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Cadmium-induced oxidative damages in the human BJAB cells correlate with changes in intracellular trace elements levels and zinc transporters expression

Saïd Nemmiche, Pascale

Introduction

Cadmium (Cd) is a widespread environmental and industrial pollutant which has been classified as a type I carcinogen by the International Agency for Cancer Research (IARC, 1993). The major sources of this environmental toxic heavy metal for humans are cigarette smoke and food. It is known to cause renal dysfunction, hepatic toxicity, genotoxicity and apoptotic effects depending on the dose, route and duration of exposure. Cd was shown to provoke a number of responses in the cells that involve not only death signaling but also protective reactions against the toxicity [START_REF] Luparello | Cadmium as a transcriptional modulator in human cells[END_REF][START_REF] Nemmiche | Cadmium-induced apoptosis in the BJAB human B cell line: involvement of PKC/ERK1/2/JNK signaling pathways in HO-1 expression[END_REF]. It acts as an immunomodulator at sub-toxic concentrations [START_REF] Haase | Cadmium ions induce monocytic production of tumor necrosis factor-alpha by inhibiting mitogen activated protein kinase dephosphorylation[END_REF] and many of its effects are mediated by oxidative mechanisms.

The mechanisms involved in the transport and handling of Cd in target cells are not well defined. It can be transported and taken up by cells by a process referred to as "ionic and molecular mimicry" [START_REF] Bridges | Molecular and ionic mimicry and the transport of toxic metals[END_REF]. Cd appears to be capable of utilizing certain transporter(s) of Zn 2+ and some transport systems sensitive to Ca 2+ and Fe 2+ . Transition metals such as iron, zinc, manganese, and copper have numerous biological roles as both structural and catalytic cofactors for proteins and therefore these metals are essential for life. However, the same elements become toxic whenever excessive intracellular accumulation occurs. The redox activity seems to play a driving role in addressing the main effects of these trace metals. The perturbation of the homeostasis of physiological trace elements could be the basis of many of the deleterious effects of Cd [START_REF] Nemmiche | Cadmium chloride induced oxidative stress and DNA damage in the human Jurkat T cell line is not linked to intracellular trace elements depletion[END_REF]. Cellular signal transduction pathways are influenced by zinc (Zn) and the redox status of the cell. Zn is an essential trace element that serves as a cofactor for various enzymes involved in either macromolecule synthesis or protein metabolism. Normal cellular homeostasis requires appropriate Zn transport and storage. Mammalian Zn transporters are within two gene families: (a) the ZnT proteins [solute-linked carrier 30 (SLC30)] and (b) the Zip proteins (Zrt-and Irt-like proteins) family [solute-linked carrier 39 (SLC39)] ( Liuzzi and Cousins, 2004). In this regard, 10 Zn exporters (ZnT) and 15 Zn importers (Zip) have been described. Both transcriptional and post-translational regulation can affect protein abundance and cellular localization of these transporters.

They are also involved in the traffic of other metals [START_REF] Lichten | Mammalian zinc transporters: nutritional and physiologic regulation[END_REF]. Numerous studies on Cd influx into cells have been carried out. Among the members of ZIP family, ZIP8 and ZIP14 (Zn 2+ /HCO 3 symporters) have been reported to transport Cd in kidney, intestine and testis [START_REF] He | Discovery of ZIP transporters that participate in cadmium damage to testis and kidney[END_REF][START_REF] Fujishiro | High sensitivity of RBL-2H3 cells to cadmium and manganese: an implication of the role of ZIP8[END_REF]. Cd is also taken up via the voltage-sensitive Ca 2+ and Mg 2+ channels of the plasma membrane [START_REF] Lévesque | Characterization of cadmium uptake and cytotoxicity in human osteoblast-like MG-63 cells[END_REF]; decreased expression of the T-type Ca 2+ channel protects cells from Cd exposure by limiting Cd uptake in Cd-resistant MT-I/II knockout cells [START_REF] Leslie | Acquired cadmium resistance in metallothionein-I/II (-/-) knockout cells: role of the T-type calcium channel Cacnalpha1G in cadmium uptake[END_REF]. Other transporters of divalent metals have also been implicated in the uptake of Cd by selective epithelial cells in the kidneys, liver, intestines [START_REF] Zalups | Molecular handling of cadmium in transporting epithelia[END_REF] and osteoblast [START_REF] Martineau | Involvement of transient receptor potential melastatin-related 7 (TRPM7) channels in cadmium uptake and cytotoxicity in MC3T3-E1 osteoblasts[END_REF]. Among human leukocyte subsets, ZnT1 transcripts are more abundant in monocytes than T-lymphocytes or neutrophils [START_REF] Cousins | Mammalian zinc transport, trafficking, and signals[END_REF]. The critical targets of Cd binding are the thiol groups of proteins. Cd 2+ is a soft Lewis acid, which binds to thiols with even higher affinity than Zn 2+ .

Metallothioneins (MTs) are cysteine-rich, low molecular weight proteins that bind many metal ions and are also closely connected to stress-sensing pathways. It should be noted that MTs may be induced by several metals. Humans possess 16 known isoforms of MTs, grouped into four classes: MTs I, II, III, and IV. MT-1 and MT-II are ubiquitously present in all organs of mammals. The expression of MT-I/II mRNA in blood and peripheral lymphocytes has recently been used as a sensitive biomarker of environmental and occupational exposure to Cd in human population [START_REF] Chang | Metallothionein I isoform mRNA expression in peripheral lymphocytes as a biomarker for occupational cadmium exposure[END_REF]. MTs are involved in many cellular functions such as essential metal transport and storage, heavy metal detoxification, and protection against oxidative stress.

