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After a drastic decline in 1983, hydrothermal activity at La Soufrière lava dome (Guadeloupe, Lesser Antilles) has been progressively increasing 
in the summit area since 1992, raising the threat of a renewed eruptive activity. To better constrain the geometry of the hydrothermal system, 
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1. Introduction

The presence of well-developed hydrothermal systems on active
volcanoes has been recognized as a major hazard factor for several
reasons. Hydrothermal circulation usually alters andweakens the inter-
nal parts of volcanic edifices, increasing the risks of instability (López
and Williams, 1993; Vallance and Scott, 1997; Reid et al., 2001;
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Komorowski, 2008). Hydrothermal systems are unstable energy trans-
fer systems, therefore, modifications of heat fluxes within the edifice
can result in pressurization triggering phreatic explosions (e.g. Lube
et al., in press) or favoring partial edifice collapse along low strength
layers with higher fluid pore pressure and associated reduced friction
(Reid et al., 2001; Komorowski, 2008). Additionally, hydrothermal sys-
tems can interact with magma, giving rise to highly explosive phreato-
magmatic dynamisms. From these different perspectives, the hydro-
thermal system geometry and evolution appear as key parameters to
better constrain volcanoes potential behavior and associated hazards.
At La Soufrière volcano (Guadeloupe), flank collapse has been recog-
nized as a repetitive phenomenon along the history of the volcano
(Komorowski et al., 2002, 2005; Boudon et al., 2007; Komorowski,
2008; Legendre, 2012) and themajor role of extended hydrothermal al-
teration in these events has been evidenced by recent works on the



associated debris avalanche deposits (Salaün et al., 2011). The implica-
tion of the hydrothermal system has been proven in many eruptions,
from phreatic crises to cataclysmic phreato-magmatic events (11 500
BP, 3 100 BP; Boudon et al., 1992). Since the first descriptions in
1635 AD, this hydrothermal system has undergone many fluctuations,
alternating between resting periods characterized by residual hydro-
thermal activity, fumarolic reactivations, and phreatic eruptions some-
times rather violent (Komorowski et al., 2005; David, 1998, and
references therein). The last phreatic crisis, in 1976–77, resulted in the
evacuation of 70,000 inhabitants of the island and a large scientific con-
troversy on the presence of an eventual magmatic component, pointing
out the lack of data available for hazard assessment and forecasting
(Feuillard et al., 1983; Komorowski et al., 2005; Hincks et al., 2014).

La Soufrière is located just 5 km north to the town of Saint-Claude
(10 000 inhabitants). Currently active, the volcano has been monitored
through seismic, deformation (tiltmeters, GPS, extensometers,
distancemeters) and geochemical (gas, fluid, spring, flux, and tempera-
ture analyses) networks since 1950 (Observatoire Volcanologique et
Sismologique de Guadeloupe; OVSG managed by Institut de Physique
Globe de Paris). After a drastic decline in 1983, hydrothermal activity
has been slowly and progressively increasing in the summit area since
1992, raising the threat of a new eruption. In the last decade, theGuade-
loupe Volcanological and Seismological Observatory (OVSG-IPGP) has
recorded a systematic progressive increase in shallow low-energy seis-
micity, a slow rise of temperatures of some acid-sulfate thermal springs
(Villemant et al., 2005) close to the dome, and,most noticeably, a signif-
icant increase in the summit fumarolic activity associated with HCl-rich
and H2S acid gas emanations (OVSG, 1999–2014; Komorowski et al.,
2001, 2005). The permanent acid degassing from two summit high-
pressure fumaroles has caused vegetation damage on the downwind
flanks of the dome and required the establishment by the authorities
of a no-public access zone since 1999 that concerns the most active
areas of the summit (Komorowski et al., 2005). At present time, a mag-
matic origin to this prolonged unrest cannot be excluded.

In the recent years, significant efforts have been made to character-
ize the geophysical structure of the dome (Nicollin et al., 2006; Coutant
et al., 2012; Lesparre et al., 2012; Lesparre et al., accepted for
publication). Yet, better constraints on the hydrothermal system geom-
etry, and its relationswith themain structural features of the edifice are
still needed (Komorowski, 2008). Within this scope, we present here a
combination of multi-electrodes high-resolution electric resistivity to-
mography (ERT), self-potential (SP), sub-surface temperature, and soil
CO2 diffuse degassing to derive information on the location of the hy-
drothermal system over the volcano.

2. Geological setting

Basse-Terre Island (Guadeloupe archipelago) belongs to the north-
ern part of the recent inner arc of the Lesser Antilles. La Grande
Découverte-Soufrière (GDS) is an andesite-type explosive volcanic
complex, representing the latest, and the only active, of six volcanic
complexes composing the island. The construction of this volcanic com-
plex started most likely 445 to 435 ka ago with the formation of La
Grande Découverte. This edifice consists of thick lava flow sequences al-
ternating with deposits from several major explosive eruptions
(Boudon et al., 1988; Carlut et al., 2000; Komorowski et al., 2005;
Samper et al., 2007, 2009) dated at about 140 ka, 108 ka, and finally
about 42 ka ago during the Pintade eruption that produced the La
Grande Decouverte caldera (Boudon et al., 1988; Komorowski et al.,
2005). The second phase, from 42 ka to 11.5 ka, corresponds to the con-
struction of the Carmichaël edifice inside the La Grande Decouverte cal-
dera. This phase ended with at least two major collapses (13.500 and
11.500 yrs BP) affecting the western flank of the edifice and forming
the Carmichaël crater (Fig. 1). Following a non-magmatic partial col-
lapse of the S-SE flanks of the remaining part of the Carmichael edifice
at about 8200 yrs B.P. which formed the Amic crater, new effusive
activity marked the onset of the third phase, called La Soufrière
(Komorowski et al., 2005; Boudon et al., 2007; Legendre, 2012). Alter-
nating effusive and explosive activity developed within the Amic struc-
ture which was widened by the occurrence of at least 8 distinct edifice
collapse events, with the most recent event dated at 1530 AD
(Komorowski et al., 2002, 2005; Boudon et al., 2007; Komorowski,
2008; Komorowski et al., 2008a; Legendre, 2012). One of themain effu-
sive phases led to the formation of theAmic dome that preceded the for-
mation of two scoria cones (L'Echelle and La Citerne) around 1700BP. La
Soufrière lava dome, culminating at 1467 m and representing the
highest point of the Lesser Antilles, was formed during the last major
magmatic eruption dated around 1530 AD by radiocarbon dating
(Boudon et al., 2008; Legendre, 2012; Komorowski et al., 2008b). The
dome is surrounded by a collapse structure affecting the Amic dome
and L'Echelle cone, formed or reactivated for the last time at the onset
of the magmatic eruption (Boudon et al., 2008), and named after the
event (Figs. 1, 2). Many fumaroles, temperature anomalies and thermal
sources on the dome and its surroundings highlight the presence of a
well-developed hydrothermal system, as a result of an enormous rain-
fall rate (7–10 m.y−1 on the summit area; OVSG-IPGP, 1999–2013;
Villemant et al., 2005) combined with the existence of permanent
heat sources at depth. The dome is cut by numerous fractures (Fig. 2;
Nicollin et al., 2006; Lesparre et al., 2012) mainly radial to the summit.
Most of the main fractures opened during historic phreatic eruptions
(1690, 1797–98, 1809–12, 1836–37, 1956 and 1976–77; Boudon et al.,
1988; Komorowski, 2008). The north–south fractures, Fente du Nord
to the north and La Ty fault to the south-east of the dome, correspond
to a system of regional active tectonic faults crossing the dome (Fig. 1;
Feuillet, 2000; Feuillet et al., 2002; Mathieu et al., 2013). La Ty fault in-
tersects the base of the dome and can be followed in the landscape up
to Ravine la Ty and the south-western flank of La Citerne cone (Figs. 1,
2). Five major explosion craters are present at the summit of the
dome: Tarissan, Dupuy, Napoleon, Cratère Sud, and Cratère 1956
(Fig. 2). During the latest eruptions, explosive phreatic activity mostly
affected the south-eastern part of the dome, but some of the northern
structures were also active albeit to a lesser extent (Fig. 2). During the
last phreatic eruption in 1976–1977, explosive activity, which started
on the eastern flank by reactivating the pre-existing 1956 fractures,
led to the opening of two new large fractures on July 8th to the east
and on August 30th to the south-east of the dome (Fig. 2). Activity
thenmigrated to the summit areawhere it was concentrated at the cen-
tral Tarissan crater. Throughout the eruption, water vapor and acid
gases mixed with non-juvenile blocks and ash were emitted at a high
flux from the Tarissan crater (Feuillard et al., 1983; Komorowski et al.,
2005). The 1976–1977 eruption has been interpreted as a stillbornmag-
matic or failed magmatic eruption by Feuillard et al. (1983) with the
data available at the time. On the basis of new data and analytical tech-
niques, Villemant et al. (2005), Boichu et al. (2008, 2011), and Ruzié
et al. (2012) have confirmed this hypothesis.

