
Towards a Framework for Algorithm
Recognition in Binary Code

Frédéric Mesnard
LIM, université de la Réunion, France
frederic.mesnard@univ-reunion.fr

Étienne Payet
LIM, université de la Réunion, France

etienne.payet@univ-reunion.fr

Wim Vanhoof
Faculté d’informatique, université de

Namur, Belgium
wim.vanhoof@unamur.be

Abstract
Algorithm recognition, which is the problem of verifying whether
a program implements a given algorithm, is an important topic in
program analysis. We propose an approach for algorithm recog-
nition in binary code. For this paper, we have chosen the Dalvik
Virtual Machine (DVM) bytecode. Given an algorithm A that is
compiled into a DVM method M0, and a DVM program P that
includes a series of methods {M1, . . . ,Mn}, the approach is able
to identify those blocks Mi from P that essentially implement the
algorithm A. The technique we propose first translates binary code
into Horn clauses. Then we consider programs as implementing the
same algorithm if their Horn clause representations can be reduced
to a single common set of Horn clauses by means of a sequence of
transformations.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Formal methods.

Keywords Algorithm recognition.

1. Introduction
Algorithm recognition – which we could intuitively define as ver-
ifying whether a program implements a given algorithm (Wills
1993) – is an important topic in program analysis. Applications
are diverse and range from program comprehension (Storey 2005)
over plagiarism detection (Zhang et al. 2012) and malware detec-
tion (Zhang et al. 2014) to advanced analyses and optimisations
such as the automatic detection of the best parallelisation strategy
for a given code fragment (Martino and Iannello 1996).

How to identify whether a given piece of code implements a par-
ticular algorithm is a challenging question that can be studied from
different angles. While it can generally be assumed that the algo-
rithm to be recognised is known in the form of source code, whether
this is the case for the codebase in which the search has to take place
depends on the desired application. Consider for example a sys-
tem for assessing whether students in a programming course have
correctly implemented a particular sorting algorithm (Taherkhani
and Malmi 2013); in that case one can safely assume the student’s
source code to be available and one can resort to techniques for as-
sessing the similarity between two algorithms represented in source

[Copyright notice will appear here once ’preprint’ option is removed.]

code. However, as an alternative example, consider a company that
wishes to verify whether a competitor’s software program uses
a (proprietary) algorithm. In this case, the competitor’s software
might be written in a different programming language and is pre-
sumably only available as binary code. Consequently, the verifica-
tion must be performed between some model of the algorithm and
that of the binary code under scrutiny (Zhang et al. 2012).

In this work, we propose an approach for algorithm recognition
in binary code, namely Google’s Dalvik Virtual Machine (DVM)
bytecode, making the approach directly applicable to (compiled)
Android programs. A direct application of our approach resides
in algorithm plagiarism detection, a topic that has – in contrast
with so-called software plagiarism – received relatively little atten-
tion (Zhang et al. 2012). While software plagiarism is mainly about
unlawfully reusing existing source code or libraries, algorithm pla-
giarism is more about unlawfully copying the ideas behind how a
certain computation is done. Let us consider computing the maxi-
mum of three integer values as an almost ridiculously simple exam-
ple. Figure 1 shows two different Java source methods that perform
this computation. While the code of the two methods is quite dif-
ferent (and will as such presumably not be recognised as software
plagiarism or software clones), the algorithm that is implemented
by both methods is essentially the same. Indeed, in both cases one
compares z with the maximum of x and y. In the middle method
code this is more explicit by the presence of the auxiliary variable,
but the left-hand side method does essentially the same. While the
example is, admittedly, too simple to speak of algorithm plagia-
rism, for several other applications (for example in the context of
program understanding or program refactoring) it might neverthe-
less be desirable to recognize that the algorithm underlying both
methods is the same.

While the notion of two algorithms being the same is not easily
defined, and the mere existence of equivalence classes of programs
implementing the same algorithm is even subject to debate (Blass
et al. 2009), a pragmatic approach that is often taken in algorithm
recognition (Metzger and Wen 2000) is to consider programs as
implementing the same algorithm if they can be reduced to one
another by means of a sequence of syntactical transformations.
While our approach is based on program transformation and targets
algorithm recognition in binary code, one of its cornerstones is the
fact that we use Horn clauses to represent a model of the algorithm
as well as of the compiled code under scrutiny. This has several
advantages:

• Horn clauses are a suitable abstraction that is in between binary
code and a more high-level programming language. This is in
line with recent work (Gange et al. 2015) in which the use of
Horn Clauses as a universal intermediate language has been
advocated. In that work the general idea is to compile a program
(written in an arbitrary language) first into Horn clauses, then

1 2016/11/8

int max(int x, int y, int z) {
if ((x>=y) && (x>=z))

return x;
else if ((y>=x) && (y>=z))

return y;
else

return z;
}

int max(int x, int y, int z) {
int max_xy;
if (x>=y)

max_xy = x;
else

max_xy = y;
if (max_xy>=z)

return max_xy;
else

return z;
}

.method public max(III)I
.registers 5

0: if-lt v2, v3, 4
1: move v0, v2
2: if-lt v0, v4, 6
3: return v0
4: move v0, v3
5: goto 2
6: move v0, v4
7: goto 3
.end method

Figure 1. Two different methods computing the maximum of three values, and the Dalvik code corresponding to the middle method.

analysing and optimizing this representation and, if needed,
compile the result into executable code. In our work we take this
idea the other way round and we present a scheme that allows
us to decompile Dalvik binary code into Horn clauses.
• Horn clauses are a well-known formalism and have already

been proven to be suitable for a lot of different program anal-
yses. In this work, we resort to well-known transformations of
Horn clauses in order to formally establish what it means for
two algorithms, represented by a set of Horn clauses, to be the
same.
• Even if we specifically target Android binary code in this work,

the fact that our framework for algorithm recognition is ex-
pressed at the Horn clause level makes it a very general ap-
proach that can be readily ported to a multitude of programming
languages and systems.

In our approach, we assume that we have an algorithm of in-
terest A, for example the Java code at the left of Figure 1, and a
series of DVM bytecode fragments {M1, . . . ,Mn} (a code frag-
ment typically being a method but in principle any block having a
clearly defined entry and exit point will do) where we suspect one
of these bytecode fragments to be implementing the algorithmA. In
the context of our example, one of the bytecode fragments could be
the DVM code, right-hand side of Figure 1, resulting from compil-
ing the method in the middle of Figure 1. The algorithm recognition
process that we propose is schematically represented in Figure 2.

Figure 2. The algorithm recognition process.

The algorithm A is transformed (either directly or via its DVM
implementation M0) into a Horn clause representation H0. Each
bytecode fragment Mi is likewise decompiled into its Horn clause
equivalent Hi. Subsequently, for each fragment Mi (1 ≤ i ≤ n),

we try to establish two transformation sequences, T0 and Ti, that
transform respectively H0 and Hi into a single Horn clause repre-
sentation Ci that has, at least partially, the same semantics as H0

and Hi (and thus as A and Mi). If such a common representation
Ci can be found, we conclude that Mi implements the same algo-
rithm as does A, at least with respect to the part of the semantics
that has been preserved by the transformations. Note that termi-
nation of the process depends on the algorithm that is used when
searching for a common representation. Since, as we will explain
further, the search is based on repeatedly applying a set of given
program transformations, the process can be made terminating at
the cost of not necessarily finding such a common representation.
In that sense, the outcome of the process is either that the code
fragments are recognised as implementing the same algorithm, or
that the search is inconclusive. Returning to our running example,
Figure 3 represents H0 and H1 that is, the Horn-clause equiva-
lent of, respectively, the left-hand and right-hand sides of Figure 1
after some initial semantics-preserving transformations (basically
unfolding all non-recursive predicates). The precise description of
our Horn-clause language will be defined in Section 2, but let us
note that it is essentially a constraint logic language. The last two
arguments of each predicate correspond to the Dalvik memory be-
fore and after the call, modeled as a zero-based array where its first
element is the return value of the corresponding method.

