}1≤i≤k
νk(x) ≤ x̂

(2)

where X = [−nmax, nmax] and {Xk} a partition of k ele-
ments of X that is to be found.

Optimal means that if we measure the precision of an ap-
proximation with the surface between the upper and lower
approximation functions, then no approximation with greater
precision can be found for the given number of pieces.

Failing at finding a general solution for (1) and (2), we con-
sider a simplified version of the problem in which the parti-
tioning is already known. We will now give the solutions of
that simplified version. Though the optimality of our par-
titioning has yet to be proved, the property of increasing

(a) 1 piece (b) 2 pieces

(c) 3 pieces

Figure 2: Common piecewise linear approximations
of x̂

precision until the equivalence is preserved.

For brevity, we only present the solutions for the simplified
version of (1), that is to say the value of the upper approx-
imation function µk. We hope that the simplified version is
clear enough so that the reader is able to solve it by him-
self/herself.

For k = 1, 2, 3 we respectively use the partitioning:

{X1} = {[−nmax, nmax]}
{X2} = {[−nmax, 0[, [0, nmax]}
{X3} = {[−nmax,−nmin[, [−nmin, nmin],]nmin, nmax]}

We respectively find the upper linear approximation func-
tion:

µ1(x) = x+ A o, x ∈ [−nmax, nmax]

µ2(x) =

{
x · (1 + Ro

n) + A o
s x ∈ [0, nmax]

x · (1−Ro
n) + A o

s x ∈ [−nmax, 0[

and

µ3(x) =

 x · (1 + Ro
n) x ∈]nmin, nmax]

x+ A o
s x ∈ [−nmin, nmin]

x · (1−Ro
n) x ∈ [−nmax,−nmin[

where A o = ε·βemax

2
, A o

s = ε·βemin

2
, and Ro

n = ε
2+ε

.

These are the common approximations, as used in [2, 4, 5,
14] and as illustrated in Figure 2(a), 2(b) and 2(c). k = 1
is the common approximation by absolute error. k = 2 is
the common mixed use of the absolute error and the relative
error. k = 3 is the common use of the relative error for the
normals and the absolute error for the subnormals.

It is interesting to notice that the proof for the optimal
bound for the relative error recently given in [12] can be
retrieved by solving the simplified version of (1):

minimize(
∫ nmax

nmin
(µ(x)− x̂)dx)

µ(x) = a · x+ b
µ(x) ≥ x̂
x ≥ nmin

which will give µ(x) = x · (1 + δ), δ = ε
2+ε

, after which the
identification of δ as Ro

n easily follows. This result shows
how far reaching our approach would be.

Using our formalization, we could prove the optimality of
the common linear approximations and classified them in
order of increasing precision. We can as well call them the
1-piece, 2-pieces and 3-pieces linear approximations. Now
we will present approximations with higher precision.

When k ≥ 4, we start from the approximation for k = 3
and, at each increase of k, we consecutively approximate the
floating-point numbers with same ulp in decreasing order of
ulp. In other words, we group by ulp from the edge to the
center. Floating-point numbers x̂ ∈ I = [x̂m, x̂M] with same
ulp have a unique optimal linear upper approximation which

is x+ A o
I where A o

I = ulp(x̂)
2

.

For example, for the approximation with 4 pieces, we start
from the approximation with 3 pieces. Then for the new set,
we have the choice between a group of positive floating-point
numbers and a group of negative floating-point numbers. We
decide to take the positive one. This is illustrated in Figure
3(a).

For the approximation with 5 pieces, we start from the ap-
proximation with 4 pieces. Then for the new set, we have
only a single choice, which is the previous group of negative
floating-point numbers. This is illustrated in Figure 3(b).

We repeat the same process for k ≥ 6 until k is such that
all floating-point numbers with same ulp are optimally ap-
proximated, as illustrated in Figure 3(c).

Starting from there, for the approximations with higher num-
ber of pieces, at each increase of k, we consecutively de-
fine each floating-point number exactly in decreasing order
of ulp, in other words from the edge to the center again.
The equivalence between x̂ and its approximation is reached
when k = N .

It is worth mentioning that approximating by grouping the
the floating-point numbers with same ulp in decreasing order
of ulp is just one possible strategy. Depending on the appli-
cation and on the concrete floating-point constants used in
the program, it could be beneficial for example to tighten the
approximation with increasing order of ulp or in particular
around the occurring constants.

We just presented piecewise linear approximations which are
more precise than the common piecewise linear approxima-
tions by increasing the number of pieces. We will now see
how to use these approximations of x̂ to linearize arithmetic
expressions.

