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Abstract. This paper presents comparison results of the to-

tal column ozone (TCO) data product over 13 southern trop-

ical and subtropical sites recorded from the Infrared At-

mospheric Sounder Interferometer (IASI) onboard the EU-

METSAT (European organization for the exploitation of ME-

Teorological SATellite) MetOp (Meteorological Operational

satellite program) satellite. TCO monthly averages obtained

from IASI between June 2008 and December 2012 are com-

pared with collocated TCO measurements from the Ozone

Monitoring Instrument (OMI) on the OMI/Aura satellite and

the Dobson and SAOZ (Système d’Analyse par Observation

Zénithale) ground-based instruments. The results show that

IASI displays a positive bias with an average less than 2 %

with respect to OMI and Dobson observations, but exhibits

a negative bias compared to SAOZ over Bauru with a bias

around 2.63 %. There is a good agreement between IASI

and the other instruments, especially from 15◦ S southward

where a correlation coefficient higher than 0.87 is found.

IASI exhibits a seasonal dependence, with an upward trend

in autumn and a downward trend during spring, especially

before September 2010. After September 2010, the autumn

seasonal bias is considerably reduced due to changes made

to the retrieval algorithm of the IASI level 2 (L2) product.

The L2 product released after August (L2 O3 version

5 (v5)) matches TCO from the other instruments better

compared to version 4 (v4), which was released between

June 2008 and August 2010. IASI bias error recorded from

September 2010 is estimated to be at 1.5 % with respect to

OMI and less than ±1 % with respect to the other ground-

based instruments. Thus, the improvement made by O3 L2

version 5 (v5) product compared with version 4 (v4), allows

IASI TCO products to be used with confidence to study the

distribution and interannual variability of total ozone in the

southern tropics and subtropics.

Keywords. Atmospheric composition and structure (middle

atmosphere – composition and chemistry)

1 Introduction

Atmospheric ozone plays a key role since it protects the bio-

sphere from harmful ultraviolet radiation. About 90 % of its

mass is found in the stratosphere where ozone is formed

through photochemical reactions. Most ozone is formed in

the tropics but is rapidly transported to higher latitudes by

Brewer–Dobson large-scale circulation (Weber et al., 2011).

Global total column ozone (TCO) has depleted gradually

since 1980 with an increase of chlorofluorocarbon concen-

trations in the stratosphere due to anthropogenic activities.

Ozone is under high surveillance, especially since the discov-

ery of the Antarctic ozone hole (Farman et al., 1985; Krueger

et al., 1992; Stolarski et al., 1990). In 1987, the Montreal

protocol was formulated in order to regulate the emissions

of substances that deplete ozone (United Nations Environ-

ment Programme UNEP, 2009); thus we have been expect-

ing an increase in ozone by now. So validation of new mea-

surements is of paramount importance. In recent years, dif-

ferent observations and studies have shown that subtropical
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dynamic processes such as vertical and isentropic exchanges

through the southern stratospheric dynamical barriers con-

tribute to the transport and variability of ozone (Portafaix et

al., 2003; El Amraoui et al., 2010; Bencherif et al., 2007,

2011). Moreover, latest reports on ozone assessment seem to

fear a delay in the recovery of ozone in the tropics due to an

acceleration of Brewer–Dobson circulation (WMO/UNEP,

2014). Based on the above facts, it is important to monitor

and survey total ozone continuously in the southern tropics

and subtropics.

Different remote sensing technics are currently used to

retrieve total ozone information. Alongside remote sensing

observations, measuring devices from ground-based instru-

ments and high technology instruments on board satellites

are used. Most ground-based instruments operate in ultra-

violet wavelength band and/or are visible, such as Brewer–

Dobson and SAOZ (Système d’Analyse par Observation

Zénithale), while others, such as the FTIR (Fourier Trans-

form infrared) spectrometer, operate in the infrared spectrum.

Different techniques and spectral band used by satellite in-

struments are also used for ozone measurements, depend-

ing on the device used. Though satellite measurements offer

the best method for providing TCO measurements over the

globe with good spatial coverage, their spectral and tempo-

ral resolution are poor in comparison to most ground-based

instruments. It is therefore necessary to compare the satellite

measurements with ground-based measurements in order to

assess the quality of the satellite observations.

In the framework of satellite observations, the Meteoro-

logical Operational satellite program (MetOp) is a European

polar orbiting satellite which aims to provide weather infor-

mation services and monitor climate (Edwards et al., 2006).

The Infrared Atmospheric Sounding Interferometer (IASI) is

one of the instruments onboard the MetOp launched in Octo-

ber 2006, dedicated among other products to the global ob-

servation of TCO. It is necessary to evaluate the accuracy of

measurements prior to applying them for any major scientific

purpose.