Even if the predicates p0/7 and p1/8 depicted in the figure are
different, it is not hard to see that they can be transformed into
a common definition. Indeed, unfolding V4 ≥ V5 in the second
clause of p1 into (V4 > V5) ∨ (V4 = V5), unfolding likewise
V3 ≥ V4 in the third clause, and removing from the definition the
three first (unused) arguments, one obtains

p1(V3, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V3 ≥ V4, V3 ≥ V5, A

′ = A{0← V3}}.
p1(V3, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V4 > V5, V3 < V4, A

′ = A{0← V4}}.
p1(V3, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V4 = V5, V3 < V4, A

′ = A{0← V4}}.
p1(V3, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V3 = V4, V3 < V5, A

′ = A{0← V5}}.
p1(V3, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V3 > V4, V3 < V5, A

′ = A{0← V5}}.
p1(V3, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V4 < V5, V3 < V4, A

′ = A{0← V5}}.

It can be easily observed that the same code (apart from a renam-
ing of the arguments and a reordering of the constraints) can be
obtained from the definition of p0 by unfolding the atom V3 ≥ V4

in the second clause and eliminating from the definition the first
two (unused) arguments. Since unfolding and removal of unused
arguments preserves the semantics, we can conclude that both frag-
ments implement the same algorithm.

The remainder of the paper is organised as follows. Section 2
describes our decompilation schema from Dalvik code to Horn

2 2016/11/8

p0(V0, V1, V2, V3, V4, 〈A, I〉, 〈A′, I〉)←
{V2 ≥ V4, V2 ≥ V3, A′ = A{0← V2}}.

p0(V0, V1, V2, V3, V4, 〈A, I〉, 〈A′, I〉)←
{V2 < V3, V3 ≥ V4, A′ = A{0← V3}}.

p0(V0, V1, V2, V2, V4, 〈A, I〉, 〈A′, I〉)←
{V2 < V4, A′ = A{0← V4}}.

p0(V0, V1, V2, V3, V4, 〈A, I〉, 〈A′, I〉)←
{V2 < V4, V3 < V2, A′ = A{0← V4}}.

p0(V0, V1, V2, V3, V4, 〈A, I〉, 〈A′, I〉)←
{V2 < V3, V3 < V4, A′ = A{0← V4}}.

p1(V0, V1, V2, V3, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V3 ≥ V4, V3 ≥ V5, A

′ = A{0← V3}}.
p1(V0, V1, V2, V3, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V4 ≥ V5, V3 < V4, A

′ = A{0← V4}}.
p1(V0, V1, V2, V3, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V3 ≥ V4, V3 < V5, A

′ = A{0← V5}}.
p1(V0, V1, V2, V3, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V4 < V5, V3 < V4, A

′ = A{0← V5}}.

Figure 3. Horn clause representation of the methods of Figure 1, obtained by decompilation.

clauses. Section 3 provides the formal framework enabling the al-
gorithm recognition process as described, and the formal definition
of what it means, within this framework, when two program frag-
ments implement the same algorithm. Section 4 summarizes related
work and Section 5 concludes with a discussion of future work.

2. From Binary Code to Clauses
Android programs are written in Java. They are compiled to the
Google’s Dalvik Virtual Machine (DVM) bytecode format before
installation on a device. We assume the reader familiar with the
basic concepts of object-oriented programming and the Android
platform (Android developers). Here, we briefly describe the DVM,
see (ART and Dalvik) for a complete presentation.

Unlike the Java Virtual Machine (Lindholm and Yellin 1999)
which is stack-based, the DVM is register-based. It runs a Dalvik
bytecode program by keeping an activation stack of frames. Each
frame is created by a method call, survives until the end of the call
and uses its own registers. An invoked method cannot affect the
registers in the frame of the invoking method. Any call to a same
method always produces a frame with a same number of registers.
For each method ω, this number is statically known. We denote it
as reg(ω) and we refer to it as the number of registers used by ω.

The memory of the system contains objects, connected through
pointers. To simplify the presentation, we do not consider array nor
interface types and only allow integers as values of basic types.

Definition 1. The set of values is Z ∪ L, where Z is the set of
integers and L is the set of memory locations. A frame of the
DVM is a pair 〈v, µ〉 where v is a sequence of values, called
registers, numbered from 0 upwards and µ is a memory, or heap,
that maps locations into objects. An object is a pair 〈κ, f〉 where
κ is a class identifier i.e., an index (integer) in the class definition
list of the program, and f is a sequence of values, called fields,
numbered from 0 upwards; we say that it belongs to class κ or
that it is an instance of class κ or has class κ. We let o.κ and o.f
respectively denote the class and fields of an object o. We require
that there are no dangling pointers i.e., v ∩ L ⊆ dom(µ) and
µ(`).f∩L ⊆ dom(µ) for every ` ∈ dom(µ). The set of all classes
is denoted by K and it is partially ordered by the subclass relation
(we consider that a class is a subclass of itself).

The Dalvik bytecode is strongly typed. Each value has a type
and registers are statically typed.

Definition 2. The set of types of our simplified DVM is T =
K∪{int, void}. The void type can only be used as the return type
of methods. A method signature is denoted by κ.m(t1, . . . , tp)t
standing for a method named m, defined in class κ, expecting p
explicit parameters of type, respectively, t1, . . . , tp and returning a
value of type t, or returning no value when t = void.

A non-static method κ.m(t1, . . . , tp)t also has an implicit pa-
rameter of type κ called this in the code of the method. So the
actual number of parameters is p + 1. We do not distinguish be-

tween methods and constructors. A constructor is just a method
named <init> and returning void. By a void method (resp. non-
void method) we mean a method whose return type is void (resp.
is not void). We do not consider static fields and methods. The
extension of our definitions to them is not difficult.

Dalvik bytecode instructions work over frames and their exe-
cution affects the registers or the memory in the frames. Many are
similar or only differ in the type or size of their operands. So we
concentrate on a restricted set which exemplifies the operations that
the DVM performs.

• const d, c Writes constant c into register d.
• move d, s Writes the value of register s into register d.
• add d, s, cWrites the sum of the value of register s and constant
c into register d.
• if -lt i, j, q If the value of register i is less than the value of

register j then jumps to program point q, otherwise executes
the immediately following instruction.
• goto q Jumps to program point q.
• invoke S, κ.m(t1, . . . , tp)t where S = s0, s1, . . . , sp is a

sequence of register indexes. The value vs0 of register s0,
. . . , vsp of register sp are the actual parameters of the call.
Value vs0 is called receiver of the call and must be 0 (the
equivalent of null in Java) or the memory location of an object
o. In the former case, the computation stops with an exception.
Otherwise, a lookup procedure is started from the class of
o upwards along the superclass chain, looking for a method
called m expecting p formal parameters of type t1, . . . , tp,
respectively, and returning a value of type t. It is guaranteed
that such a method is found in a subclass of κ. That method is
run from a new frame where the last p + 1 registers are bound
to vs0 , vs1 , . . . , vsp , respectively, and the other ones to 0.
• return Returns from a void method.
• return s Returns from a non-void method with the value of

register s as result.
• move-result d Writes the result of the most recent called

method into register d. This instruction must immediately fol-
low an invoke instruction.
• new -instance d, κWrites the memory location of a new, prop-

erly initialised, object of class κ into register d.
• iget d, i, j (resp. iput s, i, j) The value vi of register imust be 0

or the memory location of an object o. If vi is 0, the computation
stops with an exception. Otherwise, the value of field j of o is
written into register d (resp. the value of register s is written
into the field j of o).

