HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Journal articles

Lithospheric anisotropy beneath the Pyrenees from shear wave splitting

Abstract : We investigate upper mantle anisotropy beneath the Pyrenean range along three N-S profiles across the mountain belt. The results of a first profile that operated in 1993 in the central part of the belt have been presented elsewhere. We present the results of two other profiles that ran in 1995-1996 and 1996-1997 in the eastern and western part of the belt, respectively and propose an interpretation of the whole results. Teleseismic shear waves (SKS, SKKS, and PKS) are used to determine splitting parameters: the fast polarization direction φ and the delay time δt. Teleseismic shear wave splitting in the eastern Pyrenees displays homogeneous φ values trending N100°E and δt values in the range 1.1 to 1.5 s. A station located in the southern Massif Central, 100 km north of the range, is characterized by different splitting parameters (φ = N70°E, δt = 0.7 s). In the western part of the belt, anisotropy parameters are similar across the whole belt (φ = N110°E and δt = 1.3 to 1.5 s). Most of the measured delay times, including those obtained in the central part of the range, are above the global average of the SKS splitting (around 1 s). At the belt scale, φ is generally poorly correlated with recent estimations of the absolute plate motion, which predicts a fast direction ranging between N50°E and N80°E. Instead, the orientation of φ (N100°E) is parallel to the trend of the Pyrenean belt but also to Hercynian preexisting structures. This parallelism supports an anisotropy primarily related to frozen or active lithospheric structures. We show that a signature related to the Pyrenean orogeny is likely for the stations located in the internal domains of the belt. By contrast, the anisotropy measured at the stations located on the external parts of the belt could reflect a pre-Pyrenean (Hercynian) deformation. We suggest that a late Hercynian strike-slip deformation is responsible for this frozen upper mantle anisotropy and that the Pyrenean tectonic fabric developped parallel to this preexisting fabric. Finally, no particularly strong splitting is related to the North Pyrenean Fault, commonly believed to represent the plate boundary between Iberia and Eurasia.
Document type :
Journal articles
Complete list of metadata

Cited literature [54 references]  Display  Hide  Download

Contributor : Guilhem Barruol Connect in order to contact the contributor
Submitted on : Thursday, October 27, 2016 - 3:51:52 PM
Last modification on : Monday, May 16, 2022 - 8:20:25 AM


Publisher files allowed on an open archive




Guilhem Barruol, Annie Souriau, Alain Vauchez, Jordi Diaz, Josep Gallart, et al.. Lithospheric anisotropy beneath the Pyrenees from shear wave splitting. Journal of Geophysical Research : Solid Earth, American Geophysical Union, 1998, 103 (B12), pp.30039 - 30053. ⟨10.1029/98JB02790⟩. ⟨hal-01388841⟩



Record views


Files downloads