R. M. Friedlander, Apoptosis and Caspases in Neurodegenerative Diseases, New England Journal of Medicine, vol.348, issue.14, pp.1365-1375, 2003.
DOI : 10.1056/NEJMra022366

T. Sairanen, M. Karjalainen-lindsberg, A. Paetau, P. Ijäs, and P. J. Lindsberg, Apoptosis dominant in the periinfarct area of human ischaemic stroke???a possible target of antiapoptotic treatments, Brain, vol.129, issue.1, pp.189-199, 2006.
DOI : 10.1097/00062752-199805000-00004

M. D. Nguyen, J. Julien, and S. Rivest, Innate immunity: the missing link in neuroprotection and neurodegeneration?, Nature Reviews Neuroscience, vol.7, issue.3, pp.216-227, 2002.
DOI : 10.1080/13550280152403308

M. Hauwel, E. Furon, C. Canova, M. Griffiths, J. Neal et al., Innate (inherent) control of brain infection, brain inflammation and brain repair: the role of microglia, astrocytes, ???protective??? glial stem cells and stromal ependymal cells, Brain Research Reviews, vol.48, issue.2, pp.220-233, 2005.
DOI : 10.1016/j.brainresrev.2004.12.012

C. N. Serhan, S. D. Brain, and C. D. Buckley, Resolution of inflammation: state of the art, definitions and terms, The FASEB Journal, vol.21, issue.2, pp.325-332, 2007.
DOI : 10.1038/nm1468

P. G. Popovich and E. E. Longbrake, Can the immune system be harnessed to repair the CNS?, Nature Reviews Neuroscience, vol.353, issue.6, pp.481-493, 2008.
DOI : 10.1212/WNL.43.4.655

T. Wyss-coray and L. Mucke, Inflammation in Neurodegenerative Disease???A Double-Edged Sword, Neuron, vol.35, issue.3, pp.419-432, 2002.
DOI : 10.1016/S0896-6273(02)00794-8

URL : https://doi.org/10.1016/s0896-6273(02)00794-8

K. Elward and P. Gasque, ???Eat me??? and ???don't eat me??? signals govern the innate immune response and tissue repair in the CNS: emphasis on the critical role of the complement system, Molecular Immunology, vol.40, issue.2-4, pp.85-94, 2003.
DOI : 10.1016/S0161-5890(03)00109-3

C. Grimsley and K. S. Ravichandran, Cues for apoptotic cell engulfment: eat-me, don't eat-me and come-get-me signals, Trends in Cell Biology, vol.13, issue.12, pp.648-656, 2003.
DOI : 10.1016/j.tcb.2003.10.004

M. Griffiths, J. W. Neal, and P. Gasque, Innate Immunity and Protective Neuroinflammation: New Emphasis on the Role of Neuroimmune Regulatory Proteins, International Review of Neurobiology, vol.82, pp.29-55, 2007.
DOI : 10.1016/S0074-7742(07)82002-2

M. R. Griffiths, P. Gasque, and J. W. Neal, The Multiple Roles of the Innate Immune System in the Regulation of Apoptosis and Inflammation in the Brain, Journal of Neuropathology & Experimental Neurology, vol.161, issue.3, pp.217-226, 2009.
DOI : 10.1182/blood-2003-09-3184

URL : https://hal.archives-ouvertes.fr/hal-01285464

H. Neumann, J. Husemann, J. D. Loike, R. Anankov, M. Febbraio et al., Control of glial immune function by neurons, Glia, vol.11, issue.2, pp.191-199, 2001.
DOI : 10.1097/00001756-200001170-00018

R. Alarcónalarc´alarcón, C. Fuenzalida, M. Santibáñez, and R. V. Bernhardi, Expression of Scavenger Receptors in Glial Cells, Journal of Biological Chemistry, vol.34, issue.34, pp.30406-30415, 2005.
DOI : 10.1016/S0896-6273(02)00794-8

T. Ben-hur, Immunomodulation by neural stem cells, Journal of the Neurological Sciences, vol.265, issue.1-2, pp.102-104, 2008.
DOI : 10.1016/j.jns.2007.05.007

A. Keating, How Do Mesenchymal Stromal Cells Suppress T Cells?, Cell Stem Cell, vol.2, issue.2, pp.106-108, 2008.
DOI : 10.1016/j.stem.2008.01.007

URL : https://doi.org/10.1016/j.stem.2008.01.007

H. Ohtaki, J. H. Ylostalo, and J. E. Foraker, Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses, Proceedings of the National Academy of Sciences, vol.184, issue.1-2, pp.14638-14643, 2008.
DOI : 10.1016/j.jneuroim.2006.11.014