In the framework of assessment of TCO products, Bracher

et al. (2005) validated global stratospheric ozone column

measured by the SCanning Imaging Absorption spectroMe-

ter for Atmospheric CHartographY (SCIAMACHY) onboard

the Environment Satellite (ENVISAT) using observations

from GOME (Global Ozone Monitoring Experiment) satel-

lite instrument. OMI (Ozone Monitoring Instrument) TCO

product validation has been performed using observations

from Dobson and Brewer ground-based instruments (Balis

et al., 2007a). Similarly, Kroon et al. (2006) validated OMI-

TOMS (Total Ozone Mapping Spectrometer) overpass prod-

ucts by comparing them with the Dobson over- collocated

stations; through this validation study the authors found an

average bias of 1 % between the two instruments if the trop-

ics are excluded. Numerous papers have reported that TCO

from the TOMS instrument is assessed based on compar-

ative studies with ground-based network stations (Balis et

al., 2007b; McPeters and Labow 1996; Bramstedt et al.,

2003). In the framework of the TOMS product assessment,

Bramstedt et al. (2003) reported that TOMS V7 tends to

overestimate total ozone over the Southern Hemisphere by

more than 2 % on average. Recently an improved version of

TCO is retrieved from SAOZ after calculating the O3 air-

mass factor (AMF) using the TOMS V8 climatological pro-

files. TV8 profiles consist of a monthly mean climatology

for 10◦ bands between 90◦ S and 90◦ N, covering altitudes

from 0 to 60 km (Hendrick et al., 2011). TV8 was built by

combining profile data from SAGE II (Stratospheric Aerosol

and Gas Experiment II), MLS (Microwave Limb Sounder),

and ozone-sonde. The improved SAOZ product was com-

pared with products from TOMS, GOME, SCIAMACHY

and OMI overpass NDACC (Network for the Detection of

Atmospheric Composition Change) collocated stations and

a good agreement was observed between SAOZ and satel-

lite observations (Hendrick et al., 2011; Pastel et al., 2014).

However, a systematic seasonal dependence is recorded on

SAOZ measurements (Hendrick et al., 2011). In this way, the

comparison of ozone products obtained from IASI with mea-

surements obtained from other satellites and ground-based

spectrometers is important for improving and ensuring the

IASI observations’ quality. Therefore, ozone measurements

from IASI have recently been compared with other measure-

ments from ground-based and satellite instruments (Antón et

al., 2011; Boynard et al., 2009; Keim et al., 2009), but the

selected ground-based stations for the validation surveys are

mostly located in the Northern Hemisphere. It is thus neces-

sary to conduct a similar study for the Southern Hemisphere

tropics and subtropics. The purpose of this paper is to exam-

ine and validate the TCO recorded by IASI from June 2008

to December 2012 over 13 sites located in the southern trop-

ics and subtropics (see Fig. 1). The present work discusses

the behaviour of IASI/MetOp-A measurements with respect

to measurements from ground-based (Dobson or SAOZ) and

satellite (OMI) instruments in the tropical and subtropical re-

gions and for individual sites as well. However, the possible

sources of difference or agreement observed between instru-

ments are not widely discussed and would probably be better

explored in a separate, subsequent scientific paper.

This paper is organized as follows: Sect. 2 provides a brief

description of each instrument and data used, followed by the

method of analysis in Sect. 3. Results and discussion based

on the comparison of temporal and spatial distributions of

TCO monthly means from the IASI with those from ground-

based instruments and the OMI satellite instrument are pre-

sented in Sect. 4. Finally, a summary and conclusions are

presented in Sect. 5.

2 Data source

The TCO products from IASI and OMI are used in this study;

more details are given below. It is important to note that both

instruments provide global observations in the nadir view
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Figure 1. Geolocations of the 13 stations in the Southern Hemisphere selected for this study.

from a polar heliosynchronous orbit. Ground-based mea-

surements were made using Dobson and SAOZ instruments.

These data were obtained from the World Ozone and Ultra-

violet Data Center (WOUDC) website http://woudc.org/.

2.1 IASI

2.1.1 IASI/MetOp-A instrument and objective

IASI/MetOp-A is a nadir-viewing Fourier Transform spec-

trometer (FTS) onboard the meteorological operational

(MetOp) satellite of the European organization for the

exploitation of METeorological SATellite (EUMETSAT);

launched on October 2006, orbiting at 817 km and crossing

the equatorial plane at two fixed local solar times during de-

scending (ascending) mode at 09:30 (21:30) (Boynard et al.,

2009). IASI is a thermal infrared spectrometer designed to

measure the spectrum emitted by the Earth’s atmosphere sys-

tem, with a spectral resolution between 0.3 and 0.5 cm−1 in

the spectral range from 645 to 2760 cm−1 (Clerbaux et al.,

2009; Massart et al., 2009; Turkety, et al., 2004; Antón et al.,

2011). Hence, IASI has the ability to provide radiative infor-

mation of cloud, temperature and humidity profiles and pro-

files of many chemical species that are sensitive to infrared

absorption bands such as CO, O3, CO2, N2O and CH4. How-

ever, we have only used O3 measurements for the present

study. Ozone is retrieved from the 9.6 µm absorption band

and the instrumental radiometric noise is evaluated to be less

than 0.2 K at 280 K. Regarding the spatial resolution, IASI

operates with an angle of view evaluated at 48.3◦ maximum

which covers a swath width of ∼ 2200 km. Each instanta-

neous field of view (50 km× 50 km at nadir) is composed of

a matrix of 2× 2 circular pixels, with a 12 km diameter.

2.1.2 IASI ozone data

Global observations are achieved twice per day and IASI data

have provided these since May 2007 (August et al., 2012).

Thus TCO is retrieved using different algorithms and the

uncertainty is estimated to be ∼ 2.5 % (Viatte et al., 2011).

