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Abstract
The rapid expansion of the use of passive acoustic telemetry technologies has facilitated

unprecedented opportunities for studying the behavior of marine organisms in their natural

environment. This technological advance would greatly benefit from the parallel develop-

ment of dedicated methodologies accounting for the variety of timescales involved in the

remote detection of tagged animals related to instrumental, environmental and behavioral

events. In this paper we propose a methodological framework for estimating the site fidelity

(“residence times”) of acoustic tagged animals at different timescales, based on the survival

analysis of continuous residence times recorded at multiple receivers. Our approach is vali-

dated through modeling and applied on two distinct datasets obtained from a small coastal

pelagic species (bigeye scad, Selar crumenophthalmus) and a large, offshore pelagic spe-

cies (yellowfin tuna, Thunnus albacares), which show very distinct spatial scales of behav-

ior. The methodological framework proposed herein allows estimating the most appropriate

temporal scale for processing passive acoustic telemetry data depending on the scientific

question of interest. Our method provides residence times free of the bias inherent to envi-

ronmental and instrumental noise that can be used to study the small scale behavior of

acoustic tagged animals. At larger timescales, it can effectively identify residence times that

encompass the diel behavioral excursions of fish out of the acoustic detection range. This

study provides a systematic framework for the analysis of passive acoustic telemetry data

that can be employed for the comparative study of different species and study sites. The

same methodology can be used each time discrete records of animal detections of any

nature are employed for estimating the site fidelity of an animal at different timescales.

PLOS ONE | DOI:10.1371/journal.pone.0134002 August 11, 2015 1 / 19

a11111

OPEN ACCESS

Citation: Capello M, Robert M, Soria M, Potin G,
Itano D, Holland K, et al. (2015) A Methodological
Framework to Estimate the Site Fidelity of Tagged
Animals Using Passive Acoustic Telemetry. PLoS
ONE 10(8): e0134002. doi:10.1371/journal.
pone.0134002

Editor: Z. Daniel Deng, Pacific Northwest National
Laboratory, UNITED STATES

Received: December 10, 2014

Accepted: July 4, 2015

Published: August 11, 2015

Copyright: This is an open access article, free of all
copyright, and may be freely reproduced, distributed,
transmitted, modified, built upon, or otherwise used
by anyone for any lawful purpose. The work is made
available under the Creative Commons CC0 public
domain dedication.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: Data collection in Hawaii was funded by
Cooperative Agreement number NA17RS1230
between the Joint Institute for Marine and
Atmospheric Research (JIMAR) and the National
Oceanographic and Atmospheric Administration
(NOAA). Data collection in Reunion Island was
funded by the Social European Fund (UE-IFOP), the
Regional Council of Reunion Island and the “Run Sea
Science” program (Theme—Capacity Building,
contract 229968). Data analyses were carried out

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0134002&domain=pdf
https://creativecommons.org/publicdomain/zero/1.0/


Introduction
Technological advances in biotelemetry provide powerful tools to observe free-ranging animals
in their natural environment [1]. Thanks to these techniques, scientists can now study the
physiology, behavior and ecology of wild animals in remote areas over long time periods [2].
Just as technological improvements in satellite tracking promoted the development of quantita-
tive movement analysis for many terrestrial species, so did the study of marine species benefit
from the parallel growth of acoustic-telemetry technologies and methods to quantify those
results [3–7]. Among the available acoustic telemetry techniques, passive acoustic tracking is
based on acoustic receivers recording the presence of “tagged” individuals, i.e. individuals
equipped with acoustic transmitters. This technique has become a widespread research tool
offering a unique opportunity to address both scientific and management questions for many
marine species [6, 8–10]. The amount of passive acoustic tracking data is growing rapidly but
at the same time little research has been dedicated to the development of methods to analyze
such data [11]. Among the diversity of scientific questions addressed through the use of this
observational tool, inferring site fidelity in terms of the amount of time spent by the tagged
individuals in the vicinity of the acoustic receiver, the so-called “residence times”, is a recurrent
objective [4, 10, 12]. Our study aims to provide a methodological framework to support the
current subjective methods used to estimate residence times from the presence/absence data
produced by an array of acoustic receivers. This is an essential step towards a quantitative com-
parison of results obtained for different species and study sites.