To understand the mechanism of cadmium accumulation in the lymphocyte, it is important to know the mechanisms of its transport systems. The aim of this study is to investigate the biological effect of cadmium (Cd) on human BJAB cells, especially on other metals accumulation, cellular redox status and Zn transporter expressions.

The form of Cd and the route of environmental exposure can greatly affect the absorption and distribution of Cd to various target sites, and therefore, the concentration at the target site and the severity of the observed effect. Cd chloride was given in selected doses, which are the optimal for producing effects as determined in previous studies [START_REF] Nemmiche | Role of α-tocopherol in cadmium-induced oxidative stress in Wistar rat's blood, liver and brain[END_REF][START_REF] Nemmiche | Cadmium chloride induced oxidative stress and DNA damage in the human Jurkat T cell line is not linked to intracellular trace elements depletion[END_REF]. According to our knowledge, no similar studies have been conducted in BJAB cells.

Materials and methods

Cell culture and chemical treatment

BJAB cells were cultured in RPMI-1640 medium supplemented with 15% heat-inactivated fetal bovine serum (Sigma), 100 units/ml penicillin, 100 μg/ml streptomycin, and 2 mM L-glutamine at 37 °C in a humidified incubator with 5% CO 2 . Cadmium chloride (CdCl 2 ) was dissolved in distilled water to prepare a 10 mM stock solution, and was filter-sterilized (0.22 μm) before being added to the culture media. This solution was further diluted with the medium (pH 7.4) to the desired concentrations. Cultures were suspended in a fresh batch RPMI-1640 before exposing the cells to various cadmium chloride concentrations: 5, 10, 20 and 40 μM equivalent at 0.91, 1.83, 3.66 and 7.33 μg/ml respectively, for 24 h. The selected doses of Cd is made on the basis of the cytotoxicity test (03 concentrations chosen (5, 10 and 20 μM) with a rate of viability N 70%). 24 h was chosen because our previous study showing that disruption of redox homeostasis by Cd was optimal at 24 h [START_REF] Nemmiche | Cadmium chloride induced oxidative stress and DNA damage in the human Jurkat T cell line is not linked to intracellular trace elements depletion[END_REF].

MTT assay

Cytotoxicity induced by cadmium was assessed by MTT assay [START_REF] Naha | Reactive oxygen species (ROS) induced cytokine production and cytotoxicity of PAMAM dendrimers in J774A.1 cells[END_REF]. Tetrazolium salt, 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyle tetrazolium bromide (MTT), is reduced by intracellular dehydrogenase of viable living cells, that leads to formation of purple formazan crystals, insoluble in aqueous solutions. Following exposure to cadmium chloride, 100 μl of 0.5% MTT was added to the culture media and cells were incubated for an additional 2 h at 37 °C in a humidified atmosphere containing 5% CO 2 . After this incubation, formed formazan was solubilized by adding dimethyl sulfoxide, and optical density was measured at 570 nm using UV-160A Shimadzu spectrophotometer.

Sample preparation for antioxidant enzymes activity, glutathione level and malondialdehyde level

After the indicated treatments with cadmium, cells were collected. The pellets obtained after centrifugation (1400 × g for 3 min at 4 °C) were resuspended in isotonic Tris-HCl buffer (400 mM, 300 mOsm, pH 7.3) centrifuged and rinsed twice with the Tris-HCl buffer. Then cells were lysed in hypotonic Tris-HCl buffer (20 mM, pH 7.3) by five freeze-thaw cycles (5/10′, -196 °C/37 °C). For glutathione and thiol group determination, aliquots were taken from the whole homogenized lysate. The other determinations were performed on the supernatants obtained after centrifugation of the lysates. The extracts were stored at -80 °C, until analyses.

Intracellular cadmium and trace element analysis

After 24 h incubation with Cd, the BJAB cells were collected and washed three times in physiological NaCl (0.9%). Then the pellet was resuspended in deionized water [START_REF] Naha | Systematic in vitro toxicological screening of gold nanoparticles designed for nanomedicine applications[END_REF] and the cells were lysed by five freeze/thaw (-196 °C/37 °C) cycles. The lysates (total extract) were centrifuged at 4000 ×g for 10 min at 4 °C to obtain the soluble fraction.

The intracellular Cd and essential metal concentrations were determined by inductively coupled plasma mass spectrometry (ICP/MS) (Thermo-Electron X) and the detection limit was 72 nmol Cd, 1 nmol Se, 52 nmol Zn, 110 nmol Cu, 34 nmol Fe, and 2 nmol Mn per liter. Their levels were normalized to the protein content, measured with a protein assay kit (Pierce, USA).

Antioxidant enzyme activity assays

Catalase activity

Catalase (CAT) activity was measured according to [START_REF] Beers | A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase[END_REF]. The rate of H 2 O 2 decomposition by CAT was followed at 240 nm. One unit is defined as 1 μmol of H 2 O 2 consumed per minute and the specific activity is reported as units per milligram of protein.

Superoxide dismutase activity

Superoxide dismutase (SOD) activities (total SOD, Cu/ZnSOD and MnSOD) were measured using the pyrogallol assay according to the method described by [START_REF] Marklund | Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase[END_REF], based on the competition between pyrogallol oxidation by superoxide radicals and superoxide dismutation by SOD. The specific Cu/ZnSOD inhibition by potassium cyanide allowed the MnSOD determination in the same conditions. Assays were monitored by spectrophotometry at 420 nm. One unit of SOD activity is defined as the amount of the enzyme required to inhibit the rate of pyrogallol auto-oxidation by 50%. SOD activities were expressed as international units per mg of soluble cell proteins.