Actually more than three IASI ozone products from dif-

ferent algorithms are available (Dufour et al., 2012; Keim

et al., 2009). Among the different products, one may find

the LA (Labratoire d’Aérologie) product described by Bar-

ret et al. (2011), the LISA (Laboratoire Inter-universitaire

des Systèmes Atmosphériques) product retrieved with a ra-

diative transfer model called KOPRA (Karlsruhe Optimized

and Precise Radiative transfer Algorithm) and the LAT-

MOS/ULB (Laboratoire Atmosphère, Milieux, Observations

Spatiales/Université Libre de Bruxelles) product obtained

from the FORLI-O3 (Fast Optimal Retrievals on Layers for

IASI) software (Hurtmans et al., 2012). However, the opera-

tional product is the IASI L2 PPF (product processing facil-

ity) developed by the IASI Sounding Science Working Group

(ISSWG) under EUMETSAT supervision. The first publicly

released data are found in version 4 (v4), which was avail-

able from June 2008 and has been replaced by version 5 (v5)

from September 2010 up until now. It is worth noting that

other EUMETSAT ozone L2 products have been developed

based on a neural network retrieval algorithm (Turkety et al.,

2004) which is observed to underestimate TCO compared to

ground-based observations, especially over the Izaña station,

where biases of −5.0 and −0.9 % are found with respect

to FTIR and Brewer, respectively (Viatte et al., 2011). The

ISSWG product is used in this present work for overpasses

over 13 sites located in the southern tropics and subtropics

(see. Fig. 1). We have used a radius of 2◦ (longitude and

latitude) to delimit the satellite overpass zone around each

station. The daily mean ozone value is considered within the

circular perimeter. The list of the selected stations and the re-

spective geographic coordinates are given further in Table 1.

2.1.3 The operational IASI level 2 products

The different steps that are followed for IASI L2 retrieval can

be summarized as follow: the first step is a pre-processing

step aiming to configure the retrieval algorithm and to cor-

rect and validate the IASI measured spectrum. Indeed the L2

ingests two kinds of auxiliary data and the calibrated spec-

tra stored in the IASI L1 product. The first type of auxil-

iary database is used for the algorithm retrieval configura-

tion and to calculate the surface elevation, the land/sea frac-

tional coverage and the land surface emissivity for each field

of view. The second kind of auxiliary data consist of addi-

tional collocated measurements describing the state of the

www.ann-geophys.net/33/1135/2015/ Ann. Geophys., 33, 1135–1146, 2015
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Table 1. Bias, absolute and relative RMS and correlation coefficient R2 obtained from the comparative study between IASI and the other

instruments (OMI, Dobson and SAOZ) over the subtropical and tropical selected sites. Comparison between IASI and SAOZ instruments

is performed only for Réunion and Bauru stations, while the comparison between IASI and Dobson has been made for Marcapomacocha,

Irene, Springbok, Buenos Aires and Melbourne stations.

Stations IASI-OMI IASI – Dobson (or SAOZ)

Lat. Long. RMS (DU) % bias (1σ ) R2 RMS (DU) % bias (1σ ) R2

Nairobi −1.27 36.80 6.93 (2.7 %) 2.33 (2.4) 0.82

Natal −5.87 −35.2 5.27 (2.0 %) 0.40 (2.6) 0.78

Java −7.57 112.65 5.58 (2.2 %) 1.57 (2.3) 0.63

Ascension −7.98 −14.42 5.22 (1.9 %) −0.12 (2.5) 0.75

Marcapomacocha −11.40 −76.32 12.12 (5.0 %) 4.99 (3.2) 0.57 9.93 (3.9 %) 3.43 (3.3) 0.41

Samoa −14.23 −170.50 7.24 (2.8 %) 2.85 (2.2) 0.75

Fiji −18.13 178.40 6.27 (2.5 %) 2.35 (2.5) 0.83

La Réunion −20.90 55.48 6.13 (2.3 %) 0.25 (2.8) 0.84 5.66 (2.1 %) 0.19 (2.6) 0.82

Bauru −22.34 −49.03 5.29 (2.0 %) 1.25 (2.2) 0.85 8.47 (3.0 %) −2.65 (2.5) 0.76

Irene −25.91 28.21 5.78 (2.2 %) 1.16 (2.5) 0.86 7.12 (2.6 %) 0.26 (3.6) 0.75

Springbok −26.7 17.9 6.46 (2.4 %) 1.21 (2.8) 0.85 7.10 (2.5 %) 0.43 (3.2) 0.83

Buenos Aires −34.58 −58.48 7.74 (2.7 %) 2.48 (3.5) 0.93 9.22 (3.5 %) 3.12 (2.9) 0.93

Melbourne −37.80 144.97 10.16 (3.5 %) 3.09 (3.5) 0.94 9.51 (3.6 %) 2.15 (4.2) 0.91

atmosphere in near real time. These are NWP (numerical

weather prediction) information from ECMWF (European

Center for Medium-Range Weather Prediction) and other

data proved by collocated instruments (Microwave Humid-

ity Sounder (MHS), Advanced Microwave Sounding Unit

(AMSU) and Advanced Very High Resolution Radiometer

(AVHRR)) aboard the MetOp satellite. Both auxiliary data

are involved in the validation of the IASI radiance and sup-

port the L2 retrieval. We invite the reader to consult Amato

et al. (2002) for the code used to compute the IASI radiance.

After the radiance computation, the radiance noise is fil-

tered based on a principal component analysis (PCA) method

(Kahn et al., 2004; Matricardi, 2010). This pre-processing

step is well detailed by August et al. (2012) and by Schlüs-

sel at al. (2005). The second step of processing is the cloud

detection. This step is essential, because ozone L2 retrieval

is performed only for clear sky; thus the contamination of

undetected cloud leads to inaccuracy in the final L2 prod-

uct quality. The ozone profile is retrieved for the cloud-free

atmosphere based on linear EOF (empirical orthogonal func-

tion) regression (Calbet and Schlüssel, 2006). The technique

consists of computing the principal component scores of the

IASI radiance, then using them as input for the linear regres-

sion to determine the ozone profile. This statistical retrieval

method (linear EOF regression) used to determine IASI L2

profile is discussed and validated by Calbet at al. (2006). The

retrieved ozone profile by linear regression follows a final it-

erative process known as optimal estimation method (OEM).