Estimating residence and absence times demands constructing continuous observations
from discrete (both in time and space) acoustic detections (see S1 Fig in the Supporting Infor-
mation). The discrete nature of the acoustic data derives from the transmission rate and range
of the tags, the finite number of receivers and the possibility of missing the acoustic transmis-
sions due to sonic collisions and ambient noise. The first two factors depend on the tag specifi-
cations and the way the study site is spatially instrumented. Also, even if a tagged animal is
present within the theoretical range of detection of an acoustic receiver and the tag is transmit-
ting, acoustic detections can be missed due to sonic collisions between two or more tags trans-
mitting simultaneously [6]. This can result in misleading interpretations on the presence/
absence of the animal. The rate of these collisions depends on the number of tagged fish pres-
ent around the same acoustic receiver and the specifications of the tags. In addition, ambient
noise in the aquatic environment can vary with the time of day and with the environmental
conditions, thus affecting the detection characteristics of the acoustic receiver. Current, turbid-
ity, salinity, temperature, bathymetry, and substrate, as well as the quantity of biomass present
in the vicinity of the receiver, also influence the rate of acoustic detections [12–15]. In sum-
mary, several factors (instrumental, environmental, biological) can affect the ability of a given
receiver to accurately detect a tagged animal. The challenge is therefore to determine when a
tagged fish is truly absent, i.e., identifying an appropriate temporal scale for the analysis of resi-
dence and absence times. Establishing the lower limit of the monitoring period required to
detect the presence of a tagged fish constitutes a first application of the methodological
approach presented in this paper. As a second application, we consider the issue of analyzing
residence and absence times from an ethological and ecological perspective. Establishing a tem-
poral scale for the analysis of acoustic data according to the scientific question of interest is a
common practice in fish behavioral studies and marine ecology [16–21]. Fish can make regular
diel excursions out of the range of detection (due to feeding, resting or mating behavior, preda-
tion avoidance strategies, etc.), causing regular absences of the signal [22–25]. If the main focus
of the study is to determine the presence of a fish, independently from these short-term regular
patterns of absences, a temporal scale that encompasses these excursions must be chosen to
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process the data. This temporal scale has thus far been chosen according to the author’s exper-
tise on fish behavior (empirical knowledge). Although the measured behavioral events (e.g. res-
idence times [16, 17, 19, 26], number of visits [18] and synchronicity of departures [23, 27])
are sensitive to the choice of this timescale, the issue of assessing the validity and the sensitivity
of the resulting behavioral metrics is tackled in only a few papers (e.g, [27]). In this work, we
develop, validate and apply a general method for assessing these temporal scales, taking the
case study of two pelagic fish species, bigeye scad (Selar crumenophthalmus) and yellowfin
tuna (Thunnus albacares), tracked in two different arrays of acoustic receivers.

Materials and Methods

Methodological framework to estimate site fidelity
Definition of continuous residence times (CRT). The methodological developments pre-

sented hereafter generalize an approach originally introduced within the literature on the
behavioral ecology of pelagic fish around floating objects (also referred to as Fish Aggregating
Devices or FADs), which largely exploit passive acoustic telemetry data [17–19, 23, 27–32].
Ohta and Kakuma (2005) defined a continuous residence time (CRT) as the duration within
which a tagged fish was continuously monitored at a specific location without day-scale (> 24
h) absences. This timescale of 24 h was later generalized and referred to as Maximum Blanking
Period (MBP, see [27]), which corresponds to the maximum amount of time that is allowed
between two subsequent acoustic detections for considering that a fish is still present (or resi-
dent) at a particular listening station. Based on this approach, CRTs are defined as time units
where the temporal separation between subsequent acoustic detections is smaller than the
MBP. In the case of an array of acoustic receivers, the recording of a residence time of a given
tagged fish at a receiver RA starts at the time of the first detection at this receiver (denoted as
t0). When the fish is detected at another receiver (called RB) at time t2, after being detected for
the last time at RA at time t1, the CRT at RA is estimated as t1 − t0 and a new residence time at
RB starts at time t2, regardless of the amount of time elapsing between t2 and t1 (t2 − t1). How-
ever, when the fish is not detected at any other receiver, but is detected again at RA at t2, the res-
idence time at RA is ended at the last detection (t1) and a new residence time at RA starts at t2,
each time the temporal interval t2 − t1 is larger than the MBP.

Definition of the Maximum Blanking Period as a variable. Unlike the previous literature
based upon the subjective definition of the MBP, the MBP is considered here as a discrete vari-
ableMBPn whose value is optimized according to the question of interest. To this purpose, the
variableMBPn is defined as:

MBPn ¼ nDMBP ð1Þ

where n is a positive integer and ΔMBP is an incremental time step. The assessment of the opti-
mal values of n and the scale ΔMBP is based on the statistical analysis of residence times detailed
below. The role ofMBPn in the construction of CRTs is illustrated in S2 Fig.