After the 1976–1977 eruption, a decline of fumarolic activitywas ob-
served both on the summit and at the base of the lava dome (notably by
the disappearance in 1984 of the Col de l'Echelle fumaroles along the
eastern end of July 8th fracture). Only minor degassing still remained
along the La Ty fault (Zlotnicki et al., 1992). Since 1992, a slow and pro-
gressive increase of fumarolic degassing has been observed. The reacti-
vation of the summit fumaroles began at Cratère Sud in 1992 (Zlotnicki
et al., 1992), at Napoléon crater in 1996–1997 and then at Tarissan cra-
ter in 1997 (OVSG-IPGP, 1999–2014; Komorowski et al., 2001, 2005).
More recently, fumarolic activity resumed at Cratère 1956 in 2007 and
two new fumaroles appeared in the summit area in December 2011
and October 2013 (Figs. 1, 2). The renewal of fumarolic activity is asso-
ciated with HCl-rich and H2S acid gas emanations (volcano observatory
reports) and, at the SW base of the volcano, with a slow rise of temper-
atures at three acid-sulfate thermal springs (Villemant et al., 2005). In
parallel, the volcano observatory has recorded since 1992 a progressive
increase of shallow low-energy volcano-tectonic earthquakes (OVSG-



Fig. 1. Structural sketch map of the main structures in La Soufrière dome area. Location of the thermal sources, the active and past fumaroles are also shown. WGS84 geodetic system,
UTM20N projection (m). After Feuillard et al. (1983), Boudon et al. (1988), Komorowski et al. (2005), Nicollin et al. (2006), Komorowski (2008).
IPGP, 1999–2014). The increase of the hydrothermal activity since 1992
and associated seismic unrest is not currently associated with any clear
signs of magma ascent at shallow depth (deep seismicity with upward
migrating hypocenters, or significant ground deformation). Neverthe-
less, there is clear evidence for the magmatic origin of chlorine-rich
fluids feeding hot springs and the marked summit degassing that
began in 1998 (Komorowski et al., 2001, 2005; Villemant et al., 2005;
Li et al., 2012).
3. Methods

In order to better constrain the geometry of past and present hydro-
thermally active zones beneath the dome, we have simultaneously un-
dertaken electrical resistivity tomography, self-potential, temperature
and soil degassing surveys (Fig. 3). The entire acquisition was complet-
ed in less than amonth (January–February 2011) under overall constant
weather conditions.



Fig. 2. Zoom on La Soufrière dome. Location map of the main structures, the thermal sources, the active and past fumaroles. Locations and names of areas mentioned in the text are also
reported. WGS84 geodetic system, UTM20N projection (m). After Feuillard et al. (1983), Boudon et al. (1988), Komorowski et al. (2005), Nicollin et al. (2006), Komorowski (2008).
3.1. Electrical Resistivity Tomography (ERT)

The data acquisition was performed with a multi-electrode ABEM
system (Terrameter SAS4000) driving cables equipped with 64 plugs
to connect grounded stainless steel electrodes. The multi-electrode sys-
tem possesses a relay matrix switcher, which chooses the two elec-
trodes used to inject the electrical current in the ground and the two
electrodes to measure the electrical potential. The acquisition followed



Fig. 3. Location of the profiles carried out during the January 2011 field campaign. Self-potential profiles alone are in blue, profiles combining self-potential and CO2 are in cyan, profiles
combining self-potential, CO2, and ground temperature are in green, Electrical Resistivity Tomography profiles are in magenta. Others symbols are the same as in Fig. 1. WGS84 geodetic
system, UTM20N projection (m). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
a Wenner protocol, providing a good signal-to-noise ratio, and a good
sensitivity to vertical resistivity contrasts. Every measurement was re-
peated several times (stacking) and the standard deviation (error)
was calculated. The set of cables used in the field operations have an
electrode spacing of 15 m, providing a total length of 945 m and a max-
imum depth of investigation of about 150 m. The total length can be in-
creased by roll-along processes.

After the acquisition, resistivity data was first filtered on the basis of
quality criterions. Secondly, artifacts in the signal generated by surface
heterogeneities were removed with the help of X2IPI commercial soft-
ware (See Appendix A). Resistivity data was then inverted using
RES2DINV commercial software (Loke and Barker, 1996), using a
smoothness-constrained method to perform the inverse problem. This
software, developed for environmental geophysics, has been widely
used in different kinds of geological environments and notably volca-
noes (e.g. Finizola et al., 2006; Revil et al., 2008; Byrdina et al., 2009;
Revil et al., 2011; Barde-Cabusson et al., 2013; Portal et al., 2013). Elec-
trode positionswere obtained byGPSmeasurements, and elevationwas
deduced from a one-meter resolution Digital Elevation Model of the
dome. The topographic profile was included in the inversion to produce
2D-pseudosections.