We suppose that the Dalvik programP under consideration con-
sists of these instructions and that it is well-formed. For instance,
each move-result immediately follows an instruction of the form

3 2016/11/8

q : const d, c 7→
{
pq(Ṽ ,M,M ′)← {V ′d = c} ∪ id−d, pq+1(Ṽ

′,M,M ′)
}

q : move d, s 7→
{
pq(Ṽ ,M,M ′)← {V ′d = Vs} ∪ id−d, pq+1(Ṽ

′,M,M ′)
}

q : add d, s, c 7→
{
pq(Ṽ ,M,M ′)← {V ′d = Vs + c} ∪ id−d, pq+1(Ṽ

′,M,M ′)
}

q : goto q′ 7→
{
pq(Ṽ ,M,M ′)← id , pq′(Ṽ

′,M,M ′)
}

q : if -lt i, j, q′ 7→
{
pq(Ṽ ,M,M ′)← {Vi < Vj} ∪ id , pq′(Ṽ

′,M,M ′)

pq(Ṽ ,M,M ′)← {Vi ≥ Vj} ∪ id , pq+1(Ṽ
′,M,M ′)

}
Figure 4. Compilation of simple instructions.

ins = invoke s0, . . . , sp, κ.m(t1, . . . , tp)t

q : ins 7→

pq(Ṽ , 〈A, I〉,M ′) ←

{
Vs0 > 0, κ′ = A[Vs0 , 0]

}
∪ id , κ′ is a subclass of κ

pqω′ (W̃ , 〈A, I〉,M1), ω′ = lookup(κ.m(t1, . . . , tp)t, κ
′)

pq+1(Ṽ
′,M1,M

′) W̃ = 0, . . . , 0, Vs0 , . . . , Vsp with |W̃ | = reg(ω′)

q : move-result d 7→

{
pq(Ṽ , 〈A, I〉,M ′)←

{
V ′d = A[0]

}
∪ id−d, pq+1(Ṽ

′, 〈A, I〉,M ′)
}

q : return s 7→
{
pq(Ṽ , 〈A, I〉, 〈A′, I ′〉)← {A′ = A{0← Vs}, I ′ = I}

}
q : return 7→

{
pq(Ṽ , 〈A, I〉, 〈A′, I ′〉)← {A′ = A, I ′ = I}

}
Figure 5. Compilation of instructions related to method calls.

ins = new -instance d, κ and objects of class κ have n fields

q : ins 7→
{
pq(Ṽ , 〈A, I〉,M ′)←

{
O[0] = κ, O[1] = 0, . . . , O[n] = 0, A1 = A{I ← O},

V ′d = I, I1 = I + 1
}
∪ id−d, pq+1(Ṽ

′, 〈A1, I1〉,M ′)

}

q : iget d, i, j 7→
{
pq(Ṽ , 〈A, I〉,M ′)←

{
Vi > 0, V ′d = A[Vi, j + 1]

}
∪ id−d, pq+1(Ṽ

′, 〈A, I〉,M ′)
}

q : iput s, i, j 7→
{
pq(Ṽ , 〈A, I〉,M ′)←

{
Vi > 0, O = A[Vi], O1 = O{j + 1← Vs},

A1 = A{Vi ← O1}
}
∪ id , pq+1(Ṽ

′, 〈A1, I〉,M ′)

}
Figure 6. Compilation of memory-related instructions.

invoke S, κ.m(t1, . . . , tp)twhere t 6= void. As for Java bytecode,
real Dalvik bytecode must pass a verification check before being
run on a device. Program points of P are denoted by q, q′, . . . and
we let q + 1 denote the program point immediately following q.

Our rules for compiling the instructions of P into clauses are
given in Fig. 4–6. Some of them have already been presented
in (Payet and Mesnard 2014). They have the form q : ins 7→
E where E is the set of clauses resulting from the compilation
of instruction ins occurring at q. We sometimes write ψ

q:ins 7→E
meaning that the rule only applies when condition ψ holds.

We assign a predicate symbol pq to each program point q of
P . The arity of pq is r + 2 where r = reg(ω) and ω is the method
where q occurs. We assign the following meaning to the parameters
of pq . In an atom of the form

pq(V0, . . . , Vr−1,M,M ′)

the first r + 1 parameters correspond to the state of the current
frame just before executing the instruction at q: V0, . . . , Vr−1 are
the values of the registers andM is the memory. The last parameter
M ′ is the memory upon termination of ω. It is used for handling

method calls; it is instantiated in the clauses generated for return
and its value is used in the clauses generated for invoke (Fig. 5).

We generate clauses with constraints on integer and array terms.
Our constraint theory combines the theory of integers with that of
arrays defined in (Bradley et al. 2006). We borrow the following
notations from (Bradley et al. 2006): the read a[i] returns the value
stored at position i of the array a and the write a{i ← e} is a
modified so that position i has value e; for multidimensional arrays,
a[i] · · · [j] is abbreviated with a[i, . . . , j]. We model a memory as
a pair 〈a, i〉 where a is an array, called memory content, indexed
from 0 upwards and i is the index where the next insertion in a will
take place. We do not model garbage collection and assume that the
memory is unbounded. Memory locations are indexes into a; they
start at 1 and 0 corresponds to the null value. We model an object
as an array of integers [κ, x0, . . . , xn], indexed from 0 upwards,
where κ is the class identifier and x0, . . . , xn are the current values
of the fields. Note that the value xj of a field j is located at index
j + 1. A memory content has the form [x, o0, . . . , on] where x,
an integer, is the result of the most recent called, non-void, method
and o0, . . . , on are objects.

4 2016/11/8

Definition 3. Our CLP domain of computation (values interpreting
constraints) is D = Z ∪ O ∪ A where O is the set of objects and
A is the set of memory contents.

Each rule of Fig. 4–6 considers an instruction ins occurring at
a program point q. Uppercase letters denote variables. We let Ṽ =
V0, . . . , Vr−1 and Ṽ ′ = V ′0 , . . . , V

′
r−1 be sequences of distinct

variables where r is the number of registers used by the method
where ins occurs. For each i ∈ [0, r − 1], variable Vi (resp. V ′i)
denotes the value of register i before (resp. after) executing ins . We
use variables M,M ′, . . . or pairs of variables 〈A, I〉, 〈A′, I ′〉, . . .
for denoting the memory. We let id denote the sequence (V ′0 =
V0, . . . , V

′
r−1 = Vr−1) and id−i (where i ∈ [0, r − 1]) the

sequence (V ′0 = V0, . . . , V
′
i−1 = Vi−1, V

′
i+1 = Vi+1 . . . , V

′
r−1 =

Vr−1). By |W̃ |we mean the length of sequence W̃ . For any method
ω = κ.m(t1, . . . , tp)t, qω is the program point where ω starts.
Moreover, for any subclass κ′ of κ, we let lookup(ω, κ′) denote
the closest method in the superclass chain of κ′ that has name
m, expects p formal parameters of type t1, . . . , tp, respectively,
and returns a value of type t. As κ′ is a subclass of κ and ω =
κ.m(t1, . . . , tp)t, it is guaranteed that such a method exists.

Some compilation rules are rather straightforward. For instance,
const d, c writes constant c into register d, so in Fig. 4 the output
register variable V ′d is set to c while the other register variables
remain unchanged (modelled with id−d). Rules for move , add and
goto are similar. The rule for if -lt i, j, q′ generates two clauses
expressing that when the test is true execution jumps to program
point q′ otherwise it jumps to the next instruction i.e., to program
point q + 1.