Identification of the optimal timescale for the construction of continuous residence
times. The acoustic data is processed according to incremental values ofMBPn defined in
Eq (1), with n in the interval [1 : N], thus leading to N sets of continuous residence times. The
choice of N determines the larger timescaleMBPN and must be high enough to encompass the
timescale of interest. As a second step, for each n, the survival curves of residence times
SMBPn

(t) are constructed by taking the fraction of CRT that are larger than t. The approaches of
survival analysis have been firstly applied to medical research, where the term “survival” was
directly related to the lifetime of an individual. In this paper we exploited the same approaches
by considering “residence times” in the place of “lifetimes” and extending the concept of
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“survival” to the fish “residency” at a given receiver. Generally speaking, survival curves S(t)
inform on the probability of a failure event to occur at a certain time t [33]. Here, the failure
event corresponds to the interruption of a continuous residence time, either due to the absence
of the acoustic signal for periods larger thanMBPn or to the detection of fish at another
receiver. The assessment of the optimalMBPn (denoted below asMBP�

n) is based on the com-
parison of the set of survival curves of residence times obtained at different n. Indeed, random
(noise) or behavioral events in the raw data lead to different survival curves of residence times
for different choices of n below a certain unknown threshold. Starting from a low n and
increasing its value, our guess is that survival curves of residence times should stabilize after a
given threshold n� associated to the time scaleMBP�

n at which those events do not affect the
estimate of residence times any more. In this view, the statistical comparison of residence times
obtained at variableMBPn can reveal the underlying pattern of acoustic detections and the
related behavioral processes. The comparison relies on the calculation of the sum of squared
residuals (SSR) among pairs of survival curves of residence times. For each n, we considered
pairs of survival curves (SMBPn

(t), SMBPn+ΔMBP(t)) associated to incremental values of the vari-
ableMBPn (see Eq (1)). Since different n imply different CRT for the same raw dataset (see S2
Fig), the survival curves of residence times were first resampled over a series of regular time
steps Δt by performing a linear interpolation. The linear interpolation was conducted each
time the distance between two subsequent points (CRT) of the survival curve fell below a given
threshold tmax. Conversely, each time two points were separated by a distance larger than tmax,
the interpolation was not performed and this part of the survival curve was consequently dis-
carded. Finally, for each pair of interpolated survival curves (SMBPn

(Δt), SMBPn+ΔMBP(Δt)), the
SSR was estimated and then renormalized (denoted below as rSSR), by dividing by the total
number of data points T considered in its calculation, leading to:

rSSRðMBPnÞ ¼

XT

i¼1
½SMBPn

ðDtiÞ � SMBPnþDMBP
ðDtiÞ�2

T
ð2Þ

where the index i runs over all timesteps Δti where both the interpolated survival curves are
defined. The criterion defined in Eq (2) ensured a consistent comparison among pairs of curves
obtained at differentMBPn. Finally, the convergence of the survival curves of residence times
was assessed from the plots of rSSR(MBPn) as a function ofMBPn.

Method validation and applications
Validation of the method through simulations. Our approach was tested over a simu-

lated sample of acoustic detections obtained from the behavioral model introduced in [34, 35].
In its simplest non-social formulation, this model describes the dynamics of a set of NF inde-
pendent fish within an array of p receivers, through a system of p differential equations of the
form:

dXi

dt
¼ mXu � yXi ð3Þ

where Xi is the number of individual fish present at receiver i at time t, Xu is the number of fish
that are present out of the receivers, such that NF ¼

Pp
i¼1 Xi þ Xu and μ and θ express the

probability to join or leave a receiver, respectively. As far as a fish is present at a receiver it is
considered within its detection range and is thus detectable at each time step. Based on Eq (3),
we simulated different patterns of acoustic detections following the three model scenarios
described below.
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Scenario 1. Single exponential model with noise. The first scenario is a memory-less
dynamic example, where the probabilities of joining/leaving a receiver do not depend on the
time spent outside/at the receiver. As such, μ and θ in Eq (3) are two time-independent con-
stants. The timescale associated to the residence times recorded at the same receiver is related
to the inverse probability to leave the receiver 1/θ and the survival curves of residence times fol-
low S(t) = exp(−θt) [34]. Similarly, absence times are governed by the timescale 1/μ and follow
the exponential survival curve S(t) = exp(−μt). Here, in addition to the behavioral events
described by Eq (3), we considered a second timescale 1/η related to the effects of environmen-
tal/instrumental noise. Each time an individual was present at a receiver, an acoustic detection
was recorded with probability η, with η� 1 (η = 1 implying absence of noise). The parameter η
was taken as a constant, i.e. the noise events were independent of the time spent by the fish at
the receiver. In the following, the parameters μ and θ were chosen much smaller than η, sup-
posing the existence of two distinct timescales respectively related to fish behavior and external
noise, with the former associated to larger timescales.