Glutathione peroxidase activity

Glutathione peroxidase (GPx) activity was determined by the method of [START_REF] Flohe | Assays of glutathione peroxidase[END_REF]. The rate of glutathione oxidized by tertbutyl hydroperoxide was evaluated by the decrease of NADPH at 340 nm in the presence of EDTA, excess reduced glutathione and glutathione reductase. GPx activity was expressed in terms of μM NADPH oxidized per minute per milligram of soluble cell proteins.

2.6. Oxidative stress parameters

Glutathione level

The sum of the reduced and oxidized forms of glutathione were determined spectrophotometrically using the method described by [START_REF] Akerboom | Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples[END_REF], based on the kinetic assay in which catalytic amounts of GSH or GSSG and glutathione reductase bring about the continuous reduction rate of 5,5′-dithiobis-2-nitrobenzoic acid (DTNB, Sigma, France) into 5-thio-2-nitrobenzoic acid (TNB) by NADPH. Briefly, samples of whole lysates were deproteinized with metaphosphoric acid (6%) and the mixture was centrifuged at 4000 rpm for 10 min at 4 °C. Pipet into a thermostated cuvette (25 °C): 1 ml of potassium phosphate buffer, 0.1 M (pH 7.0) containing 1 mM EDTA, 100 μl sample, 50 μl of 4 mg/ml NADPH in 0.5% NaHCO 3 , 20 μl of 1.5 mg/ml DTNB in 0.5% NaHCO 3 and 20 μl GSH reductase (6 units/ml). The absorbance was measured for 1 min at 412 nm. Results were expressed as μmol per gram of total cell proteins.

Malondialdehyde (MDA) assay

Lipid peroxidation (LPO) was evaluated by the thiobarbituric acid reacting substance (TBARS) and was expressed in terms of malondialdehyde (MDA) content. Sample aliquots were incubated with 10% trichloroacetic acid and 0.67% thiobarbituric acid. The mixture was heated on a boiling water bath for 30 min, an equal volume of n-butanol was added, and the final mixture was centrifuged; the organic phase was collected for fluorescence measurements at 532 nm. Samples assayed for MDA contained 1 mM butylated hydroxytoluene (BHT) in order to prevent arte factual LPO during the boiling step. Results were expressed as μmol MDA per gram of soluble cell proteins.

Single cell gel electrophoresis (Comet assay)

The single cell gel electrophoresis assay (SCGE) or comet assay [START_REF] Naha | Generation of intracellular reactive oxygen species and genotoxicity effect to exposure of nanosized polyamidoamine (PAMAM) dendrimers in PLHC-1 cells in vitro[END_REF] used for the detection of single strand DNA breaks in individual BJAB cells after exposure to cadmium chloride.

Control cells and cells exposed to cadmium were collected, pelleted, resuspended in PBS and mixed with low-melting-point agarose (1%, w/v), then transferred to the layer of agarose, covered with a cover slip and the slides placed on ice. The cover slips were then removed and the slides were immersed in a lysis buffer (2.5 M NaCl, 100 mM Na 2 EDTA, 10 mM Tris-HCl, 1% (w/v) sodium sarcosinate, pH 10; 1% Triton X-100 and 10% DMSO added just before use) in the dark at 4 °C. Then the slides were placed in a horizontal electrophoresis unit containing freshly-prepared alkaline electrophoresis buffer (200 mM Na 2 EDTA, 10 M NaOH). The DNA was allowed to unwind for 40 min before electrophoresis was performed at 25 V, 300 mA for 30 min. After neutralization (0.4 M Tris-HCl, pH 7.5), the DNA was stained with 50 μL of 20 μg ml -1 ethidium bromide pipetted onto the slides. The slides were then placed in a humidified air-tight container to prevent drying of the gel, before the analysis. Comets were scored using a fluorescence microscope from Leitz (Germany) and the kinetic imaging software (Komet 4, Kinetic Imaging Ltd., Liverpool). Fifty cells were scored per each of three replicate slides and results were expressed as tail DNA (percentage of DNA in tail).

Metallothionein analysis

Metallothionein protein expression in BJAB cells was quantified with Western blots by the method of [START_REF] Mizzen | Sensitive detection of metallothioneins-1, -2 and -3 in tissue homogenates by immunoblotting: a method for enhanced membrane transfer and retention[END_REF]. Cells were collected, washed three times with cold phosphate-buffered saline (PBS, pH 7.4), resuspended on ice in lysis buffer containing 0.5% Triton X-100, 0.5% sodium deoxycholate, 50 mM Tris-Hcl pH 7.5, 150 mM NaCl, 2 mM EDTA and a protease inhibitor mixture (1 mM pefabloc, 2 μg/ml aprotinin, 10 μg/ml pepstatin and complete EDTA free tablet). The lysate was then homogenized and centrifuged at 4 °C. After centrifugation, protein concentration of the supernatant was determined by using BCA protein assay kit (Pierce).

Equal amount of cell lysate proteins were mixed with 2-fold concentrated Laemmli loading sample buffer, heated for 5 min at 100 °C and then subjected to electrophoresis using 15% SDS-polyacrylamide gels. Separated proteins were transferred onto nitrocellulose membrane (Bio-Rad) by electroblotting and non-specific binding sites were blocked in 10% non-fat dried milk in the TBST buffer (20 mM Tris-HCl, pH 7.4, 154 mM NaCl and 0.1% (v/v) Tween 20). The membrane was then incubated overnight with the primary antibody monoclonal mouse anti-horse metallothionein (diluted at 1:1000) (Dako, clone E9, France). Afterwards, membranes were incubated for 4 h at room temperature with horseradish peroxidase goat anti-mouse IgG (Bio-Rad, France) antibody (1:1000) in Tween-TBS. After washing, immunocomplexes on the membranes were visualized with the ECL®plus (enhanced chemiluminescence plus) Western blotting detection reagents (Amersham Biosciences, U.K.). Relative protein levels were determined by using the Gel-Pro analyser software version 4.

