Hydrothermal fluid flow disruptions evidenced by subsurface changes in heat transfer modality: The La Fossa cone of Vulcano (Italy) case study
Tullio Ricci, Anthony Finizola, Stéphanie Barde-Cabusson, Eric Delcher, Salvatore Alparone, Salvatore Gambino, Vincenzo Milluzzo

To cite this version:
Tullio Ricci, Anthony Finizola, Stéphanie Barde-Cabusson, Eric Delcher, Salvatore Alparone, et al.. Hydrothermal fluid flow disruptions evidenced by subsurface changes in heat transfer modality: The La Fossa cone of Vulcano (Italy) case study. Geology, 2015, 43, pp.959-962. 10.1130/G37015.1. hal-01390768

HAL Id: hal-01390768
https://hal.univ-reunion.fr/hal-01390768
Submitted on 2 Nov 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Detected volcanic unrest is of primary importance for eruption forecasting, especially on volcanoes characterized by highly dangerous, and often seemingly unpredictable, phreatic or phreatomagmatic eruptions. We present a simple and innovative analysis of shallow vertical temperature profiles to depths of 70 cm. These data were recorded at La Fossa cone of Vulcano (Aeolian Islands, Italy), during an episode of increased hydrothermal and seismic activities that occurred between September and December 2009. This work involves the use of the coefficient of determination (R²) on vertical temperature profiles in order to identify changes in conductive versus convective heat transfer modality. The increase in convective heat transfer can be related to the disruption of the hydrothermal system due to its pressurization and/or variation of ground permeability between the hydrothermal system and the surface. While raw temperature data do not evidence any significant variation during the period investigated and the classic temperature gradient is highly influenced by seasonal variations, the fluctuation of R² displayed striking spikes that coincided with the seismic swarm inside the volcanic edifice. Such a low-cost device associated with easy real-time data processing could constitute a very promising, yet deceptively simple, technique to monitor hydrothermal systems, in order to assess the hazard posed by high-energy eruptions for populations living close to active volcanoes.

INTRODUCTION

Hydrothermal systems are characterized by important mass and energy transfer through the circulation of hot fluids underground that can be evidenced by geological, geophysical, or geochemical observations. One consequence of hydrothermal circulation is the alteration and weakening of the permeable ground inside volcanic edifices. Hydrothermal alteration greatly decreases the permeability of the medium and disrupts fluid circulation through self-sealing processes. Such modifications may increase pore pressure, the changes in which hydrothermal systems give an indication about the general state of volcanic unrest, and sometimes promote highly hazardous explosive phreatic or phreatomagmatic eruptions (Heiken et al., 1980; Barberi et al., 1992; Germanovich and Lowell, 1995; Ui et al., 2002; Starostin et al., 2005; Fournier and Chardot, 2012).

Studying variations in hydrothermal system activity is crucial to exploring their role in, and potential to forecast highly explosive activity. Therefore, identifying the key parameters that indirectly highlight the state of pressurization of the system is necessary to develop early warning of highly explosive eruptions. Temperature is perhaps the easiest and most obvious observable variable, and can be measured with soil temperature sensors, infrared cameras, or satellite-based multispectral infrared images (Gaudin et al., 2013).

Unfortunately, the change in temperature in hydrothermal system fluids is not an easy parameter to use in identifying precursors of volcanic unrest. Temperature is affected by many external parameters, such as daily and seasonal variations, rainfall, and wind speed and direction (Dawson and Fisher, 1964; Keszthelyi et al., 2003; Chiodini et al., 2005; Hochstein and Bromley, 2005; Peltier et al., 2012).

The aim of this paper is to propose an innovative method to process soil temperature time series that could be used in volcano observatories for real-time monitoring. This new technique can identify disruptions of hydrothermal fluid flow that potentially lead to volcanic unrest.

APPLICATION SITE AND INSTRUMENTATION

The test site where our temperature instrumentation was installed is La Fossa cone on Vulcano Island (Aeolian Islands, Italy), because of its persistent fumarolic activity, the presence of subfumarolic areas (documented in previous studies; e.g., Revil et al., 2008; Barde-Cabusson et al., 2009), and the recurrence of fumarolic crises during the past few decades (Chiodini et al., 1992; Granieri et al., 2006).

La Fossa cone, formed in the past 6 k.y. on the island of Vulcano, provides the historic basis for the term Vulcanian-type phreatomagmatic explosive eruptions, which are characterized by water-magma interaction (Frazetta et al., 1983; Büttner et al., 1999; Dellino et al., 2011). The structure of the present-day edifice results from six main phases of activity (De Astis et al., 2006), chronologically associated with crater boundaries: (1) Punta Nere, (2) Palizzi, (3) Forgia Vecchia, (4) Pietre Cotte, and (5) Gran Cratere (Fig. 1A). Each of these structural boundaries is associated with relevant temperature anomalies identified through measurements at 30 cm depth (Revil et al., 2008; Barde-Cabusson et al., 2009), highlighting the major role of these crater ring faults in channeling hydrothermal fluids toward the surface.

Two sites of anomalous temperature were chosen for the installation of our instrumentation that correspond to two structural boundaries located outside the main fumarolic area of the Vulcano crater. The data used in this paper are collected at a depth of 70 cm from the ground surface, and cover a period of several months. The temperature sensors were placed at the precise locations of the anomalies identified by the temperature surveys.