Scenario 2. Time-dependent sigmoidal model. Within the second scenario the probabil-
ity to join the receiver increases with the time spent out of it and corresponds to a sigmoid
function of the form:

mðtÞ ¼ m1
1þ K exp ð�gtÞ ð4Þ

where τ is the time spent by an individual outside the receivers, μ1 is the asymptotic probabil-
ity to reach the receiver at large times and K and γ are two constants. In this case Eq (3)
becomes:

dXi

dt
¼

Z t

0

mðtÞXuðt; tÞdt� yXi ð5Þ

where Xu(t, τ) represents the number of fish which have spent a time τ outside the receivers at
time t. Oppositely, the timescale associated to the residence times recorded at the same receiver
is kept constant and equals 1/θ like in Scenario 1. As γ increases, Eq (4) approaches a step-like
function, switching from small to large values around τ� = ln(K)/γ. In this limiting case, Eq (4)
involves two main timescales for absence times, 1/μ1 and (1+K)/μ1.

Scenario 3: Time-dependent sigmoidal model with noise. The third scenario is a mixture
of the two above, where the probability to reach the receivers is time dependent (Eq (4), Sce-
nario 2) and environmental/instrumental noise affects the acoustic records with probability
η (Scenario 1).

For all scenarios, the simulated acoustic detections were recorded following a Monte Carlo
algorithm over a run of 100.000 time steps [34], following Eqs (3 and 4) for p = 2 receivers and
NF = 1000 fish individuals. The model parameters specific to each scenario are reported in
Table 1. The simulated set of acoustic detections were processed at differentMBPn ranging
between 100 and 2000 time steps, with ΔMBP = 100 (Eq (1)). In addition to this set ofMBPn, the
survival curves were compared with those obtained forMBP0 = 1, i.e., a timescale correspond-
ing to the timestep of the simulation. The linear interpolation employed in the calculation of
the rSSR (Eq (2)) was conducted with Δt = 1 and tmax = 100.

Case study datasets
We applied our methodological framework to two datasets, concerning two different species
and acoustic array characteristics: (i) data collected on 37 bigeye scads (Selar crumeophthal-
mus) in an array of 9 acoustic receivers in Reunion Island (South Western Indian Ocean) in
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June-July 2006 [18, 27] and (ii) data collected on 32 yellowfin tuna (Thunnus albacares) in an
array of 13 acoustic receivers located around the island of Oahu, Hawaii (Central Pacific
Ocean) in February-August 2003 [17, 26]. Details on the two datasets can be found in Table 2
and in the Supporting Information (S3 Fig and S1 Text).

For the first application of the method, which was focused on small timescales, both datasets
were processed with values ofMBPn ranging between 10 and 120 min, following Eq (1) with
ΔMBP = 10 min. The choice of 10 min corresponded to the minimum time interval required for
the detection of two consecutive emissions suggested by the constructor (www.vemco.com).
For larger timescales, survival curves of residence times were constructed using values ofMBPn
between 2 and 48 h obtained for ΔMBP = 2 h in Eq (1). The linear interpolation employed in the
calculation of the rSSR (Eq (2)) was conducted with Δt = 10 min and tmax = 4 h.

Ethics Statement. The fish experimental protocols for the field studies conducted in
Réunion Island were permitted under the Aquarium of Reunion Island animal care certificates
delivered by the French Veterinary Medicine Directorate. Protocols were carried out with the
authority of the National Veterinary School of Nantes (France) validating a certificate of train-
ing in animal experimentation and a degree in experimental surgery on fish. The fish experi-
mental protocols for the field studies conducted in Hawaii were specifically approved by the
University of Hawaii Institutional Animal Care and Use Committee (IACUC).

Results

Validation of the method through a simulated set of acoustic detections
Fig 1 shows the survival curves of residence times for Scenario 1 obtained for the simulated set
of acoustic detections processed at differentMBPn. The linearity of the curves in semi-logarith-
mic scale (apart from the large times deviation due to the finite simulation time) demonstrated
that all curves followed an exponential law, as expected from model construction. The survival
curves of residence times showed a different variability with respect to the MBP choice depend-
ing on the value of the noise parameter η. For η = 1 (no noise) there was little dependence on
MBPn, whereas for η = 0.1, 0.01 and 0.005 the curves tended to converge only above a non-zero

Table 1. Model parameters for the three scenarios.Columns from left to right indicate the parameters
related to the probability to depart from a receiver, the probability to reach a receiver and the probability of
detecting a fish due to environmental/instrumental noise.

Scenario Prob. to depart Prob. to reach Noise

1 θ = 0.0002 μ = 0.0001 η = 1, 0.1, 0.01, 0.005

2 θ = 0.02 μ1 = 0.01 -

K = 1000

γ = 0.01, 0.02, 0.04, 0.08

3 θ = 0.0002 μ1 = 0.01 η = 0.1

K = 1000

γ = 0.01

doi:10.1371/journal.pone.0134002.t001

Table 2. Experimental data. Columns from left to right: species, number of tagged individuals, number of instrumented FADs, location and acoustic teleme-
try equipment (receiver and tag type) for the two datasets used in this study.