In Fig. 5 we consider method calls. The rule for instruction
invoke s0, . . . , sp, κ.m(t1, . . . , tp)t works as follows. We impose
that Vs0 (the receiver of the call) is a non-null location (i.e.,
Vs0 > 0). Therefore, if Vs0 ≤ 0, the execution of the generated
CLP program fails, as the original Dalvik program. Moreover, we
statically express the Dalvik dynamic lookup of the method to
invoke. The method that will effectively be invoked at runtime is
necessarily defined in a subclass of κ. Hence, for each subclass κ′

of κ, we generate a clause in which we specify that if the class
of object A[Vs0] is κ′ (i.e., κ′ = A[Vs0 , 0]), then we invoke the
closest method ω′ in the superclass chain of κ′ that has name m,
expects p formal parameters of type t1, . . . , tp and returns a value
of type t. This invocation is modelled by a call to pqω′ with a set of
registers initialised as needed i.e., the arguments of the call in the
last registers and the other registers set to 0. This call potentially
modifies the memory, which yields the new memory M1. Finally,
when the execution of the invoked method terminates, we transfer
control to the program point following the invocation point. This
is modelled by a call to pq+1 with input memory M1. The rule for
move-result produces a clause that writes the value returned by the
most recent called method (i.e., A[0]) into register d. Instructions
return and return s stop the execution of the current method,
hence the body of the generated clauses contains no call. Moreover,
the clause generated for return s writes the value of register s at
index 0 of the memory content i.e., it sets the value returned by the
most recent called method to that of register s.

Example 4. Let us consider the program in Fig. 7. In method f, the
variable a has type A, hence it may store a reference to an instance
of any subclass of A. Therefore, when compiling the call a.mm()
to clauses, we have to consider all the subclasses of A i.e., A itself
and B. For each subclass, we determine the method that would be
invoked if a reference to an instance of it was stored in a. If a stores
a reference to an instance of A, then the method mm of A is invoked.
If a stores a reference to an instance of B, then the method mm of B

is invoked. So, the instruction at line 14 is compiled to:

p14(V0, V1, V2, V3, 〈A, I〉,M ′)← {V0 > 0, A = A[V0, 0],
V ′0 = V0, V

′
1 = V1, V

′
2 = V2, V

′
3 = V3},

p4(0, V0, 〈A, I〉,M1), p15(V
′
0 , V

′
1 , V

′
2 , V

′
3 ,M1,M

′).

p14(V0, V1, V2, V3, 〈A, I〉,M ′)← {V0 > 0, B = A[V0, 0],
V ′0 = V0, V

′
1 = V1, V

′
2 = V2, V

′
3 = V3},

p7(0, V0, 〈A, I〉,M1), p15(V
′
0 , V

′
1 , V

′
2 , V

′
3 ,M1,M

′).

Now, consider the call a.m(). As there is no implementation of m
in B, the method m of A is always invoked here. So, the instruction
at line 13 is compiled to:

p13(V0, V1, V2, V3, 〈A, I〉,M ′)← {V0 > 0, A = A[V0, 0],
V ′0 = V0, V

′
1 = V1, V

′
2 = V2, V

′
3 = V3},

p0(0, V0, 〈A, I〉,M1), p14(V
′
0 , V

′
1 , V

′
2 , V

′
3 ,M1,M

′).

p13(V0, V1, V2, V3, 〈A, I〉,M ′)← {V0 > 0, B = A[V0, 0],
V ′0 = V0, V

′
1 = V1, V

′
2 = V2, V

′
3 = V3},

p0(0, V0, 〈A, I〉,M1), p14(V
′
0 , V

′
1 , V

′
2 , V

′
3 ,M1,M

′).

Finally, in Fig. 6 we consider the memory-related instructions.
The rule for new -instance d, κ builds a new object O which is
properly initialised, stores O in memory at location I (i.e., A1 =
A{I ← O}), writes the location of O into register d (i.e., V ′d = I)
and sets the next insertion index to I + 1 (i.e., I1 = I + 1). In the
clauses generated for iget d, i, j and iput s, i, j we specify that the
value of register i is a non-null location (i.e., Vi > 0). Therefore,
if Vi ≤ 0, the execution of the generated CLP program fails, as
the original Dalvik program. The rule for iget considers the object
whose location is in register i (i.e., A[Vi]) and writes the value
of field j of this object into register d i.e., V ′d = A[Vi, j + 1].
We write A[Vi, j +1] for accessing field j because the array A[Vi]
starts with the class identifier of the object, hence field j is located
at index j + 1. The rule for iput considers the object O whose
location is in register i (i.e., O = A[Vi]) and replaces it in memory
with a new object O1 (i.e., A1 = A{Vi ← O1}) which is the
same as O up to the value of field j, which is set from the value of
register s (i.e., O1 = O{j + 1← Vs}).
Example 5. In Fig. 7, objects of class A only have one field
(n). Hence, the new -instance instruction at line 11 of the Dalvik
program is compiled into the clause:

p11(V0, V1, V2, V3, 〈A, I〉,M ′)← {O[0] = A, O[1] = 0,
A1 = A{I ← O}, V ′0 = I, I1 = I + 1,
V ′1 = V1, V

′
2 = V2, V

′
3 = V3},

p12(V
′
0 , V

′
1 , V

′
2 , V

′
3 , 〈A1, I1〉,M ′).

3. Algorithm Recognition in Horn Clauses
In this section we will define what it means for two (decompiled)
programs to be algorithmically equivalent. Proving algorithmic
equivalence boils down (Metzger and Wen 2000) to proving se-
mantic equivalence on the one hand (the two program fragments
compute the same results and/or exhibit the same behaviour) and
some sort of structural equivalence on the other hand, meaning that
the two program fragments are similar in their (algorithmic) struc-
ture. We will first define what semantic equivalence means in our
setting, and we will focus on structural equivalence afterwards.

3.1 Semantic equivalence of code fragments
A decompiled Dalvik program is represented by a set of predicate
definitions of the form H ← {C}, B where H is the head atom, C
is a set of constraints and B a conjunction of atoms (most notably

5 2016/11/8

public class A { .method public m()V .method public mm()I
private int n = 5; .registers 2 .registers 2

0: iget v0, v1, 0 4: iget v0, v1, 0
public void m() { n++; } 1: add v0, v0, 1 5: add v0, v0, 2

2: iput v0, v1, 0 6: return v0
public int mm() { return n + 2; } 3: return .end method

} .end method

public class B extends A { .method public mm()I
public int mm() { return 10; } .registers 2

} 7: const v0, 10
8: return v0
.end method

public class MyActivity extends Activity { .method public f(I)I
... .registers 4
public int f(int i) { 9: const v1, 1 16: return v1

A a = (i >= 1 ? new A() : new B()); 10: if-lt v3, v1, 17 17: new-instance v0, B
a.m(); 11: new-instance v0, A 18: invoke v0, B.<init>()V
return a.mm(); 12: invoke v0, A.<init>()V 19: goto 13

} 13: invoke v0, A.m()V .end method
... 14: invoke v0, A.mm()I

} 15: move-result v1

Figure 7. A part of an Android program with simple instructions, method calls and memory accesses (Java code on the left and corresponding
Dalvik bytecode on the right). The Dalvik bytecode is written in a simplified Smali’s syntax (Smali assembler for the dex format). The
.registers directive at the beginning of each method indicates the number of registers used by the method. Moreover, v0 and v1 denote
registers 0 and 1 respectively and V (resp. I) denotes the type void (resp. int). At lines 0, 2 and 4, value 0 corresponds to the field n defined
in A.

calls to other predicates). Although in our case B is a conjunction
of 0, 1 or 2 atoms, the results of this section remain valid for the
general case where B is any conjunction of atoms. While different
semantics have been defined for CLP programs (Jaffar and Lassez
1987; Jaffar et al. 1998), given the simplicity of the clauses that
are generated by the compilation scheme, we can stick to the ba-
sic computed answer semantics as it is known from Prolog (Lloyd
1987). As usual, we will use Greek letters to denote substitutions
(mapping from variables to data terms). A call to one of the gen-
erated predicates having as head pq(V0, . . . , Vn−1,M,M ′) is thus
represented by an atom pq(V0, . . . , Vn−1,M,M ′)θ with θ a sub-
stitution. Given the nature of the generated clauses, θ will map the
predicate’s input arguments (V0, . . . , Vn and M) to ground terms
and, given the deterministic behaviour of the generated clauses, the
call will result in a single answer substitution θ′ mapping the pred-
icate’s single output argument M ′ to a ground value.