3.2 Linearization of arithmetic floating-point
expressions

(a) From 3 to 4 pieces. The
new set is in dashed line.
Same as for 3 pieces for the
negatives.

(b) From 4 to 5 pieces. The
new set is in dashed line.
Same as for 4 pieces for the
positives.

(c) All grouped by ulp.
Symmetry to the origin for
the negatives.

Figure 3: Piecewise linear approximations of x̂ with
higher precision

Floating-point arithmetic operations are non-linear. Lin-
earizing a floating-point arithmetic expression consists of
translating the expression into a rational linear expression
by means of sound approximations.

Knowing an approximation of x̂ such that νk(x) ≤ x̂ ≤ µk(x)
and using the property of correctly rounded operations, the
approximation of a floating-point arithmetic operation is
straightforward: for a given arithmetic operation ?, we have
νk(y ? z) ≤ y ?©z ≤ µk(y ? z).

When linearizing an arithmetic expression with multiple op-
erations, we use intermediate variables to decompose the ex-
pression into elementary arithmetic operations with respect
to their precedence. For example, the following expression
r = x+©y ·©z−©x is decomposed into: r = t2−©x

t2 = x+©t1
t1 = y ·©z

Then, it only remains to approximate each elementary oper-
ation using the previously presented piecewise linear approx-
imations, with the desired precision. The above example will
give us: νk(t2 − x) ≤ r ≤ µk(t2 − x)

νk(x+ t1) ≤ t2 ≤ µk(x+ t1)
νk(y · z) ≤ t1 ≤ µk(y · z)

Generally, once such approximation by rational expressions
is obtained, the linearization is considered done even if,
strictly speaking, it is not since non-linear terms, like prod-
uct of two variables, may still appear in the rational ex-
pression. In those cases, the non-linear terms have to be
linearized by techniques like [13]. For example, giving two
rational variables x ∈ [xm, xM] and y ∈ [ym, yM], their prod-
uct z = x · y will be approximated by the linear constraints:

z − xmy − ymx+ xmym ≥ 0
−z + xmy + yMx− xmyM ≥ 0
−z + xMy + ymx− xMym ≥ 0
z − xMy − yMx+ xmyM ≥ 0

We will now present a concrete application of our technique
through the termination analysis of loops using floating-
point numbers as variables.

4. APPLICATION TO TERMINATION AN-
ALYSIS OF FLOATING-POINT LOOPS

Our approach for analyzing termination of loops involving
floating-point arithmetic consists in translating them into
rational loops, and then applying the already existing ter-
mination analysis techniques to the obtained translation.

As we suppose that no overflow occurs, the result of the anal-
ysis is only valid for the initial ranges of the variables that
do not lead to overflow. Abstract interpretation-based tools,
like Fluctuat [9], or formal method-based tools, like Gappa
[3], already exist for the determination of those ranges. The
non-occurrence of overflow is an information that we can
use to enrich the constraints of our approximations since
for every arithmetic floating-point operation ?©: −nmax ≤
x ?©y ≤ nmax. However, for the sake of readability, we will
omit these additional constraints.

Each floating-point expression is then approximated by ra-
tional ones using the technique presented in the previous
section. Expressions in guard conditions are handled using
intermediate variables.

We will now concretely see how to proceed through the anal-
ysis of the loop aloop presented in Figure 4, in which the
variables x and y are of type myfloat. In our notation, the
primed variables refer to the value of their unprimed equiv-
alent at the end of one iteration.

while(x * y >= 0 & y >= -6) {

x’ := x - 0.6;

y’ := y + 0.3 + 0.3;

}

Figure 4: A floating-point loop, aloop

aloop terminates for every initial value of x and y. Indeed,
for any initial value x0, y0 of x, y:

(i) x is always strictly decreasing,

(ii) y is strictly increasing at each iteration until reaching
10 if −6 ≤ y0 < 10 or y stays unchanged if y0 ≥ 10.

(i) and (ii) imply that if the loop runs long enough, x will
become negative while y will become positive in which case
the condition x ·©y ≥ 0 will be unsatisfied.

Notice that y′1 = y+©0.3+©0.3 is different from y′2 = y+©0.6
due to the rounding errors. For example, for y = 20, y′1 = 20
while y′2 = 21.

We will now show how to analyze aloop using our approach.
We start by decomposing all the arithmetic expressions into
a succession of elementary operations. If complex expres-
sions are encountered in the guard condition, they are put
inside intermediate variables so that they can be decom-
posed normally. This is illustrated in Figure 5.

c0 := x * y;

while(c0 >= 0

& y >= -6) {

x’ := x - 0.6;

y’ := y + 0.3 + 0.3;

c0’ := x’ * y’;

}

(a) Treatment of the guard
condition

c0 := x * y;

while(c0 >= 0

& y >= -6) {

x’ := x - 0.6;

t0 := y + 0.3;

y’ := t0 + 0.3;

c0’ := x’ * y’;

}

(b) Decomposition
into a succession of
elementary operations

Figure 5: Preliminary operations before translation

Then, each operation is approximated by piecewise linear
functions with the desired precision as presented in the pre-
vious section.