Species Tag IDs FAD IDs Location Date Equipment

Selar chrumeophthalmus 37 9 Reunion Island 2006 (June-July) VEMCO VR2/V7

Thunnus albacares 32 13 Oahu, Hawaii 2003 (February-May) VEMCO VR2/V16

doi:10.1371/journal.pone.0134002.t002
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value ofMBPn which increased with decreasing η (i.e., for increasing noise). The estimated
rSSR reported in Fig 2 assessed this convergence more quantitatively. For η = 1 (Fig 2A) the
rSSR fluctuated around a constant value close to zero. Oppositely, a decreasing trend in the
rSSR was evident for η< 1, where the rSSR stabilized afterMBP�

n ¼ 100 (η = 0.1, Fig 2B),
MBP�

n = 900 (η = 0.01, Fig 2C) andMBP�
n = 1500 (η = 0.005, Fig 2D). Remarkably, at these val-

ues ofMBP�
n the survival curves of residence times approached the theoretical form S(t) = exp

(−θt) which demonstrated the validity of our approach. The case η = 0.005 (Fig 2D) showed a
smoother decrease in the rSSR aroundMBP�

n rather than the sharp decrease to the convergence
point found for higher η values. The sensitivity of our method with respect to the choice of
ΔMBP was tested in S4 Fig. The convergence of the rSSR did not depend on the choice of ΔMBP

but the identification ofMBP� was looser for higher ΔMBP values.
In contrast with Scenario 1, the survival curves of residence times S(t) for Scenario 2 pre-

sented a varying slope as a function of time, with characteristic plateaus at small t, see Fig 3.

Fig 1. Scenario 1: Survival curves of CRTs. The survival curves are obtained for different values ofMBPn (see legend) and different noise parameters: η =
1 (A), 0.1 (B), 0.01 (C) and 0.005 (D). The y axis is in logarithmic scale. Black line: the theoretical survival curve of residence times S(t) = exp(−0.0002t).

doi:10.1371/journal.pone.0134002.g001
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From visual inspection, two groups of homogeneity classes at small and largeMBPn appeared.
The calculation of the rSSR (Fig 4) revealed the presence of two timescales (MBP�

1 andMBP�
2)

below/above which the curves showed small changes (i.e., small rSSR). The values ofMBP�
1 and

MBP�
2 depended on the model parameter γ (see Eq (4)) and decreased when increasing γ. The

range ofMBPn where the CRTs showed a higher variability (i.e., larger rSSR) were consistent
with the theoretical timescales where the probability to reach the receivers defined in Eq (4)
moves from small values (μ(t) = 1% μ1) to the asymptotic limit (μ(t) = 99% μ1) (see vertical
lines in Fig 4), which demonstrates the consistency of our approach.

Fig 2. Scenario 1: Renormalized sum of squared residuals. The rSSR is calculated among pairs of survival curves of residence times with ΔMBP = 100
and different values of the noise parameter: η = 1 (A), 0.1 (B), 0.01 (C) and 0.005 (D). The vertical dashed line represent the MBP value at which the survival
curve of residence times mostly approached the theoretical curve. Insets: the same in semi-logarithmic scale.

doi:10.1371/journal.pone.0134002.g002
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Fig 5 shows the application of our approach for the mixed case where both multiple behav-
ioral timescales and environmental/instrumental noise coexist (Scenario 3). The visual inspec-
tion of survival curves of residence times (Fig 5A) showed a clear difference between the curve
obtained forMBP0 = 1 and largerMBPn, similarly to what was found for Scenario 1. Moreover,
it was possible to visually identify two homogeneity classes at largerMBPn, similarly to what
was found for Scenario 2. The behavior of the rSSR was consistent with these findings and
showed a clear jump to small values forMBPn >MBP0. For ΔMBP = 100 the rSSR was non-
monotonous and demonstrated a first convergence to small values for 100�MBPn � 400 and
a second range of convergence afterMBP�

n ¼ 1000 (see inset of Fig 5B). When increasing ΔMBP

up to 400, the first zone of convergence at smallMBPn was no more observable whereas the
larger timescaleMBP�

n ¼ 1000, beyond which the rSSR was equal to zero, was consistently
identified.

