

On the Recovery of Stratospheric Ozone

S. Godin-Beekmann¹, A. Pazmiño¹, S. Khaykin¹, I. Petropavloskikh², D. Hubert³, J.C. Lambert³, T. Portafaix⁴

LATMOS/IPSL, UVSQ, CNRS, France
2. ESRL, NOAA, USA
3. BIRA – IASB, Belgium
4. LACy, U. Réunion, CNRS, France

Middle Atmosphere Science Symposium, IUGG 2015, Prague, Czeck Republic, 26 – 29 June 2015

2014 Ozone Assessment

ODS:

10 – 15 % decrease from respective maximum

Polar regions: maximum reached in ~2000; 10% decrease by 2012

Midlatitudes: maximum reached in mid-nineties; 15% decrease by 2012

Ozone:

Hints of an increase. Is it recovery?

ADM: Figure 1-5

POLAR OZONE TRENDS

WMO Ozone Assessment 2014

Recent Antarctic ozone holes:

- In 2010, 2012 and 2013, larger ozone columns during winter and spring
- Occurrence of minor SSWs in the course of the winter -> reduced VPSCs
- 2011 winter more similar to winters in the 2000s

Kuttipurath et al., acpd,2015

Recent polar ozone trend studies

Multivariate regression studies of Antarctic springtime total ozone

- Salby et al. (2011, 2012) and Kuttipurath et al. (2013) used different regression models to analyse springtime total ozone (up to 2010).
- Significate increases (~10 to 15 DU) of TO3 over 10 years but limited discussions of residuals and uncertainties.

Tracing the second stage of ozone in the Antarctic ozone hole

de Laat, et al., ACP 2015

- Ensemble of regressions using similar regression model
- 30-60% of regressions result in statistically significant positive trends
- « Uncertainties do not yet support formal identification of Antarctic ozone hole recovery »

MID-LATITUDE AND TROPICAL OZONE TRENDS

WMO Ozone Assessment 2014

Chapter 2 Fig. 2-4

- Multiple linear regressions using QBO, ENSO, Solar cycle and aerosols as proxies for short term variability
- Linear trends before 1997 and after 2000
- After 2000, positive trends of 1 to 2%/decade with similar 2 sigma uncertainty
- Poleward of 40°N, post-2000 trends not significant.
- Causes of positive trends in the tropics unclear

Clear attribution of total ozone increases to declining ODSs not yet possible

Ozone trends at stations

OHP total ozone: SAOZ and Dobson 44°N, 6°E

- Multiple linear regression using QBO, Solar Cycle, Heat flux, NAO, aerosols, PWLT and EESC trends
- Mean annual total ozone PWL Trend : 0.23 ± 0.52 DU/yr

La Réunion Island: SAOZ total ozone 21°S, 55°E

Extension of Nair et al. 2013

- Multiple linear regression using ENSO, QBO, Solar Cycle, trend
- Trend: 0.96 ± 0.8 %/decade

Ozone profile trends

WMO 2014 Ozone Assessment

ADM Figure 3-2

Executive summary:

"Measurements show a statistically significant increase in upper stratospheric ozone (35–45 km altitude) in middle latitudes and the tropics since around 2000. ... ozone has increased by 2.5–5% per decade over the 2000 to 2013 period".

Long-term records

SI2N initiative: Past changes in the vertical distribution of ozone

Instrumental drifts

Ground-based assessment of the bias and long-term stability of fourteen limb and occultation ozone profile data records

D. Hubert¹, J.-C. Lambert¹, T. Verhoelst¹, J. Granville¹, A. Keppens¹, J.-L. Baray², U. Cortesi³, D. A. Degenstein⁴, L. Froidevaux⁵, S. Godin-Beekmann⁶, K. W. Hoppel⁷, E. Kyrölä⁸, T. Leblanc⁹, G. Lichtenberg¹⁰, C. T. McElroy¹¹, D. Murtagh¹², H. Nakane^{13,14}, J. M. Russell III¹⁵, J. Salvador¹⁶, H. G. J. Smit¹⁷, K. Stebel¹⁸, W. Steinbrecht¹⁹, K. B. Strawbridge²⁰, R. Stübi²¹, D. P. J. Swart²², G. Taha^{23,24}, A. M. Thompson²⁴, J. Urban^{12,†}, J. A. E. van Gijsel²⁵, P. von der Gathen²⁶, K. A. Walker^{27,28}, E. Wolfram¹⁶, and J. M. Zawodny²⁹

Average drifts of satellite records relative to entire sonde or lidar networks

- Good agreement between ozone sondes and lidar based drifts
- Some satellite records show significant drifts

Satellite drifts wrt lidars

- Few ozone lidars
- Differences between nearby stations

Ozone anomalies comparison

Trends from the various records

Past changes in the vertical distribution of ozone, Part III:

Analysis and interpretation of trends

Harris et al., ACPD, 2015

Trend model: Seasonnal variation, QBO, ENSO, Solar cycle, stratospheric aerosols

Post-1998 average trends

Dark blue: Trends from various records considered independent: weighted average and standard error

Light blue : Add a drift uncertainty of 4 to 6%/decade to the previous estimates based on drift analysis study (Hubert et al., 2015) Red: different estimates combined into a single distribution; 2 sigma error bars computed from the distribution

Results different from trend results in WMO 2014:

- Different records included in the average
- Different treatment of uncertainties
- Trend uncertainties dominated by drift uncertainties

Conclusions

- Early detection of ozone recovery due to ODS decreases easiest in Antarctic spring (total ozone) or higher stratosphere due to lower variability
- Antarctic total ozone: larger meteorogical variability in the latest years -> Detection of recovery delayed
- Higher stratosphere:
 - Several satellite records with different vertical resolution and different drifts wrt ground-based records
 - Ground-based records limited in number and geographical coverage; can show some momentaneous problems
- Expected trends small: ~3 %/decade: needs some more time to detect unambiguous ozone increase due to ODS decrease in the various regions and also continuous monitoring of ozone vertical distribution

Thank you !