P. D. Stahl and R. A. Ezekowitz, The mannose receptor is a pattern recognition receptor involved in host defense, Current Opinion in Immunology, vol.10, issue.1, pp.50-55, 1998.
DOI : 10.1016/S0952-7915(98)80031-9

E. M. Burudi and A. Régnier-vigouroux, Regional and cellular expression of the mannose receptor in the post-natal developing mouse brain, Cell and Tissue Research, vol.303, issue.3, pp.307-317, 2001.
DOI : 10.1007/s004410000311

E. M. Burudi, S. Riese, P. D. Stahl, and A. Regnier-vigouroux, Identification and functional characterization of the mannose receptor in astrocytes, Glia, vol.185, issue.1, pp.44-55, 1999.
DOI : 10.1084/jem.185.2.317

N. Laflamme and S. Rivest, Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components, The FASEB Journal, vol.15, issue.1, pp.155-163, 2001.
DOI : 10.4049/jimmunol.164.7.3476

I. S. Coraci, J. Husemann, and J. W. Berman, CD36, a Class B Scavenger Receptor, Is Expressed on Microglia in Alzheimer's Disease Brains and Can Mediate Production of Reactive Oxygen Species in Response to ??-Amyloid Fibrils, The American Journal of Pathology, vol.160, issue.1, pp.101-112, 2002.
DOI : 10.1016/S0002-9440(10)64354-4

C. D. Gregory, CD14-dependent clearance of apoptotic cells: relevance to the immune system, Current Opinion in Immunology, vol.12, issue.1, pp.27-34, 2000.
DOI : 10.1016/S0952-7915(99)00047-3

R. Medzhitov and C. Janeway-jr, Innate immune recognition: mechanisms and pathways, Immunological Reviews, vol.173, issue.1, pp.89-97, 2000.
DOI : 10.1034/j.1600-065X.2000.917309.x

R. Medzhitov and C. A. Jr, Innate Immunity: The Virtues of a Nonclonal System of Recognition, Cell, vol.91, issue.3, pp.295-298, 1997.
DOI : 10.1016/S0092-8674(00)80412-2

S. Gordon, Pattern Recognition Receptors, Cell, vol.111, issue.7, pp.927-930, 2002.
DOI : 10.1016/S0092-8674(02)01201-1

URL : https://hal.archives-ouvertes.fr/hal-00591485

J. Savill, I. Dransfield, C. Gregory, and C. Haslett, A blast from the past: clearance of apoptotic cells regulates immune responses, Nature Reviews Immunology, vol.22, issue.12, pp.965-975, 2002.
DOI : 10.1016/S0165-6147(00)01771-5

C. D. Gregory and A. Devitt, The macrophage and the apoptotic cell: an innate immune interaction viewed simplistically?, Immunology, vol.157, issue.1, pp.1-14, 2004.
DOI : 10.1182/blood-2003-09-3245

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2567.2004.01959.x/pdf

F. Reichert and S. Rotshenker, Complement-receptor-3 and scavenger-receptor-AI/II mediated myelin phagocytosis in microglia and macrophages, Neurobiology of Disease, vol.12, issue.1, pp.65-72, 2003.
DOI : 10.1016/S0969-9961(02)00008-6

K. Takahashi, C. D. Rochford, and H. Neumann, Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2, The Journal of Experimental Medicine, vol.22, issue.4, pp.647-657, 2005.
DOI : 10.1038/ng1117

URL : http://jem.rupress.org/content/jem/201/4/647.full.pdf

P. Gasque, J. W. Neal, and S. K. Singhrao, Roles of the Complement System in Human Neurodegenerative Disorders, Molecular Neurobiology, vol.25, issue.1, pp.189-205, 2001.
DOI : 10.1385/MN:25:1:001

P. Gasque, Complement: a unique innate immune sensor for danger signals, Molecular Immunology, vol.41, issue.11, pp.1089-1098, 2004.
DOI : 10.1016/j.molimm.2004.06.011

D. Mevorach, J. O. Mascarenhas, D. Gershov, and K. B. Elkon, Complement-dependent Clearance of Apoptotic Cells by Human Macrophages, The Journal of Experimental Medicine, vol.9, issue.12, pp.2313-2320, 1998.
DOI : 10.1146/annurev.immunol.15.1.649