While the simple computed answer semantics is sufficient to
model the behaviour of our generated CLP programs, we need
a somewhat more sophisticated measure in order to compare the
values that are manipulated by these programs. Since objects are
essentially represented by locations into a memory, we will in the
following often refer to a value-memory pair, represented by (v, µ),
where v is a value from Z ∪ L and µ is the memory potentially
referred to by v. In order to compare value-memory pairs while
making abstraction of the actual locations, we define the notion of
value equivalence as follows:

Definition 6. Two value-memory pairs (v, µ) (v′, µ′) are value
equivalent, which we denote by (v, µ) ≈ (v′, µ′), when the follow-
ing conditions are met:

v = v′ if v and v′ are basic values from Z
true if v and v′ are locations, µ = 〈a, i〉 and

µ′ = 〈a′, i′〉, a[v] = 〈κ, x0, . . . , xn〉
and a′[v′] = 〈κ, x′0, . . . , x′n〉,
and ∀j : 0 ≤ j ≤ n : (xj , µ) ≈ (x′j , µ

′)
false otherwise.

Intuitively, two value-memory pairs are value equivalent if their
value parts either represent the same basic (integer) value, or if they
both refer to an object (each in their respective memory) belonging
to the same class and the corresponding fields are, in turn, value
equivalent.

Now, in order to formalise semantic equivalence of decompiled
Dalvik programs, let us define what it means for two such pro-
grams to compute the same result. Since the CLP predicates we
wish to relate result from compiling different sources, they poten-
tially have a different number of arguments (reflecting a different
number of used registers) and, even if the predicates basically com-
pute the same results, they may use different registers (and thus
argument positions) for storing what may essentially be the same
values. The following definition captures what it means for two
such predicates to compute the same result. It states that both pred-
icates must have a subsequence of their argument positions (both
sequences having the same size but containing possibly different
argument positions and not necessarily in the same order) such that
when the predicates are invoked with the corresponding arguments
initialised with the same values, then each predicate computes the
same result. This means that for each pair of arguments represent-
ing two corresponding registers, the value-memory pairs referred to
by these arguments must be value equivalent both at the moment the
predicates are invoked (condition 1 in the definition) and at the mo-
ment the predicates return (condition 2 in the definition). Note that
while the arguments (being ground values) will not have changed
over the execution of the predicate, the memories will have: the ini-
tial memories represented by θ(M) and σ(M), the final memories
by θ′(M ′) and σ′(M ′). Finally, the values returned by each of the
methods must also be value equivalent (condition 3 in the defini-
tion). As for notation, given a sequence R, we denote by Ri the
i’th element of R.

Definition 7. Given CLP programs P1 and P2 representing de-
compiled Dalvik programs, let ps/ns and pq/nq denote predicates
in, respectively, P1 and P2 and let R and R′ denote sequences of
argument positions from respectively {1, . . . ns} and {1, . . . nq}

6 2016/11/8

such that |R| = |R′| = n. We say that (ps, R) computes in
P1 a subset of (pq, R

′) in P2 if and only if for each call of the
form ps(V0, . . . , Vns−3,M,M ′)θ with computed answer substitu-
tion θ′, there also exists a call pq(V0, . . . , Vnq−3,M,M ′)σ with
computed answer substitution σ′ such that the following holds for
all k ∈ 0 . . . n− 1:

1. (θ(VRk), µin) ≈ (σ(VR′
k
), µ′in)

2. (θ(VRk), µout) ≈ (σ(VR′
k
), µ′out)

3. (a[0], µout) ≈ (a′[0], µ′out)

where µin = θ(M), µ′in = σ(M), µout = θ′(M ′) = 〈a, i〉,
and µ′out = σ′(M ′) = 〈a′, i′〉. Moreover, we say that (ps, R)
computes the same in P1 as does (pq, R

′) in P2 if and only if
(ps, R) computes a subset of (pq, R

′) and vice versa in their
respective programs.

The above definition allows us to characterise predicates as
computing the same results, even if these predicates only partially
exhibit the same behaviour. Indeed, what matters is that they com-
pute the same return value and update those parts of the memory
pointed to by arguments in R, respectively R′, in the same way.
The parts of the memory that are pointed to by arguments not com-
prised in either R or R′ may be updated differently. Note that at
the CLP level, a predicate such as ps or pq will always be called
with all but the last argument (representing the output memory) a
ground value. Consequently, the computed answer for the call con-
tains a single binding, binding the output memory argument to a
ground term. That explains why in condition 2 of the definition
we compare θ(VRk) and σ(VR′

k
) (the argument values at the time

of the call) with respect to the output memories (representing the
memory states at the time of the return of the call).

Example 8. Figures 8 and 9 represent two Java methods for
computing xn (where x and n are arguments of the method) and
the CLP code that was generated from the corresponding Dalvik
code (not displayed). In order to make the CLP code more readable,
all intermediate non-recursive predicates have been unfolded.1 If
we call the CLP program of Figure 8 Pexp1 and that of Figure 9
Pexp2, it is not hard to see that (p1 0, 〈5, 4〉) computes the same
result in Pexp1 as does (p2 0, 〈6, 5〉) in Pexp2. Indeed, a closer look
at the code makes it clear that the arguments V4 and V3 in p1 0

represent, respectively, the arguments n and x from the original
method whereas in p2 0 this role is played by the arguments V5 and
V4. Moreover, from the original Java code it can be clearly seen
that both methods compute the same return value for all possible
values of the arguments.

The following proposition is trivial to prove:

Proposition 9. The “computes the same” relation defined in Defi-
nition 7 is an equivalence relation.

As Example 8 illustrates, it is essential that we consider a subset
of arguments when comparing predicates since some of the argu-
ments, introduced by the compilation, are not (or, due to the CLP
transformations, no longer) used. This is the case for V2 in p1 0 and
both V2 and V3 in p2 0. Moreover, selecting a subset of arguments
allows us to focus on a (sub)computation of interest when consid-
ering semantic equivalence of predicates. As a technical note, the
programs Pexp1 and Pexp2 both use two helper arguments repre-
senting the auxiliary variables k and w (represented in both p1 0

and p2 0 by the arguments V0 and V1); therefore we have also that
they both compute the same result with respect to an extended set

1 Unfolding is one of the main transformations that we will consider in
our transformation-based approach towards structural equivalence, see Sec-
tion 3.2.

of arguments, notably we have that (p1 0, 〈1, 2, 5, 4〉) computes the
same as (p2 0, 〈1, 2, 6, 5〉).

3.2 Structural equivalence
As is common practice in the literature on algorithm recognition
(see e.g. (Metzger and Wen 2000)), we will define algorithmic
equivalence using the notion of program transformation, the ba-
sic and intuitive idea being that two programs are algorithmically
equivalent if one can be transformed into the other by a series of
(semantic-preserving) transformations. However, the fact that we
use CLP as the representation language for the algorithms allows
us to restrict our attention to a limited number of nonetheless pow-
erful transformations (such as slicing and unfolding) whereas more
traditional approaches (Metzger and Wen 2000) usually consider a
wide variety of more low-level transformations as they are work-
ing on the program’s source code (such as renaming variables, loop
unrolling, array manipulations, etc.)

Let us consider a given set R of available program transforma-
tions. We will in a moment provide examples of concrete trans-
formations that might be considered in this set but define first the
notion of anR-transformation sequence as follows, based on (Pet-
torossi and Proietti 1998).

Definition 10. Let R be a set of program transformations and
P a CLP program. Then an R-transformation sequence of P is a
finite sequence of CLP programs, denoted 〈P0, P1, . . . , Pn〉, where
P0 = P and ∀i (0 < i ≤ n) : Pi is obtained by the application of
one transformation fromR on Pi−1.

Given a predefined set of program transformations R and CLP
programs P andQ, we will often use P ∗R Q to represent the fact
that there exists an R-transformation sequence 〈P0, P1, . . . , Pn〉
with P0 = P and Pn = Q. Two transformations of particular
interest for our purpose are the unfolding (Pettorossi and Proietti
1998) and slicing (Szilágyi et al. 2002) transformations.