We will now show that the common approximations – the
1-piece, the 2-pieces and the 3-pieces linear approximations
in our terminology – are not precise enough to prove the
termination of aloop while the 4-pieces one is.

Using the 1-piece linear approximation, r = y ?©z is approx-
imated by ν1(y ? z) ≤ r ≤ µ1(y ? z) such that µ1(x) =
x+ 0.5,−99 ≤ x ≤ 99 and ν1(x) = x− 0.5,−99 ≤ x ≤ 99.

Applying that approximation on the transformed program in
Figure 5(b), we will get the rational approximation of aloop
in Figure 6 which uses the non-deterministic assignments
<=: and :<= .

x*y - 0.5 <=: c0 :<= x*y + 0.5;

while(c0 >= 0

& y >= -6) {

x - 1.1 <=: x’ :=< x - 0.1;

y - 0.2 <=: t0 :<= y + 0.8;

t0 - 0.2 <=: y’ :<= t0 + 0.8;

x’*y’ - 0.5 <=: c0’ :<= x’*y’ + 0.5;

}

Figure 6: Rational approximation of aloop using the
1-piece linear approximation

The 1-piece linear approximation is precise enough to cap-

ture the decreasing of x as the obtained upper bound of x′

is strictly less than x. However, it is too loose to capture the
increasing to a positive number of y. Indeed, the obtained
lower bound of t0 is less than or equal to y and that of y′ is
less than or equal to t0. Thus, with this approximation, y
may decrease or may stay constant during all executions of
the loop. If the initial values of x and y are negative num-
bers and y stays constant, the loop will run infinitely. As
there are cases where the translated loop may terminate or
may not, we cannot decide the termination of aloop.

Using the 2-pieces linear approximation, r = y ?©z is approx-
imated by ν2(y ? z) ≤ r ≤ µ2(y ? z) such that:

µ2(x) =

{
22
21
x+ 0.05 x ∈ [0, 99]

20
21
x+ 0.05 x ∈ [−99, 0[

and

ν2(x) =

{
20
21
x− 0.05 x ∈ [0, 99]

22
21
x− 0.05 x ∈ [−99, 0[

Thus, the instruction x’ := x - 0.6; is translated as in
Figure 7.

if (x - 0.6 >=0) {

20*(x - 0.6)/21 - 0.05 <=: x’

<=: 22*(x - 0.6)/21 + 0.05;

} else {

22*(x - 0.6)/21 - 0.05 <=: x’

<=: 20*(x - 0.6)/21 + 0.05;

}

Figure 7: Rational approximation of x’ := x - 0.6;

using the 2-pieces linear approximation

The other instructions are translated in a similar way.

We easily verify that the 2-pieces linear approximation is
precise enough to capture the increasing to a positive num-
ber of y as the obtained lower bound of y′ is strictly greater
than y for −6 ≤ y ≤ 0. However, it is too loose to capture
the decreasing of x for any initial value x0 of x. Indeed, for
x0 ≥ 14, the obtained upper bound of x′ is greater than or
equal to x. Thus, with this approximation, x may increase
or may stay constant during all executions of the loop. If
x0 ≥ 14 and y0 ≥ 0, the loop will run infinitely. As there
are cases where the translated loop may terminate or may
not, we cannot decide the termination of aloop.

The same reasoning applies for the 3-pieces linear approxi-
mation which is also precise enough to capture the increasing
to a positive number of y but not the decreasing of x.

Using the 4-pieces linear approximation, r = y ?©z is approx-
imated by ν4(y ? z) ≤ r ≤ µ4(y ? z) such that:

µ4(x) =

x+ 0.5 x ∈ [10, 99]
22
21
x x ∈]1, 10[

x+ 0.05 x ∈ [−1, 1]
20
21
x x ∈ [−99,−1[

and

ν4(x) =

x− 0.5 x ∈ [10, 99]
20
21
x x ∈]1, 10[

x− 0.05 x ∈ [−1, 1]
22
21
x x ∈ [−99,−1[

Thus, the instruction x’ := x - 0.6; is translated as in
Figure 8.

if (x - 0.6 >= 10) {

x - 1.1 <=: x’ :=< x - 0.1;

} else if (1 <= x - 0.6 & x - 0.6 <= 10) {

20*(x - 0.6)/21 <=: x’ <=: 22*(x - 0.6)/21;

} else if (-1 <= x - 0.6 & x - 0.6 <= 1) {

x - 0.65 <=: x’ :<= x + 0.55;

}else {

22*(x - 0.6)/21 <=: x’ <=: 20*(x - 0.6)/21;

}

Figure 8: Rational approximation of x’ := x - 0.6;

using the 4-pieces linear approximation

The other instructions are translated in a similar way.