URL : http://jem.rupress.org/content/jem/188/12/2313.full.pdf

P. Gasque, A. Ischenko, J. Legoedec, C. Mauger, M. Schouft et al., Expression of the complement classical pathway by human glioma in culture, a model for complement expression by nerve cells, Molecular Immunology, vol.30, issue.33, pp.25068-25074, 1993.
DOI : 10.1016/0161-5890(93)90207-R

G. J. Wright, M. Jones, M. J. Puklavec, M. H. Brown, and A. N. Barclay, The unusual distribution of the neuronal/lymphoid cell surface CD200 (OX2) glycoprotein is conserved in humans, Immunology, vol.162, issue.2, pp.173-179, 2001.
DOI : 10.1126/science.290.5497.1768

R. M. Hoek, S. R. Ruuls, and C. A. Murphy, Down-Regulation of the Macrophage Lineage Through Interaction with OX2 (CD200), Science, vol.290, issue.5497, pp.1768-1771, 2000.
DOI : 10.1126/science.290.5497.1768

N. Koning, L. Bö, R. M. Hoek, and I. Huitinga, Downregulation of macrophage inhibitory molecules in multiple sclerosis lesions, Annals of Neurology, vol.3, issue.pt 6, pp.504-514, 2007.
DOI : 10.4049/jimmunol.174.4.2004

M. Webb and A. N. Barclay, Localisation of the MRC OX-2 Glycoprotein on the Surfaces of Neurones, Journal of Neurochemistry, vol.1, issue.4, pp.1061-1067, 1984.
DOI : 10.1016/0092-8674(77)90266-5

E. J. Brown and W. A. Frazier, Integrin-associated protein (CD47) and its ligands, Trends in Cell Biology, vol.11, issue.3, pp.130-135, 2001.
DOI : 10.1016/S0962-8924(00)01906-1

A. N. Barclay, G. J. Wright, G. Brooke, and M. H. Brown, CD200 and membrane protein interactions in the control of myeloid cells, Trends in Immunology, vol.23, issue.6, pp.285-290, 2002.
DOI : 10.1016/S1471-4906(02)02223-8

J. S. Pachter, H. E. De, Z. Vries, and . Fabry, The Blood-Brain Barrier and Its Role in Immune Privilege in the Central Nervous System, Journal of Neuropathology & Experimental Neurology, vol.279, issue.6, pp.593-604, 2003.
DOI : 10.1074/jbc.M107348200

C. Canova, J. W. Neal, and P. Gasque, Expression of innate immune complement regulators on brain epithelial cells during human bacterial meningitis, Journal of Neuroinflammation, vol.3, issue.1, p.22, 2006.
DOI : 10.1186/1742-2094-3-22

G. Martino, R. Furlan, G. Comi, and L. Adorini, The ependymal route to the CNS: an emerging gene-therapy approach for MS, Trends in Immunology, vol.22, issue.9, pp.483-490, 2001.
DOI : 10.1016/S1471-4906(01)01990-1

P. G. Mcmenamin, Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations, The Journal of Comparative Neurology, vol.166, issue.4, pp.553-562, 1999.
DOI : 10.1016/S0171-2985(87)80083-9

B. O. Fabriek, E. S. Van-haastert, and I. Galea, CD163-positive perivascular macrophages in the human CNS express molecules for antigen recognition and presentation, Glia, vol.182, issue.4, pp.297-305, 2005.
DOI : 10.1177/002215549904700211

H. E. De-vries, J. J. Hendriks, and H. Honing, Signal-Regulatory Protein ??-CD47 Interactions Are Required for the Transmigration of Monocytes Across Cerebral Endothelium, The Journal of Immunology, vol.168, issue.11, pp.5832-5839, 2002.
DOI : 10.4049/jimmunol.168.11.5832

B. M. Pratt and J. M. Mcpherson, TGF-?? in the central nervous system: Potential roles in ischemic injury and neurodegenerative diseases, Cytokine & Growth Factor Reviews, vol.8, issue.4, pp.267-292, 1997.
DOI : 10.1016/S1359-6101(97)00018-X

S. R. Barnum and J. L. Jones, Transforming growth factor-?1 inhibits inflammatory cytokine-induced C3 gene expression in astrocytes, Journal of Immunology, vol.152, issue.2, pp.765-773, 1994.

J. M. Weiss, S. A. Downie, W. D. Lyman, and J. W. Berman, Astrocyte-derived monocyte-chemoattractant protein-1 directs the transmigration of leukocytes across a model of the human blood-brain barrier, Journal of Immunology, vol.161, issue.12, pp.6896-6903, 1998.

