Z. Xing, J. Pei, and E. J. Keogh, A brief survey on sequence classification, SIGKDD Explorations, pp.40-48, 2010.
DOI : 10.1145/1882471.1882478

M. Deshpande and G. Karypis, Evaluation of Techniques for Classifying Biological Sequences, PAKDD'02, pp.417-431, 2002.
DOI : 10.1007/3-540-47887-6_41

R. She, F. Chen, K. Wang, M. Ester, J. L. Gardy et al., Frequent-subsequence-based prediction of outer membrane proteins, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '03, pp.436-445, 2003.
DOI : 10.1145/956750.956800

F. Sebastiani, Machine learning in automated text categorization, ACM Computing Surveys, vol.34, issue.1, pp.1-47, 2002.
DOI : 10.1145/505282.505283

P. Tan and V. Kumar, Discovery of Web Robot Sessions Based on Their Navigational Patterns, Data Mining and Knowledge Discovery, vol.6, issue.1, pp.9-35, 2002.
DOI : 10.1007/978-3-662-07952-2_9

B. Liu, W. Hsu, and Y. Ma, Integrating classification and association rule mining, ACM SIGKDD'98, pp.80-86, 1998.

A. Zimmermann and S. Nijssen, Supervised Pattern Mining and Applications to Classification, Frequent Pattern Mining, pp.425-442, 2014.
DOI : 10.1007/978-3-319-07821-2_17

V. S. Tseng and C. Lee, CBS: A New Classification Method by Using Sequential Patterns, SDM'05, pp.596-600, 2005.
DOI : 10.1137/1.9781611972757.68

C. Zhou, B. Cule, and B. Goethals, Itemset Based Sequence Classification, ECML/PKDD'13, pp.353-368, 2013.
DOI : 10.1007/978-3-642-40988-2_23

P. Holat, M. Plantevit, C. Ra¨?ssira¨?ssi, N. Tomeh, T. Charnois et al., Sequence Classification Based on Delta-Free Sequential Patterns, 2014 IEEE International Conference on Data Mining, pp.170-179, 2014.
DOI : 10.1109/ICDM.2014.154

N. Lesh, M. J. Zaki, and M. Ogihara, Mining features for sequence classification, Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '99, pp.342-346, 1999.
DOI : 10.1145/312129.312275

K. Deng and O. R. Za¨?aneza¨?ane, An Occurrence Based Approach to Mine Emerging Sequences, pp.275-284, 2010.
DOI : 10.1007/978-3-642-15105-7_22

H. T. Lam, F. Moerchen, D. Fradkin, and T. Calders, Mining compressing sequential patterns, SDM'12, pp.319-330, 2012.
DOI : 10.1002/sam.11192

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Coenen and P. H. Leng, The effect of threshold values on association rule based classification accuracy, Data & Knowledge Engineering, vol.60, issue.2, pp.345-360, 2007.
DOI : 10.1016/j.datak.2006.02.005

F. Mörchen and A. Ultsch, Efficient mining of understandable patterns from multivariate interval time series, Data Mining and Knowledge Discovery, vol.17, issue.4, pp.181-215, 2007.
DOI : 10.1007/s10618-007-0070-1

M. Boullé, MODL: A Bayes optimal discretization method for continuous attributes, Machine Learning, pp.131-165, 2006.
DOI : 10.1007/s10994-006-8364-x

D. Gay and M. Boullé, A Bayesian Approach for Classification Rule Mining in Quantitative Databases, ECML/PKDD'12, pp.243-259, 2012.
DOI : 10.1007/978-3-642-33486-3_16

URL : https://hal.archives-ouvertes.fr/hal-01464491

A. M. Jorge, P. J. Azevedo, and F. Pereira, Companion website MiSeRe: Mining sequential classification rules Available: http://misere Distribution rules with numeric attributes of interest, PKDD'06, pp.247-258, 2006.

R. Agrawal and R. Srikant, Mining sequential patterns, Proceedings of the Eleventh International Conference on Data Engineering, pp.3-14, 1995.
DOI : 10.1109/ICDE.1995.380415

H. Mannila and H. Toivonen, Multiple uses of frequent sets and condensed representations (extended abstract), KDD'96, pp.189-194, 1996.

E. Baralis, S. Chiusano, R. Dutto, and L. Mantellini, Compact Representations of Sequential Classification Rules, Data Mining: Foundations and Practice, pp.1-30, 2008.
DOI : 10.1007/978-3-540-78488-3_1

C. Elzinga, S. Rahmann, and H. Wang, Algorithms for subsequence combinatorics, Theoretical Computer Science, vol.409, issue.3, pp.394-404, 2008.
DOI : 10.1016/j.tcs.2008.08.035

J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, Sequential PAttern mining using a bitmap representation, Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '02, pp.429-435, 2002.
DOI : 10.1145/775047.775109

K. Bache and M. Lichman, UCI machine learning repository Available: http://archive.ics.uci.edu/ml [26] A. Cardoso-Cachopo Improving Methods for Single-label Text Categorization, 2007.

M. J. Zaki, Sequence mining in categorical domains, Proceedings of the ninth international conference on Information and knowledge management , CIKM '00, pp.422-429, 2000.
DOI : 10.1145/354756.354849

J. L. Myers and A. D. , Research Design and Statistical Analysis, 2003.

M. A. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann et al., The WEKA data mining software, ACM SIGKDD Explorations Newsletter, vol.11, issue.1, pp.10-18, 2009.
DOI : 10.1145/1656274.1656278

M. Boullé, Compression-based averaging of selective naive bayes classifiers, Journal of Machine Learning Research, vol.8, pp.1659-1685, 2007.

J. Dem?ar, Statistical comparisons of classifiers over multiple data sets, Journal of Machine Learning Research, vol.7, pp.1-30, 2006.

H. T. Lam, F. Mörchen, D. Fradkin, and T. Calders, Mining Compressing Sequential Patterns, Statistical Analysis and Data Mining: The ASA Data Science Journal, vol.28, issue.1, pp.34-52, 2014.
DOI : 10.1002/sam.11192

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=