Full detail of this final processing can be found in August

et al. (2012). It is worth noting that this final processing has

been performed only on the IASI L2 PPF (product process-

ing facility) version v5 whilst the retrieval of version v4 is

limited to the linear EOF regression method. The additional

step of processing is to integrate the obtained ozone profile

to determine the total column ozone. The IASI TCO L2 used

in this work is composed from both versions 4 and 5. Data

recorded before September 2010 are from v4 and those after

September 2010 have been retrieved following the PPF v5

structure.

The validation report of version 4 (George and Clerbeaux,

2010) indicates the variation of surface emissivity values in

some regions of the globe, which contribute to the radiance

spectra. The emissivity issue is observed especially in the

spectral range, where ozone is strongly being absorbed and

can affect the baseline of ozone retrieval significantly. In this

validation report, authors evoked the presence of unidentified

low clouds, whereas ozone retrieval is supposed to be under

cloudless conditions. Thus the cloud contamination can de-

grade the quality of L2 ozone products. It is worth noting that

in version v4, cloud detection relied only on the NWP cloud

test (Pavelin et al., 2008). Because of emissivity and cloud

issues observed on PPF L2 v4, two additional cloud detec-

tion tests, AVHRR cloud fraction (Schlüssel at al., 2005) and

optical thickness test (Zhou et al., 2005, 2007) have been per-

formed in PPF L2 v5. The adopted method to compute sur-

face emissivity during PPF L2 v4 retrieval (Loveland et al.,

2000) has been replaced by a better performing one, devel-

oped by Zhou et al. (2011) in order to improve ozone re-

trievals.

2.2 OMI

OMI is an instrument onboard the Aura satellite launched

on 15 July 2004 into a near polar heliosynchronous orbit

at an altitude of approximately 705 km. OMI is a nadir-

Ann. Geophys., 33, 1135–1146, 2015 www.ann-geophys.net/33/1135/2015/



A. M. Toihir et al.: Comparison of total column ozone 1139

viewing spectrometer that measures atmospheric trace gas

concentrations such as O3 and N2O, as well as cloud and

aerosol properties in three broad spectral regions (UV-1, UV-

2 and VIS). OMI has a spectral resolution of the order of

∼ 0.5 nm. Regarding the spatial coverage, its viewing angle

is 57◦ under a swath width of 2600 km; the ground pixel

size of each scan is 13× 24 km2 in the UV-2 (310–365 nm)

and visible (350–500 nm) channels, and 13× 48 km2 for the

UV-1 (270–310 nm) channel. Among the principal objec-

tives of the OMI instrument is to measure the total ozone

amount in the atmosphere. Two types of TCO are available

from OMI: the product obtained with the differential optical

absorption spectroscopy (DOAS), commonly called OMI-

DOAS, and the other called OMI-TOMS, retrieved using the

TOMS algorithm (Balis et al., 2007). Only the OMI-TOMS

overpass product is used in the present work and available

online via http://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/

OMI/V03/L2OVP/. These products are retrieved using two

wavelengths (317.5 and 331.2nm under most conditions,

while 331.2 and 360 nm are used for high ozone and high

solar zenith angles). The precision of OMI-TOMS is evalu-

ated at 3 %. For more information on the OMI instrument,

the reader may refer to the OMI Algorithm Theoretical Basis

Document Volume II (Bhartia, 2002).

2.3 Dobson and SAOZ spectrometers

Historically, the Dobson spectrometer is the first developed

instrument dedicated to TCO measurements. The Antarc-

tic ozone hole was observed for the first time by a Dob-

son instrument (Farman et al., 1985); its operating principle

is based on the differential absorption method in the ultra-

violet Huggins band, where ozone exhibits strong absorp-

tion features. Total ozone observation is performed with the

Dobson spectrophotometer by measuring the relative inten-

sities of selected pairs of ultraviolet wavelengths. The most

used are the double pair (305.5/325.5 and 317.6/339.8 nm,

and 311.45/332.4 and 316.6/339.8 nm) emanating from the

sun, moon or zenith sky (WMO, 2008, 2003). Currently, the

Dobson measurements network is composed of more than

80 stations around the world and the instruments used are

calibrated with the reference standard D 83 as recognized

by ESRL (Earth System Research Laboratory) and WMO

(World Meteorological Organisation). The Dobson network

stations selected for the purpose of this study are Marcapo-

macocha, Irene, Springbok, Melbourne and Buenos Aires.

The relative uncertainty linked to this instrument is estimated

to be around 2 % (Basher, 1985). Further information re-

garding the Dobson instrument can be found in the study by

Komhyr et al. (1989 and 1993).

The SAOZ instrument was developed by CNRS (Centre

National de la Recherche Scientifique) in the late 1980s af-

ter the ozone hole discovery. It was used for the first time in

Antarctica to measure ozone during the polar winter. SAOZ

operates in the visible and ultraviolet spectral bands in which

it measures the sunlight scattered from the zenith sky in

the wavelength range between 300 and 600 nm. The spectral

resolution value is evaluated to be 0.8 nm (Hendrick et al.,

2011). The SAOZ instrument is dedicated to measure total

ozone and nitrogen columns under a solar zenith angle (SZA)

up to 91◦. In this paper, the TCO obtained from the SAOZ is

recorded over Bauru (Brazil) and Réunion Island (France)

stations. The SAOZ observations are performed during sun-

rise and sunset with a precision of 3 and 5 %, respectively.