Definition 11. Given a program P , let c be a clause A← {C}, B
in P , Bs one of the atoms in B, and

H1 ← {C1}, L1

...
Hn ← {Cn}, Ln

the (renamed apart) set of clauses in P such that C ∧ Ci ∧ (Bs =
Hi) is satisfiable for all 1 ≤ i ≤ n. Then unfolding the atom Bs
in the clause c consists in replacing c by the set of clauses

{A← {C ∧ Ci ∧Bs = Hi)}, B′i|1 ≤ i ≤ n}

where B′i represents the conjunction obtained by replacing, in B,
the atom Bs by the conjunction Li.

Example 12. Reconsider the program Pexp1 defined at the right
hand side in Figure 8. Unfolding the single body atom in the clause
defining p1 0 results in the program defined in part (a) of Figure 11.

Definition 13. Given the definition of a predicate p in a program
P . A slice of p is a predicate p′ that is obtained from p by remov-
ing a (possibly empty) subset of its clauses and removing, for each
remaining clause, a (possibly empty) subset of the arguments, con-
straints and atoms therein.

Example 14. Consider the program Pexp2 depicted on the right-
hand side of Figure 9. We can compute the slice given in Figure 10
by removing the third and fourth arguments (V2 and V3) from
each clause and from each call therein, as well as removing the
superfluous atom V ′2 = 1 from the last clause’s body.

While unfolding preserves the computed answer semantics of a
program (Pettorossi and Proietti 1998), slicing obviously does not.

7 2016/11/8

int exp1(int x, int n) {
int w = 1;
int k = n;
while (k>0) {

w = w*x;
k--;

}
return w;

}

p1 0(V0, V1, V2, V3, V4,M,M ′)←
{V ′1 = 1},
p1 2(V4, V ′1 , V2, V3, V4,M,M ′).

p1 2(V0, V1, V2, V3, V4, 〈A, I〉, 〈A′, I〉)←
{V0 ≤ 0, A′ = A{0← V1}}.

p1 2(V0, V1, V2, V3, V4,M,M ′)←
{V0 > 0, V ′0 = V0 − 1, V ′1 = V1 ∗ V3},
p1 2(V ′0 , V

′
1 , V2, V3, V4,M,M ′).

Figure 8. The exponentiation method (version 1) and its translation into CLP, Pexp1.

int exp2(int x, int n) {
int w ;
if (n<=0)

w = 1;
else {

w = x;
int k = n;
while (k>1) {

w = w*x;
k--;

}
}
return w;

}

p2 0(V0, V1, V2, V3, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V5 ≤ 0, A′ = A{0← 1}}.

p2 0(V0, V1, V2, V3, V4, V5,M,M ′)←
{V5 > 0},
p2 6(V5, V4, V2, V3, V4, V5,M,M ′).

p2 6(V0, V1, V2, V3, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V0 ≤ 1, A′ = A{0← V1}}.

p2 6(V0, V1, V2, V3, V4, V5,M,M ′)←
{V0 > 1, V ′0 = V0 − 1, V ′1 = V1 ∗ V4, V ′2 = 1},
p2 6(V ′0 , V

′
1 , V

′
2 , V3, V4, V5,M,M ′).

Figure 9. The exponentiation method (version 2) and its translation into CLP, Pexp2.

p2 0(V0, V1, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V5 ≤ 0, A′ = A{0← 1}}.

p2 0(V0, V1, V4, V5,M,M ′)←
{V5 > 0},
p2 6(V5, V4, V4, V5,M,M ′).

p2 6(V0, V1, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V0 ≤ 1, A′ = A{0← V1}}.

p2 6(V0, V1, V4, V5,M,M ′)←
{V0 > 1, V ′0 = V0 − 1, V ′1 = V1 ∗ V4},
p2 6(V ′0 , V

′
1 , V4, V5,M,M ′).

Figure 10. A slice of Pexp2.

However, slicing can be used to restrict the definition of a predicate
to those computations that depend only on a given subset of the
predicate’s arguments. We therefore limit ourselves to slices that
are correct in the sense that they preserve the predicate’s semantics
with respect to a given sequence of argument positions.

Definition 15. Given a predicate p from a program P , a sequence
R of argument positions, and a slice p′ of p. We say that the slice p′

is correct w.r.t.R if (p′, R) computes the same in P as does (p,R).

The above notion of correctness with respect to a sequence
of argument positions is easily generalised to a transformation
sequence as a whole:

Definition 16. Given a set of program transformations R, predi-
cates p and p′, and sequences of argument positions R and R′. A
R-transformation sequence 〈P0, P1, . . . , Pn〉 correctly transforms
(p,R) into (p′, R′) if and only if (p,R) computes the same result
in P0 as (p′, R′) in Pn.

Definition 16 essentially defines what we will see as a correct
transformation sequence: one that preserves the computation per-
formed by a predicate of interest, at least with respect to a subset
of its arguments. Note that the definition is parametrized with re-

spect to the set R of allowed transformations. Also note that the
definition is quite liberal, in the sense that it allows predicates to be
renamed, arguments (and thus computations) to be left out of the
equation, and arguments to be permuted. We are now in a position
to define algorithmic equivalence, which we define with respect to
the combination of a program, a predicate, and a sequence of argu-
ment positions. The definition is loosely based on the notion of a
semantic clone pair (Dandois and Vanhoof 2012).

Definition 17. Given predicates p1 and p2 defined in, respectively
the programs P1 and P2, and sequences of argument positions
R1 and R2. Then we define P1 and P2 algorithmically equivalent
for (p1, R1) and (p2, R2) if and only if there exists a program
Q, predicate q and set of arguments R such that P1 ∗R Q
correctly transforms (p1, R1) into (q,R) and P2 ∗R Q correctly
transforms (p2, R2) into (q,R).

Our approach towards defining algorithmic equivalence is
somewhat different from other transformation-based approaches
in the sense that we consider programs algorithmically equivalent
if each of them can be transformed into a third, common, program
while preserving the semantics (with respect to a subset of argu-
ment positions). As such, the third program captures the essence of
the computations performed by the two given programs. Note that
if all transformations from R are reversible, then this is equivalent
to transforming P1 into P2 or vice versa, as is the more common
approach towards defining algorithmic equivalence by transforma-
tion (Metzger and Wen 2000). Observe that our definition requires
that the same predicate occurs in both program fragments; while
this may seem strange, it is easily justified by the fact that renam-
ing a predicate may be considered to be part of any suitable set of
transformationsR.

Example 18. Let us recall the programs Pexp1 and Pexp2 from
Example 8. Figure 11 shows a possible transformation sequence
starting from Pexp1. As a first step, the call to p1 2 in the defini-
tion of p1 0 is unfolded (part (a) of Figure 11), the third argument
(V2) is removed from each definition and call by slicing (part (b)),

8 2016/11/8

and then the functor +1 is introduced around the first argument
of p1 2 both in the head of the predicate as in each call (part (c)).
Note that, in contrast with the slice we computed for Pexp2, only
a single argument is removed during the transformation of Pexp1.
Subsequently, constraint simplification is applied to obtain the final
result of the transformation, Pexp (Figure 12). Since each trans-
formation (except the slicing operation) preserves the semantics of
the predicate of interest, p1 0, we trivially have that the transforma-
tion sequence Pexp1 ∗R Pexp correctly transforms (p1 0, 〈4, 5〉)
into (p1 0, 〈3, 4〉). Note the shift in argument positions due to the
argument that was removed in the process. Now, it is not hard to
see that the slice we computed of Pexp2 (see Figure 10) is noth-
ing but a renaming of Pexp and we have thus a transformation se-
quence Pexp2 ∗R Pexp that correctly transforms (p2 0, 〈5, 6〉)
into (p1 0, 〈3, 4〉).