M. K. Winkler and E. N. Benveniste, Transforming growth factor-beta inhibition of cytokine-induced vascular cell adhesion molecule-1 expression in human astrocytes, Glia, vol.356, issue.2, pp.171-179, 1998.
DOI : 10.1038/356063a0

K. Biernacki, A. Prat, M. Blain, and J. P. , Regulation of Th1 and Th2 Lymphocyte Migration by Human Adult Brain Endothelial Cells, Journal of Neuropathology & Experimental Neurology, vol.147, issue.8/Supp 3, pp.1127-1136, 2001.
DOI : 10.1002/(SICI)1521-4141(199810)28:10<3086::AID-IMMU3086>3.0.CO;2-Z

URL : https://academic.oup.com/jnen/article-pdf/60/12/1127/8132484/60-12-1127.pdf

G. Xi, R. F. Greiser, and F. R. Keep, The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: deleterious or protective?, Journal of Neurochemistry, vol.33, issue.1, pp.3-9, 2003.
DOI : 10.1016/S0006-8993(01)02064-9

H. Wang and G. Reiser, Thrombin Signaling in the Brain: The Role of Protease-Activated Receptors, Biological Chemistry, vol.76, issue.2, pp.193-202, 2003.
DOI : 10.1006/bbrc.2001.4683

D. Vivien and A. Buisson, Serine Protease Inhibitors: Novel Therapeutic Targets for Stroke?, Journal of Cerebral Blood Flow & Metabolism, vol.15, issue.7, pp.755-764, 2000.
DOI : 10.1007/BF01052889

URL : http://journals.sagepub.com/doi/pdf/10.1097/00004647-200005000-00001

R. J. Grand, A. S. Turnell, and P. W. Grabham, Cellular consequences of thrombin-receptor activation, Biochemical Journal, vol.313, issue.2, pp.353-368, 1996.
DOI : 10.1042/bj3130353

T. Masada, G. Xi, Y. Hua, and R. F. Keep, The effects of thrombin preconditioning on focal cerebral ischemia in rats, Brain Research, vol.867, issue.1-2, pp.173-179, 2000.
DOI : 10.1016/S0006-8993(00)02302-7

F. Striggow, M. Riek, J. Breder, P. Henrich-noack, K. G. Reymann et al., The protease thrombin is an endogenous mediator of hippocampal neuroprotection against ischemia at low concentrations but causes degeneration at high concentrations, Proceedings of the National Academy of Sciences, vol.66, issue.4, pp.2264-2269, 2000.
DOI : 10.1046/j.1471-4159.1996.66041374.x

URL : http://www.pnas.org/content/97/5/2264.full.pdf

M. B. Gingrich and S. F. Traynelis, Serine proteases and brain damage ??? is there a link?, Trends in Neurosciences, vol.23, issue.9, pp.399-407, 2000.
DOI : 10.1016/S0166-2236(00)01617-9

C. Huang, R. Ma, and S. Sun, JAK2-STAT3 signaling pathway mediates thrombin-induced proinflammatory actions of microglia in vitro???, Journal of Neuroimmunology, vol.204, issue.1-2, pp.118-125, 2008.
DOI : 10.1016/j.jneuroim.2008.07.004

J. J. Ubl, M. Sergeeva, and G. Reiser, signalling evoked by the tethered ligand, The Journal of Physiology, vol.95, issue.2, pp.319-330, 2000.
DOI : 10.1073/pnas.95.12.6642

A. Buisson, O. Nicole, F. Docagne, H. Sartelet, E. T. Mackenzie et al., Up-regulation of a serine protease inhibitor in astrocytes mediates the neuroprotective activity of transforming growth factor ??1, The FASEB Journal, vol.12, issue.15, pp.1683-1691, 1998.
DOI : 10.1038/nm0298-228

K. P. Cavanaugh, D. Gurwitz, D. D. Cunningham, and R. A. Bradshaw, Reciprocal Modulation of Astrocyte Stellation by Thrombin and Protease Nexin-1, Journal of Neurochemistry, vol.10, issue.5, pp.1735-1743, 1990.
DOI : 10.1021/bi00406a054

A. Pindon, D. Hantai, M. Jandrot-perrus, and B. W. Festoff, Novel expression and localization of active thrombomodulin on the surface of mouse brain astrocytes, Glia, vol.556, issue.3, pp.259-268, 1997.
DOI : 10.1515/bchm3.1994.375.9.603

K. P. Sarker, H. Ymamhata, M. Nakata, T. Arisato, T. Nakajima et al., Recombinant Thrombomodulin Inhibits Thrombin-Induced Vascular Endothelial Growth Factor Production in Neuronal Cells, Pathophysiology of Haemostasis and Thrombosis, vol.29, issue.6, pp.343-352, 1999.
DOI : 10.1159/000022522