The daily average is taken as the mean of sunrise and sunset

measurements. Hendrick et al. (2011) have shown that use

of O3 AMF based on the TOMS O3 climatology improves

the comparison between the Dobson, Brewer, and SAOZ to-

tal ozone measurements. After applying these new AMF val-

ues to SAOZ and correcting the satellites for temperature and

SZA dependencies, the amplitude of the seasonal difference

between them and SAOZ decreases to less than 2–4 % at mid-

latitude and in the tropics. These new AMF values have been

used since the release of version V2 of SAOZ data repro-

cessing. Pastel et al. (2014) found a bias between SAOZ and

OMI-TOMS of up to 9.4 % at Bauru and 1.3 % at Réunion Is-

land. More details about the SAOZ instrument and its various

features are documented by Pommereau and Goutail (1988).

3 Method of analyses

In this work, IASI TCO monthly means are compared with

data from OMI satellite and from ground-based observa-

tions using statistical descriptive methods. This is a common

method for ozone data validation which consists of compar-

ing the monthly and seasonal variation of ozone under vali-

dation with respect to measurements from other instruments.

The comparison study is performed on the temporal and spa-

tial distribution of data. The comparison indexes used are the

relative difference (RD), the bias error (BE), the relative and

absolute root mean square (RMS) and the correlation coeffi-

cient R2 between measurements. The relative difference RD

between the TCO measurement of the IASI and another in-

strument (called I ) for a given month “m” is calculated for a

specific location following the expression:

RDm = 100×
IASIm− Im

Im

, (1)

where Im represents the monthly mean value of the consid-

ered instrument. The mean bias errors are taken as the rela-

tive difference average values and are calculated as follows:

BE=
1

N

N∑
m= 1

RDm. (2)

The relative root mean square is calculated with respect to

the instrument (I ), and its expression is given by

RMSr =

√√√√ 1

N

N∑
m= 1

(RDm)
2, (3)

www.ann-geophys.net/33/1135/2015/ Ann. Geophys., 33, 1135–1146, 2015
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Figure 2. Comparison of the monthly mean TCO observed from

July 2008 to December 2012 by IASI with OMI-TOMS, Dobson

(over five stations) and SAOZ (over Réunion and Bauru stations).

Graphics are numbered per station from (a) to (m). Station names

and location are indicated at the top of each graph.

where N represents the number of month-pairs between

IASI and the considered instrument. The correlation between

IASI and another instrument is assessed by linear regression

method.

4 Results and discussion

4.1 Comparison of TCO from IASI with the other

instruments

Comparisons between IASI and other instruments are based

on the monthly averaged TCO values derived for each in-

strument for the period of July 2008 to December 2012. The

obtained RD, BE and RMS results are presented in Table 1,

while the overlapping of monthly averages from each in-

strument is plotted in Fig. 2. Regarding comparison between

satellite measurements overpasses over the 13 stations, there

is a good agreement between IASI and OMI which is pro-

nounced by an average bias of 1.83 %. In addition, TCO

from IASI is slightly higher with respect to OMI for all sta-

tions, except over Ascension Island where OMI is 0.12 %

higher than IASI. On the other hand, IASI measurements

are significantly overestimated at Marcapomacocha. About

75 % of IASI monthly mean values recorded over the Mar-

capomacocha station are higher compared to those of the

OMI instrument. In addition, the absolute RMS is the high-

est (12.12 DU; Dobson unit) in comparison to other stations.

When removing the Marcapomacocha data from the 13 sta-

tions, the average absolute RMS between IASI and OMI is

estimated to be ∼ 6.5 DU. The best agreement is observed

over Fiji station and southward stations. The correlation co-

efficient (R2) recorded between IASI and OMI observations

for individual sites is observed to be higher than 0.83 from

15◦ S southward. The best correlation is recorded at Mel-

bourne (site located near the mid-latitude region) with a cor-

relation coefficient of 0.94. In summary, this study shows

that agreement between IASI and OMI over subtropical re-

gion increases with increasing latitude from the tropics in a

southward direction. These observations are consistent with

those reported by Boynard et al. (2009), which were ob-

tained by comparing IASI and SAGE II (nadir view at UV-

visible band) TCO on a global scale. Boynard et al. (2009)

obtained a positive bias of approximately 3 % with respect

to IASI and a correlation coefficient higher than 0.9 be-

tween IASI and SAGE II over the mid-latitude region. In

the present study, the weakest agreement is observed at sta-

tions located between 7 and 15◦ S. The weaker agreement

observed in this tropical band may be linked to cloud ef-

fects on the data retrieval process (see Sect. 2.1.3). Other-

wise the bias between OMI and IASI is basically due in part

to the different characteristics according to the vertical and

horizontal resolution of each instrument, and the bias which

can be associated with the existing differences between UV-

visible and infrared spectroscopy used in the retrieval pro-

cesses. In a previous study, Antón et al. (2011) compared

the ULB/LATMOS IASI O3 product with ozone data from

GOME (UV-visible band) instrument over the Iberian Penin-

sula (north subtropical region near the mid-latitude region).