Given that precise ERT had already been carried out on the dome it-
self (Nicollin et al., 2006), we concentrated our effort on the S-SW pe-
ripheral zone where fumarolic activity on La Ty regional fault is
persistent since the end of the eighteen century. Three main profiles
have been carried out: a 945-m long profile between Savane à Mulets
(SAM) and col de l'Echelle (CDE), a 2430-m long profile between the
north of Piton Tarade (NPT) and the eastern flank of l'Echelle cone
(EFE), and a 2925-m long profile between the eastern Flank of l'Echelle
cone (EFE) and the south of trace de l'Armistice (STA; Fig. 3). ERT results
should, as much as possible, be compared with other geophysical tech-
niques to ensure that deep structures revealed on the profiles are not



artifacts resulting from data processing-itself, and to distinguish ambi-
guities in the interpretation of the 2D resistivity cross sections.
3.2. Self-potential (SP)

During the campaign, more than 10 km of SP profiles were carried
out, with an electrode spacing of 5 m (along the ERT profiles) to 10m
(around the dome; Fig. 3). Self-potential (SP) measurements were
performed with a pair of non-polarizing Cu/CuSO4 electrodes. The
difference of electrical potential between the reference electrode
(at one extremity of the profile) and the moving electrode was mea-
sured with a high-impedance voltmeter (0.1 mV sensitivity) and a
300m-long insulated copper cable. Wemeasured the electrical resis-
tance together with the self-potential in order to check the signal
quality. The electrical resistance between the two electrodes should
always be ten times smaller than the internal impedance of the volt-
meter (Corwin and Hoover, 1979). In our case, the electrical resis-
tances were systematically comprised between 1 and 200 kΩ, so
largely smaller than the internal impedance of our high-impedance
voltmeter (10 MΩ).

In purely hydrogeological environment (i.e. areas not affected by
hydrothermal convection), a clear inverse and linear relation has
often been observed between SP and elevation variations (Corwin
and Hoover, 1979; Jackson and Kauahikaua, 1987; Aubert et al.,
1993; Finizola et al., 2004). The parameters of this relation are nota-
bly dependent on the type of rocks, kind of fractures, etc. The origin
of this relation has been explained by various models (e.g. Zablocki,
1978; Fournier, 1983). In all cases, the variations of the SP signal re-
flect the variations of thickness of the unsaturated zone. In 1996,
Aubert and Antagana have proposed an interpretation of SP varia-
tions in terms of SPS surface calculation (see Appendix B). Added
to this general tendency, it has been observed that negative peaks lo-
cally highlight main infiltration zones (e.g. Finizola et al., 2002). On
volcanic areas, numerous surveys have reported the presence of pos-
itive SP anomalies (a few hundred to a few thousand mV) around
areas affected by fumarolic activity and temperature anomalies
(Zlotnicki and Nishida, 2003; Ishido, 2004; Revil et al., 2008;
Finizola et al., 2009). Ascending hydrothermal fluids are believed to
be the primary cause of these anomalies. This is due to the fact that
most minerals in volcanic environments are characterized by a neg-
ative zeta potential (e.g. Aizawa et al., 2008; Aizawa, 2008). In rare
cases, the precipitation of secondary minerals may cause the inver-
sion of the zeta potential, and reverse the sign of anomalies related
to ascending fluxes (e.g. Guichet et al., 2006; Jouniaux et al., 2009).
X-ray diffraction was performed on hydrothermal clays sampled in
La Ty fault and near Cratère Sud, and revealed the presence of kaolin-
ite, illite and smectite. As the pH of hydrothermal fluids sampled on
the dome and peripheral hot springs (OVSG; Ruzié et al., 2013) is
comprised between 2 and 6, the zeta potential most probably re-
mains negative and the sign of anomalies is not reversed (Chorom
and Rengasamy, 1995; Hussain et al., 1996; Yukselen and Kaya,
2003; Saka and Güler, 2006; Yukselen-Aksoy and Kaya, 2010).

Typically, the SP signal on La Soufrière volcano reflects a combi-
nation of different contributions: topography, upward and down-
ward local circulations. In previous surveys (1987, Pham et al.,
1990; 1992, Zlotniki et al., 1994; 2000, Zlotnicki et al., 2006), these
contributions are taken into account qualitatively for interpretation.
By looking at the SP/elevation gradient, we tried to detect the contri-
bution of elevation-dependent SP variations on the dome sector. We
can therefore propose a “corrected SP”, in which remaining anoma-
lies would reflect either hydrothermal fluxes (positive anomalies)
or preferential infiltration zones (negative anomalies; Fig. 4). Addi-
tionally, local variations of the SP signals were interpreted in terms
of superficial water-saturated zones along multi-methods profiles
(Figs. 5, 7; Appendix B).
3.3. Temperature

Temperature was measured with thermal probes placed at 30 cm-
depthwith a spacing of 15m (see Finizola et al., 2003). The temperature
profiles provide an independent way to see the extension of the hydro-
thermal body near the ground surface, and therefore complete the in-
formation derived from SP.

3.4. Soil CO2 degassing

Soil CO2 diffuse degassing measurements were performed with a
15 m spacing. The detail of the methodology is described in Chiodini
et al. (1998). Soil gas samples were taken at 30 cm depth by pumping
with a syringe through a tube of copper (2 mm in diameter). CO2 con-
centrations were obtained as a difference of potential after calibration
of an infrared photoelectric cell (IR spectrometer). Data distribution
was then analyzed by a general statistical method detailed by Sinclair
(1974), in order to detect the presence of Gaussian populations
among the entire data set. Themajor part of the samples appears to be-
long to a single population characterized by a very lowmean concentra-
tion (1400 ppm), corresponding to the contribution of biological
processes added to atmospheric CO2. A minor but significant part of
the samples is characterized by much higher concentrations (reaching
91%). These samples are considered anomalic, reflecting the contribu-
tion of magma degassing.

4. Results

4.1. SP map of the dome

Fig. 4A shows the results of the SP survey on the dome. Given its var-
iability along profiles in this sector, the elevation parameter probably
has a significant influence on SP variations. Indeed, our set of data, as
well as previous SP surveys (Pham et al., 1990; Zlotniki et al., 1994),
shows amajor positive anomaly at the base of the dome, andmajor neg-
ative anomaly on the very summit (Figs. 2, 4A), which is exactly what
can be expected from a topographic effect. In addition, if the zeta poten-
tial is negative as observed on most volcanoes, the coexistence of a
major negative anomaly and a major fumarolic zone on the summit
area can hardly be explained. Thus, topography contribution to the sig-
nal needs to be distinguished from other effects by analyzing the SP-to-
elevation gradient behavior. Although La Soufrière has a probably com-
plex structure in terms of permeability, resistivity distribution and hy-
drological geometry (Zlotniki et al., 1994), a first-order negative
correlation between SP and elevation can be estimated from the
whole data set, and an average value of−0.55 mV/m can be subtracted
to the original SP data (Fig. 4). The idea of a general behavior of the SP
signal regarding elevation is supported by recent studies suggesting a
common geochemical background for all thermal springs around the
dome (Ruzié et al., 2013; Allard et al., 2014; Chen et al., 2014). The gen-
eral topographic effect may be attributed to a deep, and more or less
tabular aquifer. Elevation corrected SPmap (Fig. 4B) offers at least a par-
tial correction of a significant parameter that undoubtedly hides short
wavelength anomalies related to water circulation, and provides a bet-
ter correlation with observations on the summit area. A positive anom-
aly on the south-eastern part of the summit (DSum+) matches the
fumarolic area between Tarissan crater, Cratère 1956 and Cratère Sud.
Another positive anomaly on the lower part of the south-western
flank (DSW+) may indicate hydrothermal circulation in this part of
the dome, that has not yet been affected by phreatic or fumarolic activ-
ity at the surface. Negative anomalies on the northern flank and on the
southern border of the dome indicate that these areas are dominated by
descending fluxes of meteoric fluids. Pink stars within these areas or
outside (DSum−, DNE−, DLac−, DCS−, DA30−, DSE−, DS1−,
DS2−, DS3−, DS4−, PT−; Fig. 4B) locate negative peaks observed on
SP profiles, reflecting preferential infiltration pathways. Indeed, these