M. M. Bilak, S. P. Becerra, A. M. Vincent, B. H. Moss, M. S. Aymerich et al., Identification of the Neuroprotective Molecular Region of Pigment Epithelium-Derived Factor and Its Binding Sites on Motor Neurons, The Journal of Neuroscience, vol.22, issue.21, pp.9378-9386, 2002.
DOI : 10.1523/JNEUROSCI.22-21-09378.2002

Y. Sugita, S. P. Becerra, G. J. Chader, and J. P. Schwartz, Pigment epithelium-derived factor (PEDF) has direct effects on the metabolism and proliferation of microglia and indirect effects on astrocytes, Journal of Neuroscience Research, vol.7, issue.6, pp.710-718, 1997.
DOI : 10.1016/S0065-1281(11)80337-5

F. Docagne, O. Nicole, H. H. Marti, E. T. Mackenzie, A. Buisson et al., Transforming growth factor-??1 as a regulator of the serpins/t-PA axis in cerebral ischemia, The FASEB Journal, vol.13, issue.11, pp.1315-1324, 1999.
DOI : 10.1097/00001721-199404000-00002

C. Gabriel, C. Ali, and S. Lesné, Transforming growth factor ??-induced expression of type 1 plasminogen activator inhibitor in astrocytes rescues neurons from excitotoxicity, The FASEB Journal, vol.17, issue.2, pp.277-279, 2003.
DOI : 10.1096/fj.02-0403fje

M. Hoffmann, C. Nitsch, A. L. Scotti, E. Reinhard, and D. Monard, The prolonged presence of glia-derived nexin, an endogenous protease inhibitor, in the hippocampus after ischemia-induced delayed neuronal death, Neuroscience, vol.49, issue.2, pp.397-408, 1992.
DOI : 10.1016/0306-4522(92)90105-B

A. Buisson, S. Lesne, and F. Docagne, Transforming growth factor-? and ischemic brain injury, Cellular and Molecular Neurobiology, vol.23, pp.4-5, 2003.

M. Yepes, M. Sandkvist, and M. K. Wong, Neuroserpin reduces cerebral infarct volume and protects neurons from ischemia-induced apoptosis, Blood, vol.96, issue.2, pp.569-576, 2000.

E. Hansson and L. Rönnbäck, Glial neuronal signaling in the central nervous system, The FASEB Journal, vol.17, issue.3, pp.341-348, 2003.
DOI : 10.1016/S0304-3940(00)01252-0

A. Suzumura, M. Sawada, H. Yamamoto, and T. Marunouchi, Transforming growth factor-? suppresses activation and proliferation of microglia in vitro, Journal of Immunology, vol.151, issue.4, pp.2150-2158, 1993.

T. C. Brionne, I. Tesseur, E. Masliah, and T. Wyss-coray, Loss of TGF-??1 Leads to Increased Neuronal Cell Death and Microgliosis in Mouse Brain, Neuron, vol.40, issue.6, pp.1133-1145, 2003.
DOI : 10.1016/S0896-6273(03)00766-9

URL : https://doi.org/10.1016/s0896-6273(03)00766-9

M. Sawada, A. Suzumura, H. Hosoya, T. Marunouchi, T. Nagatsu et al., Interleukin-10 Inhibits Both Production of Cytokines and Expression of Cytokine Receptors in Microglia, Journal of Neurochemistry, vol.53, issue.4, pp.1466-1471, 1999.
DOI : 10.1016/0165-5728(94)90031-0

E. Polazzi and A. Contestabile, Neuron-Conditioned Media Differentially Affect the Survival of Activated or Unstimulated Microglia: Evidence for Neuronal Control on Apoptotic Elimination of Activated Microglia, Journal of Neuropathology & Experimental Neurology, vol.19, issue.4, pp.351-362, 2003.
DOI : 10.1016/S0304-3940(97)00234-6

H. H. Majed, S. Chandran, and S. P. Niclou, A Novel Role for Sema3A in Neuroprotection from Injury Mediated by Activated Microglia, Journal of Neuroscience, vol.26, issue.6, pp.1730-1738, 2006.
DOI : 10.1523/JNEUROSCI.0702-05.2006

URL : http://www.jneurosci.org/content/jneuro/26/6/1730.full.pdf

R. T. Mott, G. Ait-ghezala, and T. Town, Neuronal expression of CD22: Novel mechanism for inhibiting microglial proinflammatory cytokine production, Glia, vol.157, issue.4, pp.369-379, 2004.
DOI : 10.1016/S0022-510X(98)00049-5