Fig 3. Scenario 2: Survival curves of CRTs. The survival curves are obtained for different values ofMBPn (see legend) and different model parameters in
Eq (4): γ = 0.01 (A), 0.02 (B), 0.04 (C) and 0.08 (D). The y axis is in logarithmic scale.

doi:10.1371/journal.pone.0134002.g003
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Application to realistic acoustic datasets
First application: Continuous residence times to overcome environmental/instrumental

noise. Fig 6 shows the survival curves of CRTs for bigeye scad (Fig 6A) and yellowfin tuna
(Fig 6B) obtained for increasingMBPn with ΔMBP = 10 min. The survival curves presented mul-
tiple slopes and their shape varied according to the species and values ofMBPn, with yellowfin
tuna presenting a larger range of residence times. However, a gradual convergence of residence
times when increasingMBPn emerged when inspecting the survival curves at short timescales
(< 2 days, see inset of Fig 6B for yellowfin tuna). The estimated rSSR in Fig 7 decreased less

Fig 4. Scenario 2: Renormalized sum of squared residuals. The rSSR is calculated among pairs of survival curves of residence times with ΔMBP = 100 for
different model parameters in Eq (4): γ = 0.01 (A), 0.02 (B), 0.04 (C) and 0.08 (D). The vertical lines represent the time values t where μ(t) = 1%μ1 (dashed
line) and μ(t) = 99%μ1 (dot-dashed line). Inset: the same in semi-logarithmic scale.

doi:10.1371/journal.pone.0134002.g004
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rapidly afterMBP� = 60 min, where it stabilized to values close to zero for both species (see
insets of Fig 7A and 7B). The sensitivity analysis conducted for larger ΔMBP (20 min and 30
min) confirmed this result (S5 Fig).

Second application: Continuous residence times to overcome absences of signal related
to diel excursions. Fig 8 shows the survival curves of residence times obtained for ΔMBP = 2
h. Even for large values ofMBPn, the residence times of bigeye scad (Fig 8A) were quite short
(on the order of few consecutive days) when compared to those of yellowfin tuna (Fig 8B),
which could remain associated with the same receiver for several weeks or months. Again, sur-
vival curves showed varying shapes depending on n, signaling a clear sensitivity of the resi-
dence times to the MBP choice. Their convergence was quantified in Fig 9, where the rSSR was
calculated for ΔMBP = 2, 4, 6 and 8 h. For ΔMBP = 4, 6 and 8 h the rSSR approached constant val-
ues aroundMBP� = 24 h whereas, for ΔMBP = 2 h the rSSR attained a constant value at earlier
MBP values, aroundMBP� = 6 h, for both bigeye scad and yellowfin tuna.

Discussion
The processing and analysis of data coming from acoustic tagged animals detected at specific
points in space requires care. Without a robust methodological approach capable of assessing
the optimal timescales for processing the acoustic data, the risk of misinterpretation could be
high. The quantitative approach proposed herein allows identifying these timescales and
assessing their range of validity, based on the statistical comparison of survival curves of resi-
dence times. The starting point of our approach is the construction of continuous residence
times (CRT) from discrete acoustic detections based on a key variable, the Maximum Blanking
Period, MBP (e.g. [27]) This variable, related to the maximum time that is allowed between
two subsequent acoustic detections for considering that a tagged animal is still present, deter-
mines when discrete detections turn into CRTs. The core of the approach relies on the fact that
survival curves of residence times obtained with subsequent values of MBP tend to converge

Fig 5. Scenario 3: Survival curves of CRT and renormalized sum of squared residuals. (A) Survival curves of CRT obtained for different values ofMBPn

(see legend). (B) rSSR in semi-logarithmic scale calculated among pairs of survival curves of residence times with variable ΔMBP (see legend). Inset: the
same in semi-logarithmic scale.

doi:10.1371/journal.pone.0134002.g005
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Fig 7. Field data: Renormalized sum of squared residuals at small timescales. The rSSR is calculated among pairs of survival curves (S(tMBPn
), S

(tMBPn+ΔMBP)) with ΔMBP = 10 min for bigeye scad (A) and yellowfin tuna (B). Insets: the same in semi-logarithmic scale.

doi:10.1371/journal.pone.0134002.g007

Fig 6. Field data: Survival curves of CRTs at small timescales. Survival curves of CRTs obtained for MBP ranging between 10 up to 120 min by intervals
of 10 min (see legend) in semi-logarithmic scale for (A) bigeye scad (B) yellowfin tuna.

doi:10.1371/journal.pone.0134002.g006
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Fig 8. Field data: Survival curves of CRTs at large timescales. Survival curves calculated forMBPn ranging between 2 h and 48 h (see caption) for (A)
Bigeye scad (B) yellowfin tuna.

doi:10.1371/journal.pone.0134002.g008

Fig 9. Field data: Renormalized sum of squared residuals at large timescales. The rSSR is calculated over pairs of survival curves with ΔMBP = 2 h
(stars), 4 h (empty squares), 6 h (filled squares) and 8 h (empty circles) for bigeye scad (A) and yellowfin tuna (B). Insets: the same in semi-logarithmic scale.

doi:10.1371/journal.pone.0134002.g009
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when overcoming underlying patterns in the signal related to environmental/instrumental
noise and/or behavior of the tagged animals. Therefore, the comparison of survival curves
leads to the natural emergence of this temporal scale and its range of validity, as a direct output
of the data analysis. This methodological framework contrasts with subjective (“intuitive”)
choices (whose range of validity is unknown) that can be found in the literature.