Fig. 4. (A) Interpolated self-potential map; data not corrected from elevation. (B) Interpolated self-potential map; data corrected from elevation. Black circles are the measurements
points. Elevation contour lines are given every 25 m. Pink stars locate negative peaks identified on SP profiles. DSW+, DSum+, PT−, DS1−, DS2−, DS3−, DS4−, DSE−, DNE−,
DSum−, DLac−, DCS−, DA30−refer to anomalies discussed in the text. WGS84 geodetic system, UTM20N projection (m). Right inset: general SP/Elevation gradient used to correct
SP data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
peaks are generally correlated to the presence of fractures:
DSum−coincides with Fente du Nord, DLac− with Lacroix fracture,
DCS− and DSE− with Cratère Sud fracture, and DA30− with August
30th fracture. Other peaks are mostly located at the intersection with
gullies.

4.2. Detailed multi-method profiles

4.2.1. Dome and proximal vicinity
Profile "SAM-CDE" joining Savane-à-Mulets to Col de l'Echelle inter-

sects the major axes affected by the latest phreatic eruption (Fig. 5). On
this profile, the root mean squared error (RMS) of the ERT section is
14.9% and calculated resistivity values range from a few tens to a few
thousand ohm.m. SP values range from−110 to+90mV and CO2 con-
centration values in soil gas are below 25,000 ppm. The south-western
part of the ERT profile reveals high resistivity values (N1000 Ω.m).
The main feature of this profile is the presence of a vertical limit (at
about 270 m from the beginning of the profile and extending to a
depth of ~70 m), with a sharp resistivity gradient, in coincidence with
a negative SP anomaly (DS4−). This limit, located on the dome border,
separates a resistant medium (N500 Ω.m) to the south-west from a
conductive one (b50 Ω.m) to the north-east. The dome is globally
made of very low resistivity material, thought extreme values
(b15 Ω.m) bordering the resistivity contrast are poorly constrained ac-
cording to the sensitivity studyof this profile (“depth of investigation”—
DOI, in Appendix A). A more resistant layer (a few hundred ohm.m),
about 20 m-thick, lies above this conductive body.

The SPS surface (Fig. 5B) calculated from SP variations (Appendix B),
that may represent the upper limit of the water-saturated zone, sup-
ports the idea that the conductive body is saturated in fluids. Small-
scale anomalies such as DS2−, DS 3− and DS 4− represent the maxi-
mum infiltration zones in the global negative anomaly at the south of
the dome (Fig. 4). The two negative peaks DS2− and DS3− (ΔSP b

−70 mV) are in perfect correspondence with the location of two
north–south gullies at the surface (Fig. 5A).

The western part of the ERT profile “SAM-CDE” is common with the
ERT profile joining the north of Piton Tarade (NPT) to the eastern flank
of L'Echelle cone (EFE) (RMS 16.5%; Fig. 6). Nonetheless, this common
portion being further from the extremity in the ERT profile “NPT-EFE”,
we have access to a greater depth. The same resistive pattern can be ob-
served on the two profiles indicating coherence between different ac-
quisition results and limited edge effects on the ERT profile “SAM-
CDE”. The superficial zone of high resistivity, including Piton Tarade
andwith a typical thickness of 70m, is lying on top of a very conductive
layer (resistivity b 50 Ω.m). This system of horizontal layers is
interrupted to the east by a 100 m-wide vertical conductive axis corre-
sponding to La Ty fumarolic area, with comparably low resistivity
values. Even if theWenner array is less sensible to horizontal resistivity
contrasts than to vertical, the presence of a conductive axis is supported
by a major thermal and CO2 anomaly (Fig. 6) with a thermal flux of
275W/m2 (Gaudin et al., 2013). Upwelling of hydrothermal fluids is ap-
parently not associatedwith any significant SP anomaly in this area. This
may be explained by the very high conductivity of the material within
the fault, or by the fact that the zeta potential may be close to zero (in
response to secondarymineralization and very acidic fluids) in this par-
ticular zone. A sharp vertical resistivity contrast, up to the maximum
depth of the tomography profile (~170 m), separates this western do-
main from a globally resistive eastern domain. This boundary is located
in the vicinity of collapse limits (1530 AD collapse andminor sector col-
lapse of l'Echelle cone). In the eastern part of the profile (beyond the
collapses scars), resistivity values vary from a few hundred to a few
thousand ohm.m. Being located rather far away from the dome, this
portion is considered to belong to a distal domain (see Section 4.2.2).

4.2.2. Southern peripheral zone
The eastern part of ERT profile “NPT-EFE” is a globally resistant do-

main in comparison to dome-proximal sections (Fig. 6). In this portion
of the profile “NPT-EFE”, no temperature or CO2 anomaly can be
found. Resistivity values range from a few hundred to a few thousand
ohm.m, with almost no values inferior to 100 Ω.m.. The DOI study
(Appendix A) indicates that resistivity variations in the central part of
the profile are poorly constrained. To the very east of the profile, con-
ductive bodies (a few hundred ohm.m) CN2 and CN3 reach the surface.

The ERT profile “STA-EFE” (RMS 10.02%) joins the south of Armistice
path to the eastern flank of l'Echelle cone (Fig. 7). Results on the eastern
portion, commonwith ERT profile “NPT-EFE”, confirm the presence of a
system of vertical moderately conductive bodies including CN2, CN3
(already detected on the profile “NPT-EFE”) and a third one, CN1, on
the eastern part of L'Echelle–La Citerne complex. These axes seem to
be related at depth to a conductive body extending westward with
depth. The superficial structure of La Citernewestern flank is dominated
by resistant material cut by three relatively sharp vertical moderately
conductive axes named CW1, CW2, and Ga that reaches the surface in
coincidence with the Galion River bed (Fig. 7). Temperature and CO2



Fig. 5. (A) Location of the profile “SAM-CDE”, each blue point corresponds to the location of an ERT electrode (every 15m). (B) Self-potential (inmV), and soil CO2 concentration (in ppm)
measurements and Electrical Resistivity Tomography section from RES2DINV (in ohm.m) along the profile. Supposed SPS surface (potential water-saturated zone upper limit) is
superimposed on the ERT section. Yellow points on the tomogram benchmarks in the field spaced of 75 m. Pink stars represent negative self-potential anomalies. DS2−, DS3−, DS4−,
DSE− refers to anomalies discussed in the text. TSAM and CDE are the location of the boreholes drilled in the 1968 survey (Feuillard, 1976). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
exhibit no anomaly. SP signal exhibits large wavelength variations with
aminimumand amaximumpeak respectively coincidingwith themax-
imum elevation and the Galion River bed (minimum elevation). Inter-
pretation of these variations in terms of SPS surface variations globally
matches the fluctuation of the resistivity contrast at depth, indicating
that conductive bodies may be saturated in hydrologic fluids.