Unfortunately, the change in temperature in hydrothermal system fluids is not an easy parameter to use in identifying precursors of volcanic unrest. Temperature is affected by many external parameters, such as daily and seasonal variations, rainfall, and wind speed and direction (Dawson and Fisher, 1964; Keszthelyi et al., 2003; Chiodini et al., 2005; Hochstein and Bromley, 2005; Peltier et al., 2012).

The aim of this paper is to propose an innovative method to process soil temperature time series that could be used in volcano observatories for real-time monitoring. This new technique can identify disruptions of hydrothermal fluid flow that potentially lead to volcanic unrest.
Since its last magmatic eruption (A.D. 1888–1890), La Fossa crater has been affected by two main episodes of increased fumarolic activity and temperature. The first occurred during the period 1913–1923 (Sicardi, 1940), and the second began in 1978 after a M 5.5 earthquake (Chiodini et al., 1992). Relevant changes in the fumarolic composition occurred in 1979–1981, 1985, 1988, 1996, and in December 2004 and 2005 (Granieri et al., 2006; Carapezza et al., 2011).

At Vulcano, seismicity is associated with volcano-tectonic sources or is related to fluid dynamics within the hydrothermal system (Aubert et al., 2008; Cannata et al., 2012; Madonia et al., 2013). The first case is generally related to the north-northwest–south-southeast Tindari-Letojanni regional fault system dynamics (Gambino et al., 2012) and results in a few events per year, while the second comprises seismovolcanic events occurring in the hydrothermal system underlying La Fossa cone, from several hundred to thousands per year (Alparone et al., 2010; Milluzzo et al., 2010; see the Data Repository).

We compared seismic data with our results, because seismic swarms suggest the disruption of the hydrothermal system, an increase of the permeability inside the edifice, and consequently an increase of hot fluids flow toward the surface (Cannata et al., 2012; Milluzzo et al., 2010).

Results of our experiment, seismicity detected by the Istituto Nazionale di Geofisica e Vulcanologia seismic network (Fig. 1B) was characterized by a seismic swarm that occurred at shallow depth below La Fossa cone between 29 September and 16 December 2009 (Fig. 2E). During this seismic swarm, 3471 seismic events were detected in 79 days (an average of 43.9 events/day versus 11.2 events/day characterizing the period before the swarm). Due to the very low energy released, the identification of hypocenters was possible only for the 72 (2.1%) most energetic seismic events, mainly located between 600 and 1200 m below sea level. In terms of number of events per day, this seismic swarm was the most important of the past two decades (Harris et al., 2012). At the same time, several geochemical parameters increased by one order of magnitude, such as soil CO₂ flux and SO₂ in the plume, indicating disruptions in the underlying magmatic system (Inguaggiato et al., 2012).

RESULTS

Raw data for soil temperature recorded at Gran Cratere (GC) and Punte Nere (PN) in the period 12 May 2009–28 July 2010 (Figs. 2A and 2C) displayed, at both sites, a classic pattern of environmental temperature variations (periodic long-term seasonal variations, and short-term daily variations) disrupted by rainfall events. At the GC site, no temperature variation could be associated with the 2009 seismic swarm. At the PN site, however, only a weak variation of the signal coincided with changes in the seismicity, although there was no clear evidence to support this. In contrast, the temperature gradients calculated between 70 and 10 cm depths displayed a strong seasonality at both sites, preventing any possibility of clearly detecting disruptions related to hydrothermal activity (Figs. 2B and 2D). Despite the fact that we can note changes in the temperature gradient coinciding with variations of coefficient of determination, R², at both sites, other changes of the same amplitude in the temperature gradient also appear outside the seismic swarm period. This means that changes in temperature gradient are not exclusively related to hydrothermal system disruptions, and they remain unclear due to a low signal-to-noise ratio.

In order to determine if the 2009 seismic swarm influenced the heat transfer modalities inside La Fossa cone, we computed a linear regression of temperature versus depth and R² at each site and time interval. The aim of this analysis was to discriminate the conductive-dominated heat transfer from a more convective one (see the Data Repository); the former is characterized by a linear gradient of $R^2 \sim 1$, and the latter is characterized by a nonlinear gradient giving lower R^2 values.

Applying an R^2 analysis to our vertical temperature profiles (Figs. 2A and 2C), we obtained the results shown in Figures 2B and 2D. At both GC and PN sites, significant anomalous spikes of R^2 coincide with the seismic swarm, showing an obvious disruption in the hydrothermal fluid flow.

DISCUSSION

The comparison between the raw temperature data and the R^2 variations obtained in the same data set displays striking results because no
CONCLUSIONS

Our results indicate that monitoring the linearity of the vertical temperature profiles at shallow depths (to 70 cm), and therefore the changes from conductive to convective heat transfer in the near surface, is an efficient tool for the identification of volcanic unrest associated with disruption of a hydrothermal system. The installation of such a simple temperature monitoring device could be considered by volcano observatories because it gives fundamental information on changes of heat transfer modality not highlighted by ordinary thermal monitoring. Moreover, data processing can be easily integrated into a real-time monitoring for surveillance purposes. An increase of the hydrothermal activity can be related to pressure and/or permeability changes inside the edifice, potentially leading to explosive activity. Such information is of prime importance for eruption forecasting and hazard assessment and, ultimately, volcanic risk mitigation.
REFERENCES CITED