In their study, they obtained a good correlation between IASI

and GOME over the Iberian Peninsula which is consistent

with that obtained between IASI and OMI over Buenos Aires

and Melbourne (subtropical sites near the mid-latitude re-

gion); this is presented above in Table 1. However, a mean

relative difference of about ±6 % was observed between

IASI and GOME which could be related to the bias between

UV-visible and infrared spectroscopy used in the retrieval

process (Antón et al., 2011). Others source of discrepancy

could probably be due to the existing difference between

IASI and OMI in terms of length of observation and spa-

tial resolution (13 km× 24 km for OMI and circular pixel of

12 km diameter for the case of IASI). The IASI and OMI in-

struments observe the same location on the Earth at different

times because of their different equator crossing times (IASI

orbits in the morning with a 09:30 equator crossing time and

OMI orbits in the afternoon with a 13:10 equator crossing

Ann. Geophys., 33, 1135–1146, 2015 www.ann-geophys.net/33/1135/2015/



A. M. Toihir et al.: Comparison of total column ozone 1141

Figure 3. Scatter plot between IASI, Dobson at four sites (Irene,

Springbok, Melbourne and Buenos Aires) and SAOZ at two sites

(Réunion and Bauru). The black line represents the zero bias line,

while the bold blue line represents the median regression line be-

tween the two observations.

time). These differences could contribute to the relative dif-

ference observed between measurements.

The comparison study between IASI and the ground-based

spectrometers (Dobson and SAOZ) reveals good agreement

over the subtropical region as well. The mentioned results

indicate that the comparison of IASI with Dobson over five

stations (Marcapomacocha in the tropics and Irene, Spring-

bok, Melbourne, Buenos Aires in the subtropics) revealed an

average bias and RMS of 1.89 % and 8.68 DU (3.22 %), re-

spectively, with respect to Dobson measurements. As men-

tioned above, IASI agrees better with the other instruments

in the subtropics than the tropics. When isolating the Mar-

capomacocha station (tropical site) from our data, the av-

erage bias between IASI and Dobson is reduced to about

1.49 % and the RMS is obtained to be approximately 8.36

DU (2.85 %). In addition, the average correlation coefficient

in the subtropics is estimated to be about 0.86. Similar results

were noted by Viatte et al. (2011) in their comparison study

between an IASI O3 LISA product and TCO daily average

recorded from a Brewer instrument at Izaña station (north

subtropical station, 28.18◦ N) in the year 2009. The LISA

product is retrieved using an analytical approach based on an

“altitude-dependent algorithm” (Eremenko et al., 2008). Vi-

atte et al. (2011) showed that IASI observations are 1.50 %

higher than Brewer, and the correlation coefficient between

the two observations is estimated to be 0.89 in their study.

The results of comparison between IASI and Dobson over

the subtropics are somewhat similar to those obtained be-

tween IASI and OMI satellites which were presented earlier

in the present document. However, it should be mentioned

that some minor different features were identified. In order

to give additional details on IASI observation behaviour with

respect to Dobson and SAOZ instruments over the subtropi-

cal region, median regression between IASI and Dobson was

performed. The obtained scatter plots are presented on Fig. 3.

The black solid line indicates the zero bias (unit slope) while

the blue line is the regression median line between the two

measurements. The scatter plots are from the monthly mean

data recorded between June 2008 and December 2012. From

Fig. 3, it is apparent that IASI overestimates the Dobson in-

strument at Melbourne and Buenos-Aires (two stations lo-

cated beyond 34◦ S) compared to Springbok and Irene (South

African sites). Indeed 92 % of the projected scatter plots at

Buenos Aires are above the unit slope. A similar feature is

also observed in the case of Melbourne station. Regression

median line fits the slope better in the case of Springbok and

Irene (two stations located between 25 and 30◦ S) indicat-

ing a small bias between IASI and Dobson in these two sites

in comparison with Melbourne and Buenos Aires (two sta-

tions located beyond 34◦ S). In Table 1, it is observed that

the average bias between IASI and Dobson is less than 0.5 %

over South African sites but higher than 2 % in the stations

near mid-latitude (Melbourne and Buenos Aires). The cor-

relation coefficients recorded between IASI and Dobson at

Melbourne and Buenos Aires are observed to be the high-

est. In summary, this study reveals the weaker biases over

the subtropics between IASI and Dobson in stations near

the tropics (Irene and Springbok) while the highest corre-

lation is observed in stations near the mid-latitude region

(Buenos Aires and Melbourne). Similar observations were

also reported by Antón et al. (2011) where they compared

the ULB/LATMOS O3 IASI products with the Brewer in-

strument over two stations (Coruña and Zaragoza) located on

the Iberian Peninsula. Indeed the Coruña station is located at

37.06◦ N (subtropical site near the tropics) while Zaragoza

station is located at 41.01◦ N (site near the mid-latitude re-

gion). The bias observed by Antón et al. (2011) between IASI

and the Brewer instrument at Coruña was 3.68 %, whilst that

of Zaragoza was observed to be 4.59 %. On the other side,

Antón et al. (2011) reported that the correlation coefficient

between IASI and the Brewer instrument over Zaragoza was

the highest (0.94), whilst that of Coruna was reported to be

0.91. When comparing the bias values of each subtropical

site with Dobson observations, it is noted that biases values

of Melbourne and Buenos Aires are somewhat similar while

the same applies for the observed biases in the South African

sites, indicating the capability of IASI and the Dobson instru-

ment to capture the O3 behaviour on latitudinal distribution,

the consistency and low variability of Dobson observations

and IASI.