5. Interpretations and discussion

The combined analyses of electrical resistivity tomography, self-
potential, ground thermometry and soil CO2 diffuse degassingmeasure-
ments allow us (1) to image the hydrothermal circulations inside La
Soufrière dome, (2) to characterize the main structural axes in the
southern periphery of the dome, and (3) to better define the
hydrogeologic system of the L'Echelle–La Citerne complex.
5.1. Model of hydrothermal circulations inside La Soufrière dome

Results of the ERT survey tend to show that hydrothermal flows are
confined to the dome and its very vicinity. Indeed, the profiles (Figs. 5, 6,
7) display a wide range of resistivity values that reflects variations of
water content and alteration level of the andesitic material constituting
the volcano. Very low values in the order ofmagnitude of tens of ohm.m
are limited to the dome sector (proximal area), and can be interpreted
as hydrothermally altered material (Figs. 5, 6). On the other hand, fur-
ther from the dome (distal area), variations from a few hundred to a
few thousand ohm.m are typical of resistivity variations in hydrologic
systems (Figs. 6, 7).

The state of hydrothermal alteration within the dome, supported by
various studies (Nicollin et al., 2006; Lesparre et al., 2012; Lesparre et al.,
2014), is in agreement with gravity and magnetic data, suggesting that



Fig. 6. (A) Location of the profile “NPT-EFE”, each blue point corresponds to the location of an ERT electrode (every 15 m). (B) Temperature (in °C), self-potential (in mV), and soil CO2

concentration (in ppm) measurements and Electrical Resistivity Tomography section from RES2DINV (in ohm.m) along the profile. Yellow points on the tomogram benchmarks in the
field spaced of 150m. Pink stars represent negative self-potential anomalies. DS2−, DS3−, DS4− refers to anomalies discussed in the text. TSAMand CDE are the location of the boreholes
drilled in the 1968 survey (Feuillard, 1976). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the dome is made of low density (about 1800 kg.m−3) extensively al-
tered material (Gailler et al., 2013) as well as numerous conduits,
wide fractures, and craters. Large conductive bodies at depth (around
a few tens of ohm.m) to the north and to the south-east can be related
to the presence of phreatic fractures and craters at the surface (Fig. 2).
These conductive reservoirs and related fractures are currently associat-
ed to local negative SP anomalies at the surface visible on Fig. 4 (e.g.
DSum− on Fente du Nord, DLac− on fracture Lacroix). Fig. 5 suggests
these water saturated bodies may lie just below the surface. Whereas
they probably play a major role in explosive phreatic crises, they may
be sealed during inter-eruptive periods. These reservoirs constitute a
major threat in the case of a continuing reactivation of thehydrothermal
activity.

Most of the hydrothermal ascending fluxes, highlighted by the pres-
ence of fumaroles, SP positive anomalies (Fig. 4B), and high values of
ground temperature and CO2 soil diffuse degassing, are also concentrat-
ed on La Soufrière dome itself. This strongly suggests the presence of a
heat source located just below the dome. Hydrothermal fluxes on the
summit area are centered on Cratère Sud and Tarissan crater, in accor-
dance with the presence of major fumaroles there since respectively
1992 and 1997 (Figs. 2, 4B). These fluxes have recently started to
expand ca. 200 m away from the dome center along the east-oriented
1956-July 8th fracture (see 12/2011 and 10/2013 fumaroles on Figs. 1
and 2; OVSG-IPGP, 1999–2014). These fluxes are certainly driven inside
the dome by a central conduit: evidence of low resistivity and low den-
sity material around this zone (Nicollin et al., 2006; Lesparre et al.,
2012) is the signature of hydrothermal alteration. Probable ascending
flows beneath the south-western base of the dome correspond to a rec-
ognized low density zone at depth (Gunawan, 2005; Coutant et al.,
2012). Even if most areas affected by past and current fumarolic activity
are located on the dome itself, some fumaroles can nevertheless be
found in its proximal vicinity along major radial lineaments. This is
the case for the formerly active Colardeau fumaroles in the direction
of Fente du Nord (Co; Figs. 1, 2), the Chaudières and Souffleur fumaroles
on the July 8th fracture (Ch, S), and the currently active fumaroles (LT)
on La Ty fault, which was recognized as a regional structure (Feuillet
et al., 2002). This suggests a strong control of the main radial structures
on the hydrothermal flux distribution outside of the dome. The La Ty fu-
marole is characterized by large temperature and CO2 anomalies
(Fig. 6), showing that this deep major accident conducts a significant
part of hydrothermal and magmatic fluids towards the periphery of
the dome. As illustrated by Petrillo et al. (2013) and Byrdina et al.



Fig. 7. (A) Location of the profile “STA-EFE”, eachblue point corresponds to the location of an ERT electrode (every 15m). (B) Temperature (in °C), self-potential, and soil CO2 concentration
(in ppm) measurements and Electrical Resistivity Tomography section from RES2DINV (in ohm.m) along the profile. Supposed SPS surface is superimposed on the ERT section. Yellow
points on the tomogrambenchmarks in the field spaced of 150m. (For interpretation of the references to color in this figure legend, the reader is referred to theweb version of this article.)
(2013), the shift of the hydrothermal system towards the periphery
may result from a complex interaction between the depth of the heat
source, the topography of the edifice and the permeability distribution.
Fig. 8 gives a synthetic view of fluids circulation inside the dome. Hydro-
thermal ascending fluids are concentrated inside the dome and propa-
gate laterally away from the dome along major accidents.

The lateral extension of hydrothermal ascending fluids outside the
dome seems delimited by a peripheral limit. Amajor deep vertical resis-
tivity contrast (at least 170 m-deep) has been recognized on the profile
“NPT-EFE” between La Soufrière and L'Echelle and corresponds to the
limit of the most recent edifice collapse structure that surrounds the
dome, and thatwas last reactivated at the onset of the 1530ADeruption
(Boudon et al., 2008). This structure, which cuts through the western
part of the l'Echelle cone (Fig. 6), is probably the result of several col-
lapse episodes occurred during the last 9150 years (Komorowski et al.,
2008a; Legendre, 2012). The role of the collapse structures as fluid
guides towards the surface is corroborated by the location of minor
but persistent fumaroles such as Morne Mitan and Ravine Claire (MM,
RCn, RCs; Figs. 1, 2). Additionally, the past Colardeau fumaroles, located
at the intersection of themajor Fente du Nord fracture and the northern
edifice collapse limit on the Amic dome (Figs. 1, 2), also suggests a con-
trol by the 1530 AD collapse structure on the lateral extension of as-
cending hydrothermal fluids to the north.