The following easy to prove result justifies our definition for al-
gorithmic equivalence by establishing a formal link between struc-
tural equivalence as defined by a transformation sequence and se-
mantic equivalence of the involved programs.

Proposition 19. Given programs P1 and P2, predicates p1 and
p2 and sequences of argument positions R1 and R2. If P1 and
P2 are algorithmically equivalent for (p1, R1) and (p2, R2), then
(p1, R1) computes the same result in P1 as does (p2, R2) in P2.

Proof. By algorithmic equivalence (Definition 17) there exist a pro-
gram Q, predicate p and sequence of argument positions R such
that P1 ∗R Q correctly transforms (p1, R1) and P2 ∗R Q
correctly transforms (p2, R2). By Definition 16, it follows that
(p1, R1) computes in P1 the same as does (q,R) in Q and, by
the same definition and the symmetry of the “computes the same”
relation (q,R) computes in Q the same as does (p2, R2) in P2.
Transitivity of the “computes the same” relation allows us to con-
clude the proof.

We conclude this section with a discussion of our approach. Al-
gorithmic equivalence can be seen as an approximation of semantic
equivalence, but quite stronger as it incorporates a syntactical com-
ponent: indeed, the considered algorithms should not only compute
the same results, their syntactical representation (at the Horn clause
level) should be related by means of the transformations inR. The
fact that our notion of algorithmic equivalence is parametrized with
this setR is coherent with the fact that there is no single universally
accepted definition for algorithmic equivalence (Blass et al. 2009)
and essentially allows us to define a whole hierarchy of character-
izations of R-algorithmic equivalence, for different instantiations
of R. For instance, by instantiating R to just {id} – with id be-
ing the identity transformation – we obtain a very strong charac-
terization in which algorithmic equivalence is basically a synonym
for having an identical Horn clause representation. Adding more
transformations to R allows for more liberal characterizations of
algorithmic equivalence. For instance, whenR is instantiated with
the unfolding rule, we obtain anR-algorithmic equivalent criterion
that characterises algorithms as equivalent if their Horn clause rep-
resentation is identical modulo unfolding. Even with a limited set
of transformations in R, the definition allows for multiple degrees
of liberty when considering algorithmic equivalence. In particular
when a slicing transformation is present, algorithms could – in an
extreme case – be characterised as equivalent even if they do not
share any computation (i.e. when all computations are sliced away
in the transformation sequence). This illustrates that the definition,
even with a suitable incarnation for R must be tuned for the ap-
plication at hand, in particular when the application of interest is
related to plagiarism detection.

4. Related Work
The seminal idea of translating imperative programs into CLP for
static analysis has been introduced in (Peralta et al. 1998), where
a semantics-based interpreter of an imperative programming lan-
guage is expressed as a CLP program. This interpreter together
with a term representation of the imperative program to be ana-
lyzed is partially evaluated. The residual CLP program is statically
analyzed and the results – invariants expressed as linear inequali-
ties between program variables (Cousot and Halbwachs 1978) – are
brought back to the initial imperative program. As another exam-
ple, (De Angelis et al. 2015) proposes a method for automatically
generating verification conditions for imperative programs by pro-
gram specialization. The approach of (Peralta et al. 1998) has also
been applied to Object-Oriented programs. For instance, the Java
bytecode static analyzer Julia (Spoto et al. 2010) is able to gener-
ate a CLP program whose termination implies the termination of
the initial Java bytecode program. As a last example, in (Albert
et al. 2012) Java bytecode programs are rewritten into a rule based
formalism similar to Horn clauses. Then, given a cost model, cost
relations are derived. A cost analysis is automatically inferred by
solving such cost relations with the help of a dedicated constraint
solver.

Algorithm recognition is a well-established topic in program
analysis. We present below some of the main existing works.

Two of the oldest related research projects are the MIT’s Pro-
grammer’s Apprentice (see e.g., (Rich et al. 1979)) and the Knowl-
edge Based Software Assistant, a research program funded by the
United States Air Force (see e.g., (Green et al. 1983)). The un-
derlying idea was to adapt artificial intelligence techniques to help
software development.

As an offspring of the Programmer’s Apprentice, Linda Mills
describes an automated program recognition system in (Wills 1990,
1993). It aims at helping software maintenance, translation, and de-
bugging. Given a program and a library of clichés, i.e., program-
ming stereotypes and associated structures, the system builds a hi-
erarchical description of the program in terms of the clichés found
and their relationships.

In (Martino and Iannello 1996), the authors present a tool called
PAP Recognizer, where PAP stands for Parallelizable Algorithmic
Patterns. It implements a plan-based technique for the hierarchical
recognition of concept-instances in the program. It aims at auto-
matically parallelizing the code. Another approach to automatically
replace the sequential parts of a program with their parallelized ver-
sions is described in (Metzger and Wen 2000). Although similar to
the previous work, this approach focusses on the computationnally
intensive parts of the program.

While most techniques for algorithm recognition are based on
using some kind of pattern or template matching, others try to cap-
ture the essence of the algorithm at hand. In (Alias and Barthou
2003), for example, algorithms are converted into a system of re-
currence equations. In (Taherkhani 2011; Taherkhani and Malmi
2013), Ahmad Taherkhani proposes to statically summarize pro-
grams by means of software metrics and program schemas. Then
a decision tree classifier acts as an algorithm recognizer. The ap-
proach is evaluated by classifying sorting algorithms written by
students.

More recently, (Zhang et al. 2012) specifically targets algo-
rithm plagiarism detection. Their detection mechanism is based on
abstracting the algorithm by a signature that is computed from a
sequence of core values that should arise in any implementation of
the algorithm. One of the advantages of such value based signature
is the resilience with respect to several obfuscation techniques.

9 2016/11/8

p1 0(V0, V1, V2, V3, V4, 〈A, I〉, 〈A′, I〉′)←
{V4 ≤ 0, A′ = A{0← 1}}.

p1 0(V0, V1, V2, V3, V4,M,M ′)←
{V4 > 0, V ′0 = V4 − 1, V ′1 = 1 ∗ V3},
p1 2(V ′0 , V

′
1 , V2, V3, V4,M,M ′).

p1 2(V0, V1, V2, V3, V4, 〈A, I〉, 〈A′, I〉)←
{V0 ≤ 0, A′ = A{0← V1}}.

p1 2(V0, V1, V2, V3, V4,M,M ′)←
{V0 > 0, V ′0 = V0 − 1, V ′1 = V1 ∗ V3},
p1 2(V ′0 , V

′
1 , V2, V3, V4,M,M ′).

(a)

p1 0(V0, V1, V3, V4, 〈A, I〉, 〈A′, I〉′)←
{V4 ≤ 0, A′ = A{0← 1}}.

p1 0(V0, V1, V3, V4,M,M ′)←
{V4 > 0, V ′0 = V4 − 1, V ′1 = 1 ∗ V3},
p1 2(V ′0 , V

′
1 , V3, V4,M,M ′).

p1 2(V0, V1, V3, V4, 〈A, I〉, 〈A′, I〉)←
{V0 ≤ 0, A′ = A{0← V1}}.

p1 2(V0, V1, V3, V4,M,M ′)←
{V0 > 0, V ′0 = V0 − 1, V ′1 = V1 ∗ V3},
p1 2(V ′0 , V

′
1 , V3, V4,M,M ′).

(b)

p1 0(V0, V1, V3, V4, 〈A, I〉, 〈A′, I〉′)←
{V4 ≤ 0, A′ = A{0← 1}}.

p1 0(V0, V1, V3, V4,M,M ′)←
{V4 > 0, V ′0 = V4 − 1, V ′1 = 1 ∗ V3},
p1 2(V ′0 + 1, V ′1 , V3, V4,M,M ′).

p1 2(V0 + 1, V1, V3, V4, 〈A, I〉, 〈A′, I〉)←
{V0 ≤ 0, A′ = A{0← V1}}.

p1 2(V0 + 1, V1, V3, V4,M,M ′)←
{V0 > 0, V ′0 = V0 − 1, V ′1 = V1 ∗ V3},
p1 2(V ′0 + 1, V ′1 , V3, V4,M,M ′).