U. Tontsch and O. Rott, Cortical neurons selectively inhibit MHC class II induction in astrocytes but not in microglial cells, International Immunology, vol.5, issue.3, pp.249-254, 1993.
DOI : 10.1093/intimm/5.3.249

H. Neumann, J. Boucraut, C. Hahnel, T. Misgeld, and H. Wekerle, Neuronal Control of MHC Class II Inducibility in Rat Astrocytes and Microglia, European Journal of Neuroscience, vol.9, issue.12, pp.2582-2590, 1996.
DOI : 10.1001/archneur.1991.00530240048017

J. F. Kerr, A. H. Wyllie, and A. R. Currie, Apoptosis a basic biological phenomenon with wide ranging implications in tissue kinetics, International Review of Cytology, vol.68, pp.251-306, 1980.
DOI : 10.1038/bjc.1972.33

URL : http://www.nature.com/bjc/journal/v26/n4/pdf/bjc197233a.pdf

L. J. Martin, Neuronal cell death in nervous system development, disease, and injury (Review), International Journal of Molecular Medicine, vol.7, issue.5, pp.455-478, 2001.
DOI : 10.3892/ijmm.7.5.455

R. Hanayama, M. Tanaka, K. Miwa, A. Shinohara, A. Iwamatsu et al., Identification of a factor that links apoptotic cells to phagocytes, Nature, vol.120, issue.6885, pp.182-187, 2002.
DOI : 10.1021/bi963119m

A. H. Wyllie, J. F. Kerr, and A. R. Currie, Cell Death: The Significance of Apoptosis, International Review of Cytology, vol.68, pp.251-306, 1980.
DOI : 10.1016/S0074-7696(08)62312-8

R. Gold, H. Hartung, and H. Lassmann, T-cell apoptosis in autoimmune diseases: termination of inflammation in the nervous system and other sites with specialized immune-defense mechanisms, Trends in Neurosciences, vol.20, issue.9, pp.399-404, 1997.
DOI : 10.1016/S0166-2236(97)01079-5

M. P. Pender and M. J. Rist, Apoptosis of inflammatory cells in immune control of the nervous system: Role of glia, Glia, vol.110, issue.2, pp.137-144, 2001.
DOI : 10.1016/S0165-5728(00)00337-4

P. M. Henson, D. L. Bratton, and V. A. Fadok, Apoptotic cell removal, Current Biology, vol.11, issue.19, pp.795-805, 2001.
DOI : 10.1016/S0960-9822(01)00474-2

URL : https://doi.org/10.1016/s0960-9822(01)00474-2

S. J. Lee, T. Zhou, C. Choi, Z. Wang, and E. N. Benveniste, Differential Regulation and Function of Fas Expression on Glial Cells, The Journal of Immunology, vol.164, issue.3, pp.1277-1285, 2000.
DOI : 10.4049/jimmunol.164.3.1277

URL : http://www.jimmunol.org/content/jimmunol/164/3/1277.full.pdf

A. Flügel, F. W. Schwaiger, and H. Neumann, Neuronal FasL Induces Cell Death of Encephalitogenic T Lymphocytes, Brain Pathology, vol.157, issue.377, pp.353-364, 2000.
DOI : 10.1212/WNL.40.11.1770

P. Saas, J. Boucraut, and A. Quiquerez, CD95 (Fas/Apo- 1) as a receptor governing astrocyte apoptotic or inflammatory responses: a key role in brain inflammation?, Journal of Immunology, vol.162, issue.4, pp.2326-2333, 1999.

U. Felderhoff-mueser, D. L. Taylor, and K. Greenwood, Fas/CD95/APO-1 Can Function as a Death Receptor for Neuronal Cells in Vitro and in Vivo and is Upregulated Following Cerebral Hypoxic-Ischemic Injury to the Developing Rat Brain, Brain Pathology, vol.392, issue.1, pp.17-29, 2000.
DOI : 10.1161/01.STR.26.6.1093

C. Choi and E. N. Benveniste, Fas ligand/Fas system in the brain: regulator of immune and apoptotic responses, Brain Research Reviews, vol.44, issue.1, pp.65-81, 2004.
DOI : 10.1016/j.brainresrev.2003.08.007

H. Eugster, K. Frei, R. Bachmann, H. Bluethmann, H. Lassmann et al., Severity of symptoms and demyelination in MOG-induced EAE depends on TNFR1, European Journal of Immunology, vol.25, issue.2, pp.626-632, 1999.
DOI : 10.1002/(SICI)1521-4141(199902)29:02<626::AID-IMMU626>3.0.CO;2-A