The north-eastern part of the ERT profile “SAM-CDE” shows the con-
ductivematerial constituting the dome is covered by a relatively thin re-
sistant layer (~20 m-thick; Fig. 5). Observations from a 79 m-deep
borehole drilled in 1968 close to Col de l'Echelle (CDE, see Figs. 5 and
6 for location of the CDE and TSAM boreholes) revealed the presence
of highly hydrothermalized andesitic material between 79 and 31 m
depth, in agreement with the low resistivity values of the ERT section.
On top of this material, lapilli and moderately altered ashes constitute
a more resistant superficial layer. Part of this superficial material proba-
bly results from a lahar formed by mixing of water that was emitted by
the resurgence of a perched aquifer through the July 8th fracture, with
cold block-and-ash flow material explosively vented contemporane-
ously from the same fracture on July 8th in 1976 (Feuillard, 1976;
Feuillard et al., 1983; Boudon et al., 1988; Komorowski et al., 2005;
Feuillard, 2011). The ERT profile “NPT-EFE” shows the shallow levels



Fig. 8. Synthetic and simplified sketch map of fluids circulation inside La Soufrière dome.
of the southern rim of the dome are made of relatively unaltered mate-
rial, represented by a ~70 m-thick resistant layer under the surface
(Fig. 6). This resistant material, including Piton Tarade and extending
up to La Ty fault to the east, lies over a very conductive layer of
hydrothermalized material (resistivity b 50 Ω.m). This resistivity distri-
bution well matches the overall succession of lithologies described in
the 97 m deep TSAM borehole carried out in 1968 (Feuillard, 1976) in
which massive – yet fractured and variably altered – andesite was
found from the surface to 80 m deep, resting on top of strongly altered
andesites. The horizontal limit between the two domains on the ERT
section suggests a depositional contact between the two layers
(Fig. 6). The deep conductivematerial seems to correspond to a conduc-
tive layer imaged by ERT under a large part of the dome (Nicollin et al.,
2006). The horseshoe-shaped top of this basal layer suggests it resulted
from one or several of the numerous flank collapses of hydrothermally
altered material that preceded the dome formation (Komorowski
et al., 2002, 2005; Boudon et al., 2007; Legendre, 2012). The geometry
of this basal and probably impermeable layer, inclined towards the
south, with a top reaching approximately 1100 m above sea level on
the ERT section “NPT-EFE” (Fig. 6), makes it a good candidate to guide
descending fluids towards peripheral sources located along roughly
the same 900–1000 m isocontour, as suggested by geochemical tracing
of meteoric water (Bigot et al., 1994; Komorowski, 2008; Lesparre et al.,
2012). This layer was interpreted by Komorowski (2008) and Lesparre
et al. (2012) as a low strength layer corresponding to the listric surface
over which the edifice has recurrently collapsed. It is likely constituted
by a sequence of sheared hydrothermally altered clay-rich debris-
avalanche deposits from the successive events.

The contact between the resistant superficial layer and the dome it-
self (ERT profile “SAM-CDE”; Fig. 5) appears as a permeability barrier
combining a strong resistivity contrast and a negative SP anomaly
(DS4−). Its shallow vertical extension (~70 m) and curved shape sug-
gest it might represent the northern edge of an edifice collapse. A lava
flow sample found within the top resistant material (58 m deep;
Samper et al., 2009) and dated at 94 ka supports the hypothesis of an
old lava flow remobilized during an edifice collapse event. This material
is in continuitywith Piton Tarade (Fig. 6)which is probably identified as
a perched Toreva block (Komorowski, 2008). Indeed, field inspection of
a moderate rockslide from Piton Tarade reported the deposits originat-
ed from an unusually shattered lava with local clastic fabric of
subangular to subrounded blocks coated with hydrothermally altered
material (Komorowski, 2008). This fabric, similar to the ones observed
in the TSAM borehole and described by Feuillard (1976), is characteris-
tic of allochtonous blocks that would have detached from a former edi-
fice and slid on a short distance.

In terms of current fluid circulation, the superficial resistant layer to
the south of the dome is cut by north–south oriented gullies coinciding
with SPnegative anomalies (DS1−, DS2− andDS3− on gullies 1 and 2,
Figs. 5, 6) that indicate preferential meteoric infiltration. These gullies
are located on the bulging area of the dome (Figs. 2, 5). They are
found above highest resistivity values, suggesting their location may
be guided by superficial cavings. Given the north–south direction of
these gullies, theymight be the expression ofminor faults, parallel to re-
gional structures such as La Ty fault.Meteoricfluids infiltrated inside the
dome most probably mix with a significant part of hydrothermal fluids
that does not reach the surface, and may be guided above the conduc-
tive deep layer towards the south-west to feed eccentric thermal
springs (Fig. 8). These springs are mostly located on the 900–1000 m
isocontour interval that would form the intersection of the plane of
the deep low strength conductive layer with topography.

5.2. Characterization of the main structural axes in the southern periphery
of the dome

La Ty fault is described in literature as a major north–south, practi-
cally linear, normal fault intersecting the dome (Feuillet et al., 2002)
through the August 30th fracture and Fente du Nord (Figs. 1, 2). Previ-
ous field observations suggested a nearly vertical fault, possibly east-
ward dipping according to the apparent subsidence of the eastern part
of La Soufrière lava dome relatively to the western part (Feuillet,
2000; Feuillet, personal communication, from morpho-tectonic obser-
vations). This fault is undoubtedly recognized by a major fumarolic
area in the very vicinity of the dome where anomalies of temperature
and soil CO2 concentration characterize a major deep accident. This fu-
marolic zone is located at the intersection between “Route de la Citerne”
pathway and a hydrothermalized crest emphasized in the landscape by



Fig. 9. Synthesis of the three main axes and associated ERT, SP, and thermal anomalies observed to the south of La Soufrière dome. WGS84 geodetic system, UTM20N projection (m).
the presence of outcropping altered material. This north–south linear
crest (Axis “La Ty 1” in Fig. 9) is thought to represent the La Ty fault
trace at the surface and is consistent with eastward dipping. This trace
is a few hundredmeters long and vanishes southward. Structural obser-
vations suggest the existence of two other parallel north–south axes.
The first one (Axis “La Ty 2” in Fig. 9) is defined in its northern part by
Ravine Claire, a valley parallel to Axis “La Ty 1” (Figs. 2, 9). The curved
shape of its southward extension across La Citernewestern flank evokes
awestward dipping accident. Two transverse lineaments T1 and T2 sug-
gest the existence of deformation between “La Ty 1” and “La Ty 2”,
which would be consistent with a conjugate normal fault system. A
third axis “Galion” is defined by the relatively straight Galion river
bed, also emphasized by the Galion thermal spring (Figs. 1, 9). This
axis, recognized as a fault by Boudon et al. (1988), probably extends
across the dome through the non-radial gully 1. Two more lineaments
might represent the extension of the “Galion” axis to the north of the
dome (Fig. 9).
The idea of three distinct and parallel axes is consistent with ERT
profile “STA-EFE” showing three conductive axes crossing La Citerne
western flank (Fig. 7): Ga is clearly connected to the Galion river bed,
and CW1 and CW2 might be respectively related to structural axes La
Ty 1 and La Ty 2 (Fig. 9). CW1, CW2 and Ga do not show any anomaly
related to hydrothermal circulation; and apparent positive SP peak co-
inciding with Ga (Fig. 7) is thought to be a local topographic effect.
Low resistivity values suggest that, far from the dome, these structural
axes constitute preferential infiltration zones for meteoric waters
(Fig. 9).