(c)

Figure 11. The transformation of program Pexp1 from Example 8.

p1 0(V0, V1, V3, V4, 〈A, I〉, 〈A′, I〉′)←
{V4 ≤ 0, A′ = A{0← 1}}.

p1 0(V0, V1, V3, V4,M,M ′)←
{V4 > 0},
p1 2(V4, V3, V3, V4,M,M ′).

p1 2(V0, V1, V3, V4, 〈A, I〉, 〈A′, I〉)←
{V0 ≤ 1, A′ = A{0← V1}}.

p1 2(V0, V1, V3, V4,M,M ′)←
{V0 > 1, V ′0 = V0 − 1, V ′1 = V1 ∗ V3},
p1 2(V

′
0 , V

′
1 , V3, V4,M,M ′).

Figure 12. The transformed program Pexp.

5. Conclusion
We have presented a generic approach to algorithm recognition
in binary code. Its genericity stems from two points. On the one
hand, the technique is generic with respect to the input language,
as soon as we can translate it into an Horn-clause based represen-
tation mimicking the operational semantics of the original target
processor. On the other hand, the approach is generic with respect
to the notion of algorithmic equivalence, via its parametric set of
program transformation rules.

One key aspect of our approach is the use of Horn clauses
as a language for representing what is basically the model of the
algorithms being compared. In addition to the before-mentioned
genericity advantage, the use of Horn clauses allows one to in-
stantiateR using a limited number of powerful, general, and well-
understood transformations such as unfolding, folding and slicing
without the need to resort to more low-level and less-general (or
language-dependent) transformations. Nevertheless, the question
remains about what are desirable incarnations of R and whether
one should impose restrictions on the transformation sequences
used in the proof of algorithmic equivalence.

While a general equivalence relation on algorithms might not
exist (Blass et al. 2009), suitable incarnations ofR will most prob-
ably depend on the particular application at hand. Defining such an
incarnation (and the particular notion of algorithmic equivalence
that comes with it) remains an open and challenging question, in
particular when applications such as plagiarism detection are con-
cerned.

Future work will focus on developing other front-ends dealing
with various input languages as well as on investigating the fea-
sibility of implementing the procedure described in Section 3 for
a limited instantiation of R. Even when only a limited number of
transformations are present in R, developing a search procedure

trying to construct an R-transformation sequence is a non-trivial
and daunting task that might need guidance and global analysis of
the program’s at hand.

References
E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost analysis

of object-oriented bytecode programs. Theor. Comput. Sci., 413(1):142–
159, 2012.

C. Alias and D. Barthou. Algorithm recognition based on demand-driven
data-flow analysis. In Proceedings of the 10th Working Conference on
Reverse Engineering (WCRE), pages 296–305, 2003.

Android developers. http://developer.android.com.
ART and Dalvik. http://source.android.com/devices/tech/dalvik/.
A. Blass, N. Dershowitz, and Y. Gurevich. When are two algorithms the

same? Bull. Symbolic Logic, 15(2):145–168, 06 2009.
A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays?

In E. A. Emerson and K. S. Namjoshi, editors, Proc. of VMCAI’06,
volume 3855 of LNCS, pages 427–442. Springer, 2006.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Conference Record of the Fifth Annual
ACM Symposium on Principles of Programming Languages, POPL’78,
Tucson, Arizona, USA, January 1978, pages 84–96, 1978.

C. Dandois and W. Vanhoof. Semantic code clones in logic programs. In
E. Albert, editor, Proc. of the 22nd International Symposium on Logic-
Based Program Synthesis and Transformation (LOPSTR’12), volume
7844 of LNCS, pages 35–50. Springer, 2012.

E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Semantics-
based generation of verification conditions by program specialization.
In Proceedings of the 17th International Symposium on Principles and
Practice of Declarative Programming, Siena, Italy, July 14-16, 2015,
pages 91–102, 2015.

G. Gange, J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey.
Horn clauses as an intermediate representation for program analysis and
transformation. TPLP, 15(4-5):526–542, 2015.

C. Green, D. Luckham, R. Balzer, T. Cheatham, and C. Rich. Report on a
knowledge-based software assistant. Technical report, Kestrel Institute,
1983.

J. Jaffar and J. L. Lassez. Constraint logic programming. In Proc. of the
ACM Symposium on Principles of Programming Languages, pages 111–
119. ACM, 1987.

J. Jaffar, M. J. Maher, K. Marriott, and P. J. Stuckey. The semantics of
constraint logic programs. Journal of Logic Programming, 37(1-3):1–
46, 1998.

T. Lindholm and F. Yellin. The JavaTM Virtual Machine Specification.
Addison-Wesley, second edition, 1999.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.
B. D. Martino and G. Iannello. PAP recognizer: A tool for automatic

recognition of parallelizable patterns. In 4th International Workshop on
Program Comprehension (WPC), page 164, 1996.

10 2016/11/8

R. Metzger and Z. Wen. Automatic Algorithm Recognition and Replace-
ment. The MIT Press, 2000.

E. Payet and F. Mesnard. Non-termination of Dalvik bytecode via compila-
tion to CLP. In C. Fuhs, editor, Proc. of the 14th International Workshop
on Termination (WST’14), pages 65–69, 2014.

J. C. Peralta, J. P. Gallagher, and H. Saglam. Analysis of imperative pro-
grams through analysis of constraint logic programs. In Static Analy-
sis, 5th International Symposium, SAS ’98, Pisa, Italy, September 14-16,
1998, Proceedings, pages 246–261, 1998.

A. Pettorossi and M. Proietti. Transformation of logic programs. In
Handbook of Logic in Artificial Intelligence and Logic Programming,
volume 5, pages 697–787. Oxford University Press, 1998.

C. Rich, H. E. Shrobe, and R. C. Waters. Overview of the programmer’s
apprentice. In Proceedings of the Sixth International Joint Conference
on Artificial Intelligence (IJCAI), pages 827–828, 1979.

Smali assembler for the dex format.
https://github.com/JesusFreke/smali.

F. Spoto, F. Mesnard, and É. Payet. A termination analyzer for Java
bytecode based on path-length. ACM Trans. Program. Lang. Syst., 32
(3), 2010.

M. D. Storey. Theories, methods and tools in program comprehension:
Past, present and future. In 13th International Workshop on Program
Comprehension (IWPC), pages 181–191, 2005.

G. Szilágyi, T. Gyimóthy, and J. Małuszyński. Static and dynamic slicing
of constraint logic programs. Automated Software Engineering, 9(1):
41–65, 2002.

A. Taherkhani. Using decision tree classifiers in source code analysis to
recognize algorithms: An experiment with sorting algorithms. Comput.
J., 54(11):1845–1860, 2011.

A. Taherkhani and L. Malmi. Beacon- and schema-based method for rec-
ognizing algorithms from students’ source code. Journal of Educational
Data Mining, 5(2):69–101, 2013.

L. M. Wills. Automated program recognition: A feasibility demonstration.
Artificial Intelligence, 45(1-2):113–171, 1990.

L. M. Wills. Flexible control for program recognition. In Proceedings of
Working Conference on Reverse Engineering (WCRE), pages 134–143,
1993.

F. Zhang, Y.-C. Jhi, D. Wu, P. Liu, and S. Zhu. A first step towards
algorithm plagiarism detection. In Proceedings of the 2012 International
Symposium on Software Testing and Analysis, ISSTA 2012, pages 111–
121. ACM, 2012.

F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu. Viewdroid: Towards
obfuscation-resilient mobile application repackaging detection. In Pro-
ceedings of the 2014 ACM Conference on Security and Privacy in Wire-
less and Mobile Networks, WiSec ’14, pages 25–36. ACM, 2014.

11 2016/11/8