URL : http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1521-4141(199902)29:02<626::AID-IMMU626>3.0.CO;2-A/pdf

L. Probert, H. Eugster, and K. Akassoglu, TNFR1 signalling is critical for the development of demyelination and the limitation of T-cell responses during immune-mediated CNS disease, Brain, vol.123, issue.10, pp.2005-2019, 2000.
DOI : 10.1093/brain/123.10.2005

K. Akassoglou, J. Bauer, and G. Kassiotis, Oligodendrocyte Apoptosis and Primary Demyelination Induced by Local TNF/p55TNF Receptor Signaling in the Central Nervous System of Transgenic Mice, The American Journal of Pathology, vol.153, issue.3, pp.801-813, 1998.
DOI : 10.1016/S0002-9440(10)65622-2

O. Aktas, U. Schulze-topphoff, and F. Zipp, The role of TRAIL/TRAIL receptors in central nervous system pathology, Frontiers in Bioscience, vol.12, issue.8-12, pp.2912-2921, 2007.
DOI : 10.2741/2281

T. Magnus, A. Chan, O. Grauer, K. V. Toyka, and R. Gold, Microglial Phagocytosis of Apoptotic Inflammatory T Cells Leads to Down-Regulation of Microglial Immune Activation, The Journal of Immunology, vol.167, issue.9, pp.5004-5010, 2001.
DOI : 10.4049/jimmunol.167.9.5004

R. E. Voll, M. Herrmann, E. A. Roth, C. Stach, J. R. Kalden et al., Immunosuppressive effects of apoptotic cells, Nature, vol.390, issue.6658, pp.350-351, 1997.
DOI : 10.1038/37022

C. G. Freire-de-lima, Y. Q. Xiao, S. J. Gardai, D. L. Bratton, W. P. Schiemann et al., Apoptotic Cells, through Transforming Growth Factor-??, Coordinately Induce Anti-inflammatory and Suppress Pro-inflammatory Eicosanoid and NO Synthesis in Murine Macrophages, Journal of Biological Chemistry, vol.161, issue.50, pp.38376-38384, 2006.
DOI : 10.1016/S0165-2478(02)00225-0

V. A. Fadok, D. L. Bratton, A. Konowal, P. W. Freed, J. Y. Westcott et al., Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF., Journal of Clinical Investigation, vol.101, issue.4, pp.890-898, 1998.
DOI : 10.1172/JCI1112

URL : http://www.jci.org/articles/view/1112/files/pdf

M. N. Huynh, V. A. Fadok, and P. M. Henson, Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-??1 secretion and the resolution of inflammation, Journal of Clinical Investigation, vol.109, issue.1, pp.41-50, 2002.
DOI : 10.1172/JCI0211638

H. A. Golpon, V. A. Fadok, and L. Taraseviciene-stewart, Life after corpse engulfment: phagocytosis of apoptotic cells leads to VEGF secretion and cell growth, The FASEB Journal, vol.18, issue.14, pp.1716-1718, 2004.
DOI : 10.1096/fj.04-1853fje

V. A. Fadok and G. Chimini, The phagocytosis of apoptotic cells, Seminars in Immunology, vol.13, issue.6, pp.365-372, 2001.
DOI : 10.1006/smim.2001.0333

J. Savill, I. Dransfield, N. Hogg, C. Haslett, V. A. Fadok et al., Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis CD36 is required for phagocytosis of apoptotic cells by human macrophages that use either a phosphatidylserine receptor or the vitronectin receptor, Nature Journal of Immunology, vol.343106, issue.161 11, pp.170-173, 1990.

Y. Liu, S. Walter, and M. Stagi, LPS receptor (CD14): a receptor for phagocytosis of Alzheimer's amyloid peptide, Brain, vol.128, issue.8, pp.1778-1789, 2005.
DOI : 10.1073/pnas.162350199

URL : https://academic.oup.com/brain/article-pdf/128/8/1778/1301716/awh531.pdf

F. Leonardi-essmann, M. Emig, Y. Kitamura, R. Spanagel, and P. J. Gebicke-haerter, Fractalkine-upregulated milk-fat globule EGF factor-8 protein in cultured rat microglia, Journal of Neuroimmunology, vol.160, issue.1-2, pp.92-101, 2005.
DOI : 10.1016/j.jneuroim.2004.11.012