Although regional tectonics suggest a unique segment for the La Ty
regional normal fault, further observations indicate that the extensional
system may be more complex on a local scale and that normal move-
mentmay have been accommodated by a relay of parallel and conjugat-
ed faults. This local tectonic complexity probably favored the formation
of several fractures on the south-eastern portion of the dome during
recent historical explosive eruptions characterized by significant



hydrothermal fluid overpressure, in 1956 and especially in 1976. These
dynamic processes coupled with extended acid alteration from
prolonged hydrothermal activity have certainly affected the dome me-
chanical properties.

5.3. Hydrologic system of the L'Echelle–La Citerne edifices

The ERT profile “STA-EFE”, as well as the eastern part of the ERT pro-
file “NPT-EFE”, can be considered as distal from La Soufrière dome
(Fig. 3). The lack of very low resistivity values can be linked to the ab-
sence of hydrothermal alteration in this sector (Figs. 6, 7). Variations
of resistivity, ranging from a few hundred to a few thousand ohm.m,
can be interpreted in terms of lithology and hydrologic systems. As
L'Echelle and La Citerne are considered as relatively homogeneous sco-
ria cones with a few minor localized lava flows (Boudon et al., 1988),
coupling of ERT and SP data leads to interesting hypotheses concerning
their hydrogeological system structure. The eastern parts of ERT profiles
“NPT-EFE” and “STA-EFE” exhibit conductive axes (CN1, CN2, CN3;
Figs. 6, 7) reaching the surface. The eastern flank of l'Echelle cone and
the northern part of La Citernemost probably constitute amajor infiltra-
tion zone formeteoricfluids. These axes are connected to a relatively su-
perficial massive conductive body interpreted as a major perched
aquifer, common to the two edifices, and dipping south-west at depth
(Fig. 7). This interpretation is consistent with SP data along the profile,
and the calculation of the SPS surface more or less matching the limit
of the conductive body at depth. In the central parts of the profile, vari-
ations of this limit is not well-constrained by the ERT section which is
not deep enough and exhibits high DOI indexes (Appendix A). Other
signs in that zone corroborate the existence of an aquifer, such as the
presence of the Flammarion lake occupying the Citerne crater (Fig. 1),
and the lithology of the Citerne tuff cone itself with phreato-magmatic
deposits, implying the presence of an aquifer or a lake during its termi-
nal phase.

Future hydrologic surveys might be able to determine the origin of
the aquifer shape, which could be hosted in low-strength layers
resulting formed by the slip surface of paleo-collapse events on an edi-
fice that predated the formation of the L'Echelle and Citerne scoria cones
or from older debris avalanche deposits from the Carmichael edifice
dated at ca. 13,400 yrs B.P (Komorowski et al., 2005; Legendre, 2012).

6. Conclusion

This paper proposes an integrated analysis of electrical resistivity to-
mography, self-potential, ground thermometry and soil CO2 gas mea-
surements on La Soufrière lava dome and its southern periphery. The
coupling of these independent methods strengthens their reliability
and brings further constraints on the relationships between superficial
structures, hydrothermal, and magmatic fluid circulation. Results have
highlighted that ascending flows are restricted to a proximal domain in-
cluding the dome and its very vicinity. ERT suggests that lateral exten-
sion of the hydrothermal system, and resulting alteration, could be
contained by a combination of several structural limits such as the
axes ofmajor fractures/faults and the boundaries of sector collapses sur-
rounding the dome. Beyond these limits, the southern distal periphery
shows no sign of hydrothermal circulation. Coupling of ERT and SP
have revealed a complex system of perched small-volume aquifers
under L'Echelle and La Citerne scoria cones.

Since 1690 AD, four of the six phreatic eruptions and most hydro-
thermal activity have affected the south-eastern part of the dome as
well as the central summit area. Presently, the dominant ascending
flux of hydrothermal and magmatic fluids is responsible for the reacti-
vation of fumaroles on the summit area around Cratère Sud since
1992, followed by Tarissan crater. A sustained (although gradually
diminishing) ascending flux of hydrothermal and magmatic fluids oc-
curs along the surface expression of the La Ty normal fault at the
south-eastern base of the dome. Shallow-depth hydrothermal fluid
circulation can be further investigated using high-resolution self-
potentialmeasurements on the dome. Significant topographic influence
leads us to propose a first order correction of general SP/elevation gradi-
ent, resulting in an elevation-corrected SP showing good agreement
with the observed summit hydrothermal activity. Elevation-corrected
SP also highlights sub-superficial hydrothermal activity affecting the
south-western border of the dome and a zone of major infiltration for
meteoric fluids at the southern base. These fluids would mix with as-
cending hydrothermal fluids to form a ring of hot springs (Villemant
et al., 2005), many of which are located along roughly the same
900–1000 m isocontour and relatively far away from the dome itself.
These hot springs are thought to mark the fluid flow along the SW dip-
ping listric surface of the paleo-edifice collapse structure. This structure
is composed of impermeable hydrothermally altered clay-rich deposits
as seen in debris avalanche deposits around the volcano (Komorowski
et al., 2005; Komorowski, 2008; Salaün et al., 2011). Comparison with
previous SP and ERT campaigns (Pham et al., 1990; Zlotniki et al.,
1994; Nicollin et al., 2006) indicates a relative stability of the whole hy-
drothermal system geometry over time, but this does not exclude po-
tential significant changes in case of a future eruption. Structural
observations suggest that regional east–west extension (Feuillet,
2000; Feuillet et al., 2002) has most probably resulted in a complex
system of several parallel north–south faults, which consistently corre-
late with the orientation of major infiltration axes in the southern distal
domain of the dome. Extension of these structural lineaments and pres-
surization of pore-fluids along these structures might trigger future ex-
plosive phreatic activity. They alsomight favor partialflank failure of the
dome already highly fractured to the south-east, and lying on top of a
thick layer of highly altered rock saturated in fluids where friction and
pore-fluid pressure might exceed the threshold of mechanical stability.
A future unrest associated to a large surface deformation, as it was ob-
served in the south-eastern region of thedomeduring the1976–77 still-
bornmagmatic eruption (Feuillard et al., 1983; Komorowski et al., 2005;
Villemant et al., 2005; Boichu et al., 2011), could easily generate such
flank instability.
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Appendix A. ERT data processing

The reliability of final resistivity distribution models is first depen-
dent on the quality of the data. To avoid data noise, three types of
tests were carried out before the acquisition in the field, including the
continuity of the cable, its insulation, and the contact between the
ground and the electrodes. When needed, the contact was improved
by the addition of salty water and bentonite.