Regarding SAOZ observations over Réunion Island and

Bauru stations, a good agreement with the IASI instrument is

also observed in this study. The SAOZ observations fit well

with OMI overpasses over Réunion Island and both instru-

ments slightly underestimate in comparison with IASI. Con-
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Figure 4. Monthly relative differences (% RD) of TCO observed

from June 2008 to December 2012 between IASI and the other

instruments (OMI (13 stations), Dobson (five stations) and SAOZ

(two stations)).

trarily, at Bauru, IASI underestimates with a negative bias of

−2.65 % and an RMS of 3.05 % (8.42 DU) lower than SAOZ.

It is apparent from Fig. 3 that the median regression line is

above the unit slope line for the case of Bauru. Similar re-

sults were reported by Pastel et al. (2014) in their comparison

study between SAOZ and satellite data over Bauru. In their

results they reported a bias of 2.04 % between SAOZ and the

satellite data set.

In order to quantify the variations between IASI and the

other instruments, relative differences between instruments

were computed using Eq. (1). The obtained results are shown

in Fig. 4. The computed relative differences reveal an oscil-

lating trend with decreasing amplitude with increasing time,

with an upward trend in autumn and a downward trend in

the spring period, especially between June 2008 and August

2010. The upward trends recorded in autumn are observed

to reach 9 % over the tropics and 14 % for the subtropical

stations, while the negative trend observed during the spring

period remains low and may rarely reach 4 %.

In Fig. 4, it is observed that the upward trend observed

in autumn is strongly reduced from September 2010 due to

changes adopted by the level 2 IASI retrieval algorithm (see

Sect. 2.1.3). As from 14 September 2010, significant changes

have been introduced to surface emissivity calculations and

the method adopted for ozone profile retrieval. These signif-

icant changes characterize the L2 PPF ozone version 5 (v5)

data. It is worth noting that from September 2010 the detec-

tion cloud tests have been reinforced in order to reduce the

probability of cloud contamination on ozone retrieval pro-

cess. This could be the reason why the relative difference be-

tween IASI and the other instruments is high between June

2008 and August 2010 compared to the period of Septem-

ber 2010 to December 2012 (see Fig. 4). The remaining bi-

ases observed between IASI and the others instruments after

September 2010 may probably be due to precision associated

to each measurement which differs from one instrument to

another, the differences existing between the characteristics

of each instrument (see Sect. 2), and the time of observation

which vary from one instrument to another in the same loca-

tion. The IASI and OMI measurements are achieved in dif-

ferent times for the same location as the ground-based spec-

trometer instruments. The precision of TCO data used varies

from one instrument to another and can produce a source

of relative difference between measurements. On the other

hand, the procedure followed to calculate daily measurement

differs from one instrument to others and may contribute

to the observed biases. However, the biases recorded after

September 2010 are low and statistically insignificant com-

pared to those observed before the new algorithm adoption,

confirming the high performance of the algorithm used for

the ozone version v5 data retrieval.

4.2 Seasonal analysis

In this study, a seasonal distribution comparison between

IASI and the other instruments was also performed. The sea-

sons are defined as follows: DJF (December, January and

February), MAM (March, April and May), JJA (June, July

and August) and SON (September October and November)

to represent austral summer, autumn, winter and spring, re-

spectively. The aim of this analysis was to quantify the ob-

served seasonal dependence of IASI records with respect to

other instruments. Thus, biases between IASI and the other

instruments from all sites were merged and calculated per

season. The obtained results are presented in Table 2. Ef-

fectively, IASI measurements exhibit a seasonal dependence

with an upward trend in autumn (MAM) and a downward

trend during the spring (SON) period. The distribution pat-

tern of seasonal bias between IASI and each instrument fol-

lows the same cycle. The observed cycle can be described as

follows: a positive bias with a positive gradient is observed

between summer (DJF) and autumn, and the cycle declines

slightly during the winter period, up until it reaches its min-

imum values during spring. A negative bias higher than 2 %

between IASI and SAOZ is recorded during the spring pe-

riod, presumably due to Bauru SAOZ measurements which
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Table 2. Seasonal biases observed between IASI and the other instruments (OMI, Dobson and SAOZ), merged for all sites.

% bias (1σ ) OMI DOBSON SAOZ

All data From September All data From September All data From September

(2008–2012) 2010 to the end (2008–2012) 2010 to the end (2008–2012) 2010 to the end

DJF 2.47 (2.00) 1.98 (1.76) 1.14 (2.34) −0.78 (2.03) −1.10 (2.70) −0.53 (1.97)

MAM 3.86 (1.87) 2.18 (1.58) 3.46 (2.31) 0.67 (1.80) 2.18 (2.40) 0.47 (1.12)

JJA 3.05 (1.71) 1.62 (1.59) 1.53 (2.16) 0.57 (1.73) 2.03 (3.80) 1.25 (0.90)

SON 0.66 (1.90) 0.52 (1.48) −0.82 (1.90) −1.4 (1.72) −2.38 (3.37) −1.56 (1.57)

Annual 2.51( 1.87) 1.57 (1.60) 1.32 (2.17) −0.23 (1.82) 0.73 (3.08) −0.10 (1.39)

are actually overestimated. One should keep in mind that

there is no seasonal bias higher than 4 %. In addition, sea-

sonal and annual biases are reduced from September 2010

onwards (see Table 2). Figure 5 presents the monthly dis-

tributions of relative differences and the associated standard

deviations observed between IASI and different instruments

(a) before and (b) after the adoption of a new version (L2

PPF version v5). The seasonal variation of relative differ-

ence is high before the adoption of the L2 PPF version v5.