DNA extraction from cells and HPLC-EC analysis

For DNA oxidation assay, cells were plated at a concentration of 20 × 10 6 per flask. Each cell culture flask was homogenized in 2 mL of lysis buffer (320 mM sucrose, 10 mM Tris-HCl, 5 mM MgCl 2 , 0.1 mM deferoxamine, 1% Triton X-100, pH 7.5) and centrifuged at 1500 × g for 10 min. The supernatant was discarded and the nuclear pellet was suspended in 600 μl of an extraction buffer (10 mM Tris-HCl, 5 mM Na 2 EDTA, and 0.15 mM deferoxamine). Subsequently, 10% SDS (35 μl) was added. Ribonuclease A and RNase T1 were then added and the resulting suspension gently vortexed for 10 s. The samples were incubated at 50 °C for 15 min. Then, 30 μL of Qiagen protease (20 mg/ml) was added, and the samples gently vortexed for 10 s prior to being incubated for 1 h at 37 °C.

DNA was precipitated by the addition of 0.8 mL of NaI solution (20 mM Na 2 EDTA, 7.6 M NaI, 40 mM Tris-HCl, and 0.3 mM deferoxamine) and 2 mL of 100% propan-2-ol. DNA was centrifuged at 5000 × g for 10 min and washed with 1 mL of 40% propan-2-ol and 1 mL of 70% ethanol. DNA was then dissolved in 100 μL of 0.1 mM deferoxamine.

After DNA extraction, enzymatic hydrolysis was performed at 37 °C for 90 min using 10 units of nuclease P1 and 0.5 unit of acidic phosphatase dissolved in 10 μL of nuclease P1 buffer [300 mM sodium acetate, 1 mM ZnSO 4 , 2.5 mM deferoxamine, pH 5.3]. Thereafter, 50 μL of chloroform was added to precipitate proteins. The aqueous layer was collected and analyzed by HPLC-EC system [START_REF] Gedik | Establishing the background level of base oxidation in human lymphocyte DNA: results of an interlaboratory validation study[END_REF].

The mobile phase consisted of phosphate buffer (50 mM, pH 5.5) containing 12% methanol, and HPLC separation was run at 26 °C after appropriate calibration. 8-Oxo-deoxyguanosine (8-OHdG) was eluted at 12 min and desoxyguanosine (dG) eluted at 9 min. The data are expressed as the percentage of 8-OHdG/10 5 dG compared with control.

Extraction of total RNA and quantitative RT-PCR analysis

Quantification of mRNA levels of transporters (Zips, ZnTs and DMT1) and MTF1 (Table 1) was performed by real-time RT-PCR using a Stratagene Mx3005P™. Total RNA was extracted from cells pellets, with RNeasy® Mini kit (Qiagen, Saint Louis, USA) according to the manufacturer's recommendations. From 2 μg of total RNA, cDNAs were synthesized using SuperScript™ III First-Strand Synthesis Supermix kit (Invitrogen). qRT-PCR was performed in a MicroAmp optical 96-well plate with the QuantiTect SYBR Green RT-PCR kit (Qiagen). Thermal profile were set as follows: 95 °C for 15 min, and 40 cycles of 94 °C for 15 s, 60 °C for 30 s, and 72 °C for 30 s.

The primers used for RPL27 (ribosomal protein L27; 60S ribosomal protein L27 [Homo sapiens]: GenBank Accession NM_000988) as an internal control. 

Statistical analysis

Results were expressed as mean ± standard deviation. All data were analyzed employing one-way ANOVA, followed by the Newman-Keuls test for multiple comparisons. Values of p b 0.05 were considered of statistical significance.

Results

Effect of Cd on the viability of BJAB cells

A dose-response curve of CdCl 2 -induced cell death in BJAB cells was determined following a 24 h exposure period to 5, 10, 20, 40, 60, and 80 μM (Fig. 1). The mean lethal concentration (LC 50 ) for the 24 h exposure, defined as the concentration that reduces survival of the cells by 50%, was 40 μM.

Effect of Cd on the intracellular levels of the trace elements

Our results show that exposure to Cd significantly (p b 0.01) increased Cd accumulation (Fig. 2) and decreased Zn concentrations (p b 0.01) in Cd-exposed cells compared to control cells (Fig. 3a). Iron (Fe) and copper (Cu) levels were respectively significantly decreased and increased (Fig. 3a). The effect of Cd on the intracellular levels of Zn, Fe and Cu was significant from the concentration of 10 μM and over.

A low increase in selenium (Se) level was observed in cells exposed to 40 μM CdCl 2 and a significantly (p b 0.05) decreased Manganese (Mn) level occurred from the Cd concentration of 10 μM and over (Fig. 3b).

Effect of Cd on the antioxidant enzyme activities

The activity of Cu/Zn superoxide dismutase (Cu/ZnSOD) was significantly inhibited for all concentration of Cd and the MnSOD activity was only decreased (Fig. 4a) after Cd exposure at 20 μM, with a concurrent elevation tendency in the activity of catalase (CAT) (Fig. 4b). A decrease in glutathione peroxidase (GPx) was observed with exposure to 40 μM Cd.