The validity of the method and its ability to accurately identify temporal patterns in the raw
data was demonstrated through simulations. Contrary to what is generally found in the litera-
ture of survival analysis, the comparison of survival curves here involved the same data (i.e.,
the acoustic detections at the different receivers) processed in different ways according to the
different values of the MBP. Therefore, the hypothesis of comparing two independent datasets
does not hold in this case. Our results showed that the convergence of the renormalized sum of
squared residuals (rSSR) provided an effective criterion for revealing the optimal MBP values
that overcame the effects of external noise. To the purpose of validating our method, the model
was first constructed by testing the ideal situation of two well-separated timescales related to
the noise and the behavioral excursions (Scenario 1). To this purpose, a time-independent
exponential model was employed, inspired by the recent theoretical and experimental findings
on the associative behavior of tropical tuna around FADs ([26, 34]). The rSSR showed a sharp
decrease and an early stabilization at the optimal MPB value. On the other hand, we revealed a
smoother transition and a slight overestimation of the optimal MBP when the two timescales
approached each other, a situation which makes the identification of the optimal MBP more
difficult. Secondly, the method was tested on a sigmoidal model associated with a time-
dependent behavior out of the receiver (Scenario 2). This model leads to a distribution of
absence times close to a Gaussian distribution, a situation that can be found in many biological
systems. In this case our approach could successfully identify two sets of homogeneous survival
curves, located below/above the characteristic timescale (τ�) where Eq (4) switches from small
to high values. Finally, the method was tested in the presence of multiple behavioral timescales
and noise (Scenario 3), a situation which is the most common in field experiments. Our
approach could identify an appropriate timescale for constructing residence times without the
effects of noise. At the same time it could be employed at a larger timescale for the identifica-
tion of residence times that overcame the short-term behavioral excursions.

The application of our method to the bigeye scad and yellowfin tuna acoustic data demon-
strated that realistic datasets present a multiplicity of timescales, similarly to model Scenario 3.
In the first application we illustrated how our methodological framework allows identifying the
smallest timescale that can support a fine-scale analysis of animal behavior, free of the bias due
to environmental and instrumental noise. Both our case studies presented very pronounced
differences in the survival curve for small values of the MBP (10, 20, 30 min) whereas beyond
60 min survival curves tended to converge (Fig 7). Similarly to Scenario 1 (case η = 0.005, Fig
2D), the rSSR showed a smooth convergence afterMBP� = 60 min for both species, rather than
a sharp jump to constant values. On the other hand, the small fluctuations of the rSSR found
forMBP>MBP� (Fig 7), as well as the characteristic plateaus observable in the slopes of the
survival curves (Fig 6), indicate the closeness of other timescales in the raw data, similarly to
Scenario 2 (e.g. Fig 3A). This result ensures that the widespread choice of MBP = 60 min, used
in the past literature ([18, 31]) for the analysis of small-scale behavior for these two species was
high enough to avoid the possible biases related to environmental/instrumental noise.

The second application illustrated that our methodological framework can be used to iden-
tify the presence of multiple behavioral timescales in the pattern of acoustic detections. A time-
scale of 24 h naturally emerged from the comparison of survival curves at increasingMBPn for
both species. This result, which ensures the validity of the widespread choice of MBP = 24 h for
tunas [16, 17, 31], used in the past literature to study site fidelity, can be interpreted in the light
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of the different excursions taking place when the two fish species are associated with FADs. For
tuna, it is well known that the association radius around the FAD can extend to several hun-
dred meters [36], leading to long absences of the signal when a fish is outside the range of
detection. These excursions are likely to be linked with feeding events away from the FADs
[22–25]. On the other hand, the largeMBP� found for bigeye scad was quite surprising since
this species is known to stay very close to the FAD. However, previous studies demonstrated
the presence of diel night excursions of bigeye scads out of the FADs [18]. Moreover, possible
current effects could induce fish to occupy positions further from the FAD (e.g. upstream to
the current, see [37]), inducing in/out excursions out of the detection range of the receiver sim-
ilarly to tuna.