Figure 5a showed a maximum amplitude of around 6 % dur-

ing the ascending phase of the annual cycle, especially in the

case of OMI and Dobson. The observed ascending phase is

reduced after the adoption of version 5, and significant im-

provements are recorded between December and April (see

Fig. 5b). It can be noted that the period between December

and April is marked by cyclonic activity and deep convection

in the southern tropics and subtropics; the decrease of bias

between IASI and the other instruments in this period could

partly be a result of changes made to the cloud detection al-

gorithm and surface emissivity incorporated in the retrieval

process. These changes have led to improvement in the final

PPF v5 product quality. The downward trend of IASI mea-

surements observed in each spring period is lower than 4 %

for the whole time of observations (June 2008–December

2012). When version v5 is adopted, the observed bias due

to the autumn upward trend is dramatically reduced, then

the agreement between IASI and the others instruments is

excellent. The monthly average of relative differences ob-

served during the period after August 2010 is within ±3 %

(see Fig. 5b).

Table 2 presents seasonal biases recorded between IASI

and each instrument. Two separated columns are presented

for each instrument, with the left column showing the ob-

tained seasonal biases for the complete time of observation

(June 2008–December 2012), and the right column present-

ing the seasonal bias recorded from September 2010 to De-

cember 2012. In this table, it is observed that the seasonal

bias distribution has kept the same pattern of variation dur-

ing a complete annual cycle. Also, it is observed that the

recorded values after August 2010 are the lowest. A good

agreement between IASI and the other instruments is ob-

served after August 2010, and the obtained annual bias is less

Figure 5. Monthly distribution of relative differences recorded be-

tween IASI and the other instruments (OMI SAOZ and Dobson):

(a) from June 2008 to August 2010 and (b) from September 2010

to December 2012. The error bar is the standard deviation associ-

ated with the monthly mean distribution.

than 1.6 % with OMI and less than ±1 % with the ground-

based instruments (SAOZ and Dobson).

4.3 Latitudinal distribution analysis

The TCO latitudinal distribution analysis has been made by

grouping the stations by 5◦ latitude bands from the equator in

a southward direction (i.e. data from stations located between

0◦ and 5◦ are merged). The same merging is done for sta-

tions located in the 5–10◦ S, 10–15◦ S, 15–20◦ S, 20–25◦ S,

25–30◦ S, 30–35◦ S and 35–40◦ S latitude bands. In the end,

eight station latitude bands were formulated from Nairobi

(−1.27◦ S) to Melbourne (37.80◦ S). More details about each

station latitudinal position are presented in Table 1. TCO an-

nual means and its associated standard deviations were cal-

culated for each latitude band. The latitudinal evolution of

TCO for all instruments is shown in Fig. 6. Positive bias is

apparent between IASI and the other instruments except in

the 20–25◦ S latitude band where SAOZ is slightly higher

due to Bauru SAOZ observations which are actually overes-

timated in comparison with OMI and IASI. It is worth noting
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Figure 6. Latitudinal distribution of TCO and its associated stan-

dard deviation observed for each instrument.

that the observed positive bias between IASI and other in-

struments in the latitudinal distribution is less than 4 % and

the maximum is recorded in the 10–15◦ S latitude band. The

correlation coefficient obtained on latitudinal distribution be-

tween IASI and the other instruments is higher than 0.96.

IASI observations indicate an RMS of 6.48 DU (2.1 %) with

Dobson and 7.30 DU (2.8 %) with the OMI satellite in this

latitudinal distribution. The behaviour of latitudinal distribu-

tion seems to indicate a similar pattern in all the stations. A

smaller TCO variability is observed over the tropics in com-

parison with the subtropical region. This variability is esti-

mated based on the error bar associated with the latitudinal

mean value. It is clearly observed (Fig. 6) that the variability

increases from the tropics to the mid-latitude region. How-

ever, it should be mentioned that IASI has a low variability

compared to the observed variability derived from OMI and

ground-based instruments.

5 Conclusions

In this paper, we examined TCO monthly mean for the val-

idation of IASI, recorded between June 2008 and December

2012 over 13 tropical and subtropical sites comparing ozone

data from the OMI/aura satellite, Dobson spectrophotome-

ter and the SAOZ ground-based spectrometer. It is worth

noting that the examined data product in this work is the

IASI level 2 PPF developed by the ISSWG under EUMET-

SAT supervision. The agreement between TCO from IASI

and the above-mentioned instruments is excellent, especially

over sites located 15◦ S in a southward direction where an

average correlation coefficient higher than 0.87 is reported

between IASI and OMI, and higher than 0.83 with ground-

based instruments. In addition, this study indicates that IASI

slightly overestimates TCO compared to OMI and Dobson

observations, with a bias of less than 2 %, and on the other

side, underestimates TCO compared to SAOZ measurements

over Bauru, with a bias of 2.63 %. IASI seasonal dependence

is also identified, and is characterized by an upward trend

in autumn and a downward trend during the spring season.

The retrieval algorithm of IASI L2 products has improved

since the release of version 5 of the data product in Septem-

ber 2010. The version 5 data product seems to agree very

well with TCO from the other instruments in comparison to

version 4, and the seasonal biases recorded with the L2 ver-

sion 5 are effectively reduced. IASI bias error recorded after

September 2010 was observed to be less than 1.6 % with re-

spect to OMI, and less than±1.0 % annual mean with respect

to ground-based observations. From these analyses, we con-

clude that ozone from IASI recorded after September 2010

presents low uncertainties and can be used as a reference

product for future analysis to carry on long-term variabil-

ity of TCO in the southern tropics and subtropics or can be

merged with correlative data from satellites such as OMI to

provide a high-quality and reliable ozone data set.
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