Fig. A.1. Distribution of the ERT data from “SAM-CDE” profile in a graph of the measured
difference of potential versus the stacking error. The two filtering criterions are indicated
in red. (For interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)

Fig. A.2. Effect of data filtering under X2IPI in profile “SAM-CDE”. The removed part
Every apparent resistivity corresponds to the mean value of five
measurements (stacking). A data error estimate, calculated from the
standard deviation of these measurements can be used for further
data filtering. On the one hand, a manual filter was applied in order to
remove the data characterized by a low signal to noise ratio. Excluding
criterions are a measured electrical potential difference inferior to
1 mV and an error superior to 5% of the value (Fig. A.1). Few points
were excluded, corresponding to 0.6% of the data set for ERT profile
“SAM-CDE”, 0.3% for the profile “NTP-EFE” and less than 0.1% for the
profile “EFE-STA”. The remaining random noise can be taken into ac-
count during data inversion.

Before the inversion though, a second filter was applied using X2IPI
software. Indeed, the presence of strong heterogeneities in the shallow
levels generates artifacts in the measured signal. These artifacts are re-
sponsible for inclined anomalies named “C-effect”, in the case of a
Wenner array, and hide smoother effects linked to large and deep ob-
jects. They were removed in order to recover clearer 2D responses
linked to deep and large heterogeneities (Fig. A.2).

Data inversion was performed with RES2DINV (Loke and Barker,
1996) which uses the smoothness-constrained method (Constable
et al., 1987) to perform the inverse problem:

JT Jþ αF
� �

d ¼ JTg−αFr: ðA:1Þ

F is a smoothingmatrix, J is the Jacobianmatrix of partial derivatives,
r is a vector containing the logarithm of themodel resistivity value, α is
the damping factor, d is the model perturbation vector, and g the dis-
crepancy vector (i.e. the differences between observed data and the
of the signal corresponds to artifacts related to the surface resistivity contrasts.



model response). The magnitude of this vector is given by a root-mean
squared value (RMS). The algorithm starts from an initial model (refer-
ence model) and seeks to reduce this quantity to find a better model
after every iteration.

Data noise estimates may be included in the inversion process. In
this case, the least squares equation (A.1) is modified to the following
one:

JTWT
dWd Jþ αF

� �
d ¼ JTWT

dWdg−αFr ðA:2Þ

Wd is a diagonalweightingmatrix incorporating the effect of data er-
rors: data pointswith smaller errors are given a greaterweight in the in-
version process.
Fig. A.3. ERT profiles associated to DOI (depth of investigation) index maps providing a sensiti
(high sensitivity).
Non-uniqueness of the solution is an inherent problem of ERT. For
the same data set, there are several possible resistivity models that fit
the data equally well. The use of a smoothness constraint and a limited
number of iterations (inferior 5) conform to the commonly accepted
principle which states that simpler models must be preferred to more
complex ones to explain a given data set. At iteration 5, profiles “SAM-
CDE”, “NPT-EFE” and “EFE-STA” exhibit respective RMS values of
14.9%, 16.5% and 10.0% (Fig. A.3) attesting that models responses are
in good conformity with acquired data sets.

A study of the depth of investigation (DOI) was carried out by the
method proposed by Oldenburg and Li (1999) and Marescot and Loke
(2003). This method is based on the comparison of models calculated
from two different values of the reference resistivity (defining the initial
model), qA and qB. In our case, qA and qB correspond to 10 q0 and 0.1 q0,
where q0 designates the reference resistivity used for the original
vity estimate of provided models. Where DOI index is low, the model is well constrained



inversion of the data set. The DOI index value for a model cell is given
by:

RAB x; zð Þ ¼ qA x; zð Þ− qB x; zð Þ
qA− qB

ðA:3Þ

qA(x,z) and qB(x,z) are the values of resistivity obtained in the cell after
3 iterations of the inversion process. In areas where the DOI index ap-
proaches zero, the two inversions give the same resistivity values,
meaning that themodel is well constrained by the data set (good sensi-
tivity). In areas where the index approaches unity, the model is not
constrained by the data (poor sensitivity). In the case of “SAM-CDE”
ERT profile (Fig. A.3), the model can be trusted until 100 m below the
surface approximately (index b 0.3). For the “EFE-NPT” profile, sensibil-
ity is good in thewestern part corresponding to the domebase and La Ty
areas, in spite of strong resistivity contrasts (Figs. 6, A.3). Resistive struc-
tures in its central part (corresponding to L'Echelle edifice) are not well
constrained. On profile “EFE-STA”, sensibility is good except in the very
central part of the profile, to the east of the Galion river bed, from
100 m-deep.

Appendix B. SPS surface calculation

In areas exhibiting a high ratio between the resistivities of the unsat-
urated zone and the water-saturated zone, and in the case of an homo-
geneous unsaturated zone, Aubert and Atangana (1996) argue that a
linear correlation exists between the range of negative SP anomalies
and the thickness of the unsaturated zone. They introduce the notion
of SPS surface, the equipotential SP surface corresponding to the inter-
face between the unsaturated zone and the saturatedmedium. The alti-
tude H (m) of the SPS surface is calculated from the following equation:

H x; yð Þ ¼ h x; yð Þ−V x; yð Þ−V�

L
−E� ðB:1Þ

V(x,y) and h(x,y) are the values of self-potential (mV) and altitude
(m) at the station (x,y), and V° and E° are the self-potential and thick-
ness of the unsaturated zone at the reference station. According to
Aubert and Atangana (1996), the coefficient L, generally comprised be-
tween −1 and −10 mV/m, depends on the resistivity and the type of
porosity of the unsaturated zone, and on the resistivity ratio between
unsaturated and saturated zones. L is not known a priori, butmay be cal-
culated from piezometric surfaces in boreholes for example.

SPS surface calculationwas applied to profiles “SAM-CDE” and “EFE-
STA” (portion to the east of the Galion River) considering firstly that the
medium constituting the unsaturated zone is more or less homoge-
neous in both cases, and that SP signal is not disturbed bymajor vertical
fluid flows along these profiles. Such approximations cannot reasonably
apply to the case of the “NPT-EFE” profile. Qualitatively, SPS surface var-
iations resemble the variations of strong resistivity contrasts evidenced
in the ERT sections. With L coefficients of−3mV/m and−1.5 mV/m, a
good match is obtained (Figs. 5, 7) for “SAM-CDE” and “EFE-STA” pro-
files, respectively. These resistivity contrasts may then be considered
as upper limits of the water-saturated zone along these two profiles.
The difference in L coefficient can be attributed to the differences in per-
meabilities and resistivity contrasts inside La Soufrière dome and La
Citerne edifice.
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