Effect of Cd on the oxidative stress parameters

A significant decrease of the GSH/GSSG ratio (Fig. 5) was obtained when the cells were exposed to 10, 20 and 40 μM CdCl 2 . Significantly enhanced MDA levels (Fig. 6) were also observed for the same range of Cd concentrations. The ability of CdCl 2 to cause DNA damage was assessed by the comet assay. As shown in Fig. 7 statistically significant DNA damage was observed when BJAB cells were treated with 10, 20, and 40 μM CdCl 2 . The Tail DNA reflected statistically significant differences between the control cells and all the doses employed (p b 0.001). In parallel, the 8-OHdG (8-Oxo-deoxyguanosine) was increased by of 20% or more. As shown in Fig. 8, there was a statistically significant difference between the 8-OHdG levels of exposed and control BJAB cells.

Effect of Cd on the Zn transporter mRNA expression

We observed different responses to Cd exposure in the gene expression of the seven transporters we analyzed. There was no significant difference in Zip1, Zip3 and Zip8 expression (Fig. 9) at 5 μM of CdCl 2 but we showed significant differences for higher levels of Cd exposure. ZnT-1 (Fig. 10a) and ZnT-5 expression (Fig. 10b) respectively increased and decreased significantly according to the augmentation of the Cd concentrations in the culture medium of BJAB cells. ZnT-1 and DMT-1 (Fig. 11) expressions were the highest recorded while the T calcium channel alpha1G subunit could not be detected.

Effect of Cd on the MTF-1 and metallothionein expression

MTF1 mRNA expression (Fig. 12a) increased dose-dependently with increasing Cd exposure (p b 0.001). As noted, the clone 9 antibody from Dako-MT recognizes both MT-I and MT-II proteins. Western immunoblot (Fig. 12b) analysis showed that control BJAB cells without Cd treatment expressed very low level of MT-I and MT-II proteins, Cd-induced MT protein production in treated cells was evidenced by appearances of conspicuous MT-I and MT-II fused bands on the gel in cells exposed to 10, 20, and 40 μM Cd for 24 h amounting to 25, 34 and 49-fold of the control, respectively.

Discussion

The relevance of the administered doses of Cd is based on the previous studies and literature data. Both, experimental and epidemiological studies indicate that exposure to Cd may alter the membrane skeleton and contribute to the development of diseases, including cancers of the lung, prostate, kidney, liver and hematopoietic system. Cd causes damage to cellular structures in various experimental models of acute, prolonged and chronic exposure [START_REF] Nemmiche | Role of α-tocopherol in cadmium-induced oxidative stress in Wistar rat's blood, liver and brain[END_REF][START_REF] Rogalska | Enhanced zinc consumption prevents cadmium-induced alterations in lipid metabolism in male rats[END_REF]. For example, the alterations in the lipid status have been observed as a result of the exposure to 5 and 50 mg Cd/l, reflecting the exposure in subjects inhabiting moderately contaminated areas or the exposure via habitual cigarette smoking [START_REF] Rogalska | Enhanced zinc consumption prevents cadmium-induced alterations in lipid metabolism in male rats[END_REF]. Persons who have sustained renal damage due to chronic Cd exposure often have blood or urine Cd levels in a range of 25-50 μg/L or 25-75 μg/g creatinine, respectively. These ranges are usually 1000-3000 μg/L and 100-400 μg/L, respectively, in survivors of acute poisoning and may be substantially higher in fatal cases [START_REF] Baselt | Disposition of Toxic Drugs and Chemicals in Man[END_REF][START_REF] Nordberg | Biomarkers of exposure, effects and susceptibility in humans and their application in studies of interactions among metals in China[END_REF]. In in vitro models, the concentration dependent effects of Cd have also been highlighted. Generally, submicromolar concentrations lead to proliferation or delayed apoptosis, intermediate concentrations (10 μM) can cause various types of cell death, while very high concentrations (N50 μM) can cause necrosis [START_REF] Luevano | A review of molecular events of cadmium-induced carcinogenesis[END_REF].

In the present study, we have shown that Cd uptake in lymphocyte BJAB cells can occur through multiple pathways, mostly ZnT-1 and DMT1. Changes in expression of ZnTs and Zips in response to Cd exposure in human BJAB cells emphasize the involvement of zinc transporters in Cd uptake and metabolism by the cell. ZnT1 was found to be up-regulated, whilst a persistently increased DMT1 mRNA level was noticed. This result emphasizes the important role of ZnT-1 in immune cells and suggests an important contribution of this transporter to immune function. Target cells can only be damaged by Cd if they possess transport pathways or receptors with an affinity for the toxic metal [START_REF] Thevenod | Catch me if you can! Novel aspects of cadmium transport in mammalian cells[END_REF].

The ZnT family of Zn transporters mediates the efflux of Zn from cells whereas the influx of zinc into the cells depends on ZIP family of Zn transporters. Most ZnT proteins have been found in intracellular compartments, usually associated with endosomes, Golgi, or endoplasmic reticulum. The localization of some Zip transporters may change according to zinc availability or physiological conditions [START_REF] Cousins | Mammalian zinc transport, trafficking, and signals[END_REF]. Zn homeostasis is regulated through Zn transporters, Zn binding molecules, and Zn sensors. Intracellular Zn 2+ rise is associated with upregulation of expression of Zn 2+ buffering proteins such as metallothioneins and Zn transporters. Pathways of Zn transport and their dysregulation have been linked to specific diseases. ZnT-1 is the only protein that transports zinc across the plasma membrane, whereas the other ZnT transporters assist with zinc sequestration into vesicles called zincosomes.