Sensitivity analysis indicated that the detection of the optimal MBP might be sensitive to the
chosen increment ΔMBP. If the difference between two consecutive MBP is too high, the identi-
fication of the appropriate time scale is looser. This situation was encountered in S4 Fig for Sce-
nario 1. The opposite situation was found for field data (Fig 9), where an earlier convergence of
survival curves aroundMBP� = 6 h was found for small increments ΔMBP = 2 h. This result can
be explained in the light of the multiplicity of timescales involved in the acoustic data. The
increment ΔMBP = 2 h allows detecting the variations among survival curves related to small
excursions around the receivers but is not large enough to account for the full range of time-
scales involved in the diel behavior of fish.

Alternative approaches to tackle the problem of detection probability and efficiency are pro-
posed in the capture-recapture and trapping literature. Notably, these methods are either based
on the explicit definition of home range in the capture function [38] or they exploit the link
between environmental covariates and variation in the detection range [39]. Applied to passive
acoustic telemetry, home ranges would correspond to the range of detection of an acoustic
receiver. However, the assumptions on the stationary distribution of the home range in two
dimensions [40] do not hold for realistic passive acoustic datasets. Similarly, the data required
in the second class of approaches [39] are difficult to monitor within realistic experiments, that
are often conducted in remote areas. Moreover, precisely quantifying the effects of all factors
(e.g., tag characteristics, species characteristics, such as horizontal and vertical behavior, envi-
ronmental noise) involved in detection-range variability is hardly possible [6, 14, 41, 42]. On
the contrary, we based our approach on the convergence of survival curves of residence times
beyond a given timescale, without accounting explicitly for the origin of signal absence. The
same principles can be applied to a large variety of datasets like those employed in the capture-
mark-recapture and mark-resight literature [43], where discrete records of animal detections
are translated to continuous variables related to the estimated density of a species in time and
space.

Conclusion
Our method could be successfully applied for estimating residence times both at small and
larger timescales, highlighting that this methodological framework is general enough to be
employed for different scientific objectives, species and experimental settings. Applications of
passive acoustic telemetry are quite broad, from fundamental studies of animal behavior and
spatio-temporal pattern to conservation objectives such as the assessment of marine reserve
efficiency and habitat use [1, 6, 9]. In particular, the exact proportion of time animals spend
closely associated to a receiver (e.g corresponding to habitat types) within a day or over the
entire experiment (site fidelity) are important behavioral metrics that need to be assessed for
management purpose. Quantification of those metrics cannot be left to the authors’ intuition
and needs to be performed using dedicated approaches that can identify the most appropriate
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temporal scale for the acoustic data processing, as proposed in this study. Given the high cost
of tagging and field work campaigns, optimizing the quantity –and quality—of data extracted
from this kind of experiments and allowing comparison among different datasets represents a
significant contribution to the field.

Supporting Information
S1 Text. Dataset Description.
(PDF)

S1 File. Acoustic detections recorded in Reunion Island from tagged individuals of bigeye
scad. Each line corresponds to an acoustic detection. Columns from left to right refer respec-
tively to the FAD ID, Fish ID, incremental datetime expressed in units of seconds and date (for-
matted as DDMM YYYY h min sec).
(TXT)

S2 File. Acoustic detections recorded in Hawaii from tagged individuals of yellowfin tuna.
Each line corresponds to an acoustic detection. Columns from left to right refer respectively to
the FAD ID, Fish ID, incremental datetime expressed in units of seconds and date (formatted
as DDMM YYYY h min sec).
(TXT)

S1 Fig. Snapshot of the acoustic detections (crosses) recorded by an acoustic receiver for
different tagged fish (Tag ID). Data from [18, 27].
(EPS)

S2 Fig. Schematic representation of the construction of CRTs from discrete passive acoustic
detections and differentMBPn choices. Each cell of the array corresponds to a time unit (tu).
The two symbols (blue and red crosses) correspond to the detections at two different receivers.
The data is processed with increasingMBPn following Eq (1) and taking ΔMBP = 1 tu. Raw data
(A); Processed data withMBP1 = 1 tu (B);MBP2 = 2 tu (C) andMBP2 = 3 tu (D).
(PNG)

S3 Fig. Location of the FAD arrays for the two experimental datasets (A) in Reunion Island
(B) in Hawaii. Each equipped FAD is represented by a black dot.
(PNG)

S4 Fig. Renormalized sum of squared residuals. RSS in semi-logarithmic scale calculated
among pairs of survival curves for the model Scenario 1, with noise parameter η = 0.01 and dif-
ferent values of ΔMBP (see legend).
(EPS)

S5 Fig. Renormalized sum of squared residuals. RSS calculated among pairs of survival
curves following Eq (2) with ΔMBP = 10 min (empty squares), 20 min (filled squares) and 30
min (empty circles) for bigeye scad (A) and yellowfin tuna (B). Insets: the same in semi-
logarithmic scale.
(EPS)
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