Now, the approximation is precise enough to capture both
the decreasing of x and the increasing to a positive number
of y. Indeed, the obtained upper bound of x′ is strictly
less than x and the obtained lower bound of y′ is strictly
greater than y for any −6 ≤ y ≤ 0. As the translated loop
terminates for any initial value of x and y, so does aloop.

5. CONCLUSION
We have presented a new technique for analyzing termina-
tion of floating-point loops by translating them into rational
ones using sound approximations. To achieve that, we use
piecewise linear functions. The novelty lies in the quality of
the approximations which are optimal for the chosen par-
titioning and can be as precise as needed by increasing or
decreasing the number of pieces. That is the notion of what
we call piecewise linear approximation with parameterizable
precision. Unlike the few other existing techniques for ter-
mination analysis of floating-point loops, ours benefits from
the very well covered termination analysis of rational and
linear loops.

To some extent, the presented technique can be also ap-
plied to programs that operate on both floating-point vari-
ables and on other kind of data such as integers, arrays and
more generally heap-based data-structures. To our knowl-
edge, such a combined analysis has not yet been proposed
for program termination.

Our work can be extended in many interesting ways. We can
guide the partitioning by the ranges of the variables in the
expression to approximate. Those ranges can be retrieved
by abstract interpretation-based techniques for example. We
can also use approximations with different precision for each
expression to approximate instead of using a unique approx-
imation for all the expressions.

The notion of approximation with parameterizable precision
can be easily used in other topics involving floating-point
arithmetic. We notably think about the topic of constraint
solving over floating-point numbers which also uses rational
approximations. Indeed, the more precise the approxima-
tions are, the more efficient the filtering process will be.

6. REFERENCES

[1] R. Bagnara and F. Mesnard. Eventual linear ranking
functions. In Principles and Practice of Declarative
Programming, 2013.

[2] M. S. Belaid, C. Michel, and M. Rueher. Boosting
local consistency algorithms over floating-point
numbers. In Principles and Practice of Constraint
Programming. 2012.

[3] S. Boldo, J.-C. Filliâtre, and G. Melquiond. Combining
Coq and Gappa for certifying floating-point programs.
In Intelligent Computer Mathematics. 2009.

[4] S. Boldo and T. M. T. Nguyen. Hardware-independent
proofs of numerical programs. In NASA Formal
Methods, 2010.

[5] S. Boldo and T. M. T. Nguyen. Proofs of numerical
programs when the compiler optimizes. Innovations in
Systems and Software Engineering, 2011.

[6] A. R. Bradley, Z. Manna, and H. B. Sipma. The
polyranking principle. In Automata, Languages and
Programming. 2005.

[7] H. Y. Chen, S. Flur, and S. Mukhopadhyay.
Termination proofs for linear simple loops. In Static
Analysis. 2012.

[8] C. David, D. Kroening, and M. Lewis. Unrestricted
termination and non-termination arguments for
bit-vector programs. In European Symposium on
Programming. 2015.

[9] D. Delmas, E. Goubault, S. Putot, J. Souyris,
K. Tekkal, and F. Védrine. Towards an industrial use
of Fluctuat on safety-critical avionics software. In
Formal Methods for Industrial Critical Systems. 2009.

[10] D. Goldberg. What every computer scientist should
know about floating-point arithmetic. ACM
Computing Surveys, 1991.

[11] N. J. Higham. Accuracy and Stability of Numerical
Algorithms. Society for Industrial and Applied
Mathematics, 2002.

[12] C.-P. Jeannerod and S. M. Rump. On relative errors
of floating-point operations: optimal bounds and
applications. Preprint, 2014.

[13] G. P. McCormick. Computability of global solutions to
factorable nonconvex programs: Part I – Convex
underestimating problems. Mathematical
Programming, 1976.

[14] A. Miné. Relational abstract domains for the detection
of floating-point run-time errors. In European
Symposium on Programming. 2004.

[15] A. Podelski and A. Rybalchenko. A complete method
for the synthesis of linear ranking functions. In
Verification, model checking, and abstract
interpretation, 2004.

[16] A. Serebrenik and D. De Schreye. Termination of
floating-point computations. Journal of Automated
Reasoning, 2005.