Recently, it was shown that, in addition to the plasma membrane expressed ZnT-1, one splice variant of ZnT-5 colocalizes with the plasma membrane in Chinese hamster ovary cells [START_REF] Jackson | Splice variants of the human zinc transporter ZnT5 (SLC30A5) are differentially localized and regulated by zinc through transcription and mRNA stability[END_REF], and operates in both the uptake and the efflux directions [START_REF] Valentine | ZnT5 variant B is a bidirectional zinc transporter and mediates zinc uptake in human intestinal Caco-2 cells[END_REF]. As shown in the present work, both ZnT (1 and 5) and Zip (1, 3 and 8) transporters are differentially expressed at the mRNA level in response to changes in Zn status in BJAB cells. Zinc-finger structures act as redox-sensitive molecular switches controlling several crucial cellular processes. Oxidative stress, via modification of zinc finger cysteine thiols, leads to a release of Zn from these structures that may change the levels of intracellular free zinc and, in turn, may exacerbate oxidative stress by impacting glutathione homeostasis and interfere with cellular signaling cascades. Upregulation of ZnT1 in response to lipopolysaccharide stimulation is involved in TLR (Toll-like receptor) signaling by decreasing intracellular zinc levels in dendritic cells [START_REF] Kitamura | Toll-like receptor-mediated regulation of zinc homeostasis influences dendritic cell function[END_REF]. ZnT5 expression is not increased but decreased in zinc-depleted environments.

Increased mRNA expression of ZIP8, with accompanying lower plasma zinc levels, is reported in sepsis patients [START_REF] Besecker | A comparison of zinc metabolism, inflammation, and disease severity in critically ill infected and noninfected adults early after intensive care unit admission[END_REF]. ZIP8 mRNA expression is a transcriptional target of NF-κB, and ZIP8 negatively regulates proinflammatory responses through zinc-mediated down modulation of IκB kinase (IKK) activity, thereby inhibiting NF-κB activity [START_REF] Liu | ZIP8 regulates host defense through zinc-mediated inhibition of NF-kB[END_REF]. The leukocyte subsets have been shown to differ strongly in their distribution and their amount of expression of the single transporters [START_REF] Overbeck | Intracellular zinc homeostasis in leukocyte subsets is regulated by different expression of zinc exporters ZnT-1 to ZnT-9[END_REF]. Several studies have provided evidence for the involvement of ZIP8 and ZIP14 in the uptake of Cd into cells [START_REF] He | Discovery of ZIP transporters that participate in cadmium damage to testis and kidney[END_REF]. The mammalian ZIP8 and ZIP14 transporters are known to be functionally dependent on the extracellular HCO 3 -concentration. In the rat intestinal brush border membrane vesicles, Cd 2+ absorption was found to increase at alkaline pH [START_REF] Endo | Secretory transport of cadmium through intestinal brush border membrane via H+-antiport[END_REF] and the efficiency of Zn 2+ transport via ZIP transporters was shown to increase with increasing pH. The over-expression of ZnT-1 enhances the resistance against Zn toxicity, whereas the silencing of ZnT-1 expression increases heavy metal influx and consequent toxicity [START_REF] Ohana | Silencing of ZnT-1 expression enhances heavy metal influx and toxicity[END_REF]. However, ZnT-1 transcript levels are markedly reduced in peripheral blood mononuclear cells of zinc-deficient mice (Liuzzi et al., 2004) and our results show that exposure to Cd significantly increased Cd accumulation and decreased Zn and Fe concentrations in BJAB cells. The expression of ZnTs is tightly and dynamically coupled to changes in [Zn 2+ ]. The positive mode of ZnT-1 regulation by Zn supports regulation by metal-responsive transcription factor 1 (MTF1) [START_REF] Cousins | Mammalian zinc transport, trafficking, and signals[END_REF]. MTF1 is a nucleocytoplasmic shuttling factor that, in the absence of metal treatment, is predominantly cytoplasmic. Upon heavy metal exposure or cellular stress, MTF1 translocates to the nucleus, where it regulates expression of metallothioneins and other genes. MTF1 has been demonstrated to specifically bind to the MRE to stimulate the gene transcription of MT I and ZnT-1 in response to zinc [START_REF] Langmade | The transcription factor MTF-1 mediates metal regulation of the mouse ZnT1 gene[END_REF][START_REF] Giedroc | Metal response element (MRE) binding transcription factor-1 (MTF-1): structure, function, and regulation[END_REF].

Metallothioneins (MTs) are a family of low-molecular-weight proteins (6-7 kDa) that are rich in cysteine, which confers a high capacity to bind heavy metal ions in biological systems, and consequently act as free radical scavengers and protect from oxidative damage or heavy metal toxicity [START_REF] Klaassen | Metallothionein protection of cadmium toxicity[END_REF]. The Cd-induced MTs, both at the mRNA and the protein level, observed in the current study, were accompanied by a significant decrease in Zn concentration in the lymphocyte BJAB cells. MT is a prototypical stress-response protein and an extensive collection of studies have documented the involvement of MT in response to numerous types of stress. MT proteins play a role in Zn homeostasis via the metallothionein(MT)/thionein(T) system to control the concentration of ready available Zn. MTF1 plays a central role in transcription activation of the MT genes which contain at least 6 metal response elements at its promoter regions [START_REF] Giedroc | Metal response element (MRE) binding transcription factor-1 (MTF-1): structure, function, and regulation[END_REF]. Both ZnT-1 and MT expression is modulated by Zn via the metal responsive element of the transcription factor MTF-1 [START_REF] Urani | Regulation of metallothioneins and ZnT-1 transporter expression in human hepatoma cells HepG2 exposed to zinc and cadmium[END_REF].