P. R. Hoffmann, A. M. Decathelineau, and C. A. Ogden, Phosphatidylserine (PS) induces PS receptor???mediated macropinocytosis and promotes clearance of apoptotic cells, The Journal of Cell Biology, vol.94, issue.4, pp.649-660, 2001.
DOI : 10.1016/S0092-8674(01)00190-8

URL : http://jcb.rupress.org/content/jcb/155/4/649.full.pdf

M. Chang, C. J. Binder, and M. Torzewski, Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: Evidence that oxidation-specific epitopes mediate macrophage recognition, Proceedings of the National Academy of Sciences, vol.188, issue.2, pp.6353-6358, 1999.
DOI : 10.1084/jem.188.2.387

URL : http://www.pnas.org/content/96/11/6353.full.pdf

R. Simone, M. A. Ajmone-cat, and L. Minghetti, Atypical Antiinflammatory Activation of Microglia Induced by Apoptotic Neurons: Possible Role of Phosphatidylserine???Phosphatidylserine Receptor Interaction, Molecular Neurobiology, vol.29, issue.2, pp.197-212, 2004.
DOI : 10.1385/MN:29:2:197

P. R. Taylor, A. Carugati, and V. A. Fadok, A Hierarchical Role for Classical Pathway Complement Proteins in the Clearance of Apoptotic Cells in Vivo, The Journal of Experimental Medicine, vol.163, issue.3, pp.359-366, 2000.
DOI : 10.1084/jem.188.11.2163

A. J. Nauta, L. A. Trouw, and M. R. Daha, Direct binding of C1q to apoptotic cells and cell blebs induces complement activation, European Journal of Immunology, vol.32, issue.6, pp.1726-1736, 2002.
DOI : 10.1002/1521-4141(200206)32:6<1726::AID-IMMU1726>3.0.CO;2-R

URL : http://onlinelibrary.wiley.com/doi/10.1002/1521-4141(200206)32:6<1726::AID-IMMU1726>3.0.CO;2-R/pdf

M. R. Ehlers, CR3: a general purpose adhesion-recognition receptor essential for innate immunity, Microbes and Infection, vol.2, issue.3, pp.289-294, 2000.
DOI : 10.1016/S1286-4579(00)00299-9

G. D. Ross, Role of the Lectin Domain of Mac-1/CR3 (CD11b/CD18) in Regulating Intercellular Adhesion, Immunologic Research, vol.25, issue.3, pp.219-227, 2002.
DOI : 10.1385/IR:25:3:219

H. Gerwuz and S. C. Yiang, Non immune activation of the classical complement pathway, Behring Institute Mitteilungen, vol.93, pp.138-147, 1993.

L. C. Korb and J. M. Ahearn, C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited, Journal of Immunology, vol.158, issue.10, pp.4525-4528, 1997.

S. K. Singhrao, J. W. Neal, N. K. Rushmere, B. P. Morgan, and P. Gasque, Differential expression of individual complement regulators in the brain and choroid plexus, Laboratory Investigation, vol.79, issue.10, pp.1247-1259, 1999.

B. P. Morgan and C. E. Harris, Regulation in the Terminal Pathway Membrane Regulators of the Terminal Pathway Complement Regulatory Proteins, 1999.

S. K. Singhrao, J. W. Neal, N. K. Rushmere, B. P. Morgan, and P. Gasque, Spontaneous Classical Pathway Activation and Deficiency of Membrane Regulators Render Human Neurons Susceptible to Complement Lysis, The American Journal of Pathology, vol.157, issue.3, pp.905-918, 2000.
DOI : 10.1016/S0002-9440(10)64604-4

URL : http://europepmc.org/articles/pmc1885712?pdf=render

J. Van-beek, M. Van-meurs, and B. A. Hart, Decay-Accelerating Factor (CD55) Is Expressed by Neurons in Response to Chronic but Not Acute Autoimmune Central Nervous System Inflammation Associated with Complement Activation, The Journal of Immunology, vol.174, issue.4, pp.2353-2365, 2005.
DOI : 10.4049/jimmunol.174.4.2353

J. Van-beek, O. Nicole, and C. Ali, Complement anaphylatoxin C3a is selectively protective against NMDA-induced neuronal cell death, Neuroreport, vol.12, issue.2, pp.289-293, 2001.
DOI : 10.1097/00001756-200102120-00022

Y. Rahpeymai, M. A. Hietala, and U. Wilhelmsson, Complement: a novel factor in basal and ischemia-induced neurogenesis, The EMBO Journal, vol.49, issue.6, pp.1364-1374, 2006.
DOI : 10.1073/pnas.162350199

URL : http://emboj.embopress.org/content/embojnl/25/6/