Cd exposure has been shown to augment MT-I expression in a dosedependent fashion in various mammalian cells. In the majority of cell culture and in vivo experiments, MT induction is associated with protection against subsequent metal, chemical, and other stresses. Fibroblasts from MT -/-murine embryos adapted to cadmium evidenced inhibition of a T-type voltage dependent cationic channel as a way of decreasing Cd uptake [START_REF] Leslie | Acquired cadmium resistance in metallothionein-I/II (-/-) knockout cells: role of the T-type calcium channel Cacnalpha1G in cadmium uptake[END_REF].

DMT1 is a widely expressed, mammalian ferrous-ion (Fe 2+ ) transporter that is energized by the H + electrochemical potential gradient and all four isoforms of human DMT1 function as metal-ion transporters of equivalent efficiency [START_REF] Mackenzie | Functional properties of multiple isoforms of human divalent metal-ion transporter 1 (DMT1)[END_REF]. It has been demonstrated that iron-deficient diet can increase intestinal DMT1 expression as well as cadmium body burden in rats, thereby implying that the intestinal cadmium uptake may be linked to the uptake of iron [START_REF] Ryu | Dietary iron regulates intestinal cadmium absorption through iron transporters in rats[END_REF]. The results of [START_REF] Bannon | Effect of DMT1 knockdown on iron, cadmium, and lead uptake in Caco-2 cells[END_REF] provide evidence for the direct involvement of DMT1 in Caco-2 cells for the uptake of iron and cadmium.

Our previous studies indicate that cellular pro-oxidative stress induced by Cd is most likely mediated by disruption of redox homeostasis associated to a mishandling of redox-active transition metals and genotoxic effects in the lymphocyte cells [START_REF] Nemmiche | Role of α-tocopherol in cadmium-induced oxidative stress in Wistar rat's blood, liver and brain[END_REF][START_REF] Nemmiche | Cadmium chloride induced oxidative stress and DNA damage in the human Jurkat T cell line is not linked to intracellular trace elements depletion[END_REF]. These effects exerted by Cd may be modulated the network signal transduction pathways involved in the regulation of redox sensitive transcription factors (e.g., NF-κB and Nrf2) [START_REF] Nemmiche | Cadmium-induced apoptosis in the BJAB human B cell line: involvement of PKC/ERK1/2/JNK signaling pathways in HO-1 expression[END_REF]. The present study indicated that Cd caused a significant decrease in Zn content and in the activity of Cu/Zn-SOD in BJAB cells. Appropriate copper and zinc accessibility to Cu/ZnSOD can influence its structural geometry, redox activity and protein function [START_REF] Miao | Regulation of superoxide dismutase genes: implications in disease[END_REF]. Antioxidant and other cell redox state modulating enzyme systems act as the firstline defense against ROS in all cellular compartments and also extracellularly [START_REF] Nemmiche | Role of α-tocopherol in cadmium-induced oxidative stress in Wistar rat's blood, liver and brain[END_REF]. Also, we observed that DNA damage in lymphocyte cells is well correlated with the presence of oxidative stress.

The Comet assay measures DNA damage as the extent of single and double-strand breaks, alkali-labile sites, cross-links, and incomplete excision repair sites. Results in the comet assay can be influenced by DNA repair processes in a complex way. Hydroxyl radical is the principal damaging species involved in the formation of DNA strand breaks, modified bases, abasic sites, sugar alterations, and DNA-protein cross-links. The measurement of 8-Oxodeoxyguanosine is important because this lesion which is known to be mutagenic is commonly used as a marker of oxidative stress. The absence of efficient detoxification processes in lymphocyte BJAB cells was associated with increased 8-Oxo-deoxyguanosine (8-OHdG) formation as well as decreased rates of 8-OHdG repair in the cells resulting in the inhibition of DNA damage repair. Current evidence indicate that exposure to Cd induces genomic instability [START_REF] Filipic | Mechanisms of cadmium induced genomic instability[END_REF]. Cd inactivates mammalian 8-oxoguanine-DNA glycosylase (mOGG1) as well as 8-oxodG-triphosphate pyrophosphohydrolase (8-oxo-dGTPase) activities required for the removal of 8-oxo-dG from the deoxynucleotide pool [START_REF] Zharkov | Inactivation of mammalian 8-oxoguanine-DNA glycosylase by cadmium(II): implications for cadmium genotoxicity[END_REF]. In nucleotide excision repair, Cd inhibited the first step, which is recognition of DNA damage. If the repair process is inhibited, an increment in DNA migration might be expected in the comet assay because of the persistence of DNA lesions which lead to strand breakage by themselves and/or because of an accumulation of DNA strand breaks related to ongoing DNA repair [START_REF] Mouron | A comparative investigation of DNA strand breaks, sister chromatid exchanges and K-ras gene mutations induced by cadmium salts in cultured human cells[END_REF]. The potential of Cd to inhibit DNA damage repair has been demonstrated by several investigators [START_REF] Giaginis | DNA repair systems as targets of cadmium toxicity[END_REF]. Exposure of alveolar epithelial cells to Cd significantly reduced the activity of formamidopyrimidine DNA glycosylase, an enzyme involved in the recognition and removal of oxidative DNA damage such as 8-hydroxyguanine and 8-hydrohydroxyadenine [START_REF] Potts | Inhibition of oxidative DNA repair in cadmium-adapted alveolar epithelial cells and the potential involvement of metallothionein[END_REF]. Both oxidative stress and inhibition of repair of oxidative DNA damage undoubtedly play a role in Cd-induced carcinogenesis.

Conclusion

In summary, our current findings reveal that multiple transporters are involved in the uptake of Cd by lymphocyte BJAB cells. Once crossed the membrane barrier, the intracellular homeostasis of Zn and Cd is primarily regulated by two proteins, ZnT-1 and metallothioneins [START_REF] Urani | Regulation of metallothioneins and ZnT-1 transporter expression in human hepatoma cells HepG2 exposed to zinc and cadmium[END_REF]; the potential role of zinc-binding proteins in delivering transition metals to antioxidant enzymes remains to be established. Further studies need to be addressed to understand the mechanism of ZnT-1 up-regulation by Cd and to evaluate interactions between Cd, MT and Zn transporters in the human BJAB cells. It will also be important to determine the patterns of expression of the other Zn transporters.
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 1 Fig. 1. Effect of exposure to different cadmium (Cd) concentrations on the viability of BJAB cells. Each value represents the mean ± SD of three independent experiments, with *p b 0.05, **p b 0.01 and ***p b 0.001 compared to the control.

Fig. 2 .

 2 Fig. 2. Intracellular cadmium (Cd) levels in BJAB cells. Each value represents the mean ± SD of three independent experiments, with **p b 0.01 and ***p b 0.001 compared to the control.

Fig. 3 .

 3 Fig. 3. Effect of cadmium (Cd) on the intracellular level of essential trace elements: (a) Iron (Fe), Copper (Cu), Zinc (Zn); (b) Manganese (Mn), Selenium (Se). Each value represents the mean ± SD of three independent experiments, with *p b 0.05, **p b 0.01 and ***p b 0.001 compared to the control.

Fig. 4 .

 4 Fig. 4. Effect of cadmium (Cd) on the activities of Cu/Zn and Mn superoxide dismutase (a), catalase and glutathione peroxidase (GPx) (b). Each value represents the mean ± SD, with *p b 0.05 and ***p b 0.001 compared to the control.

Fig. 5 .

 5 Fig. 5. Changes in GSH/GSSG ratios in BJAB cells following treatment with cadmium (Cd). The results are expressed as the mean ± SD of three independent experiments, with ***p b 0.001 compared to the control.

Fig. 7 .

 7 Fig. 7. Effect of cadmium (Cd) on DNA in BJAB cells as assessed with the comet assay. Each value represents the mean ± SD of three independent experiments, with **p b 0.01 and ***p b 0.001 compared to the control.

Fig. 6 .

 6 Fig. 6. Effect of cadmium (Cd) on malondialdehyde (MDA) production in BJAB cells. Each value represents the mean ± SD of three independent experiments, with **p b 0.01 and ***p b 0.001 compared to the control. Fig. 8. Effect of cadmium (Cd) on the 8-OHdG levels in BJAB cells. The results are expressed as the mean ± SD of three independent experiments, with **p b 0.01 and ***p b 0.001 compared to the control.

Fig. 11 .

 11 Fig. 11. Effect of cadmium (Cd) on DMT-1 mRNA expression in BJAB cells. The results are expressed as the mean ± SD of three independent experiments, with **p b 0.01 and ***p b 0.001 compared to the control.

Fig. 10 .

 10 Fig. 10. Effect of cadmium (Cd) on the Zn transporters mRNA expression in BJAB cells: (a) ZnT-1 (B) ZnT-5. The results are expressed as the mean ± SD of three independent experiments, with **p b 0.01 and ***p b 0.001 compared to the control.

Fig. 12 .

 12 Fig. 12. Induction of MTF1 mRNA expression (a) and metallothionein level (b) by cadmium (Cd) in human BJAB cells (relative MTF1 mRNA expression taking Cd-free control sample as 1 U).

Table 1

 1 Primers used for zinc transporters expression study.

	Symbol	GenBank accession	Sequence (5′-N3′)	Location
	Gene description			
	MTF1	NM_005955	Forward GGACAGTGCGGAGAACACTT	193-212
	Metal-regulatory transcription factor 1 [Homo sapiens]		Reverse GTGGAACCAGGGTTTATTGTCA	335-314
	DMT	NM_000578	Forward GCCCTGTCCGTCTCCTTTATC	871-891
	Solute carrier family 11 (proton-coupled divalent metal ion transporters)		Reverse TGTTGGCACAGATGTTGAACG	973-953
	SLC39A1 = ZIP1	NM_014437	Forward ACTACCTGGCTGCCATAGATG	272-292
	Solute carrier family 39 (zinc transporter), member 1		Reverse GCCCTGACTGCTCCTTGTAAG	415-395
	SLC39A3 = ZIP3	NM_144564	Forward TGGCCGAAACCATCCTCCT	257-275
	Solute carrier family 39 (zinc transporter), member 3		Reverse GATCCGGCGTTGAAGGTCTC	374-355
	SLC39A8 = ZIP8	NM_022154	Forward TGCTACCCAAATAACCAGCTCC	264-285
	Solute carrier family 39 (zinc transporter), member 8		Reverse CAGGAATCCATATCCCCAAACT	403-381
	SLC30A1 = ZnT1	NM_021194	Forward CCCCGCAGACCCAGAAAAC	615-633
	Solute carrier family 30 (zinc transporter), member 1		Reverse GTTGTCCAGCCCTATCTTCTTC	727-706
	SLC30A5 = ZnT5	NM_022902	Forward ACCAAACACCAGTGGATCAAAA	262-283
	Solute carrier family 30 (zinc transporter), member 5		Reverse CAGCAAAGTCCTTAGTGGTCC	369-349
	T calcium channel alpha1G subunit [Homo sapiens]	AF134985	Forward AAGAGAAGGAGTAAGGAGAAGCA	4627-4649
			Reverse TGCACAAGTGGTGGACGAG	4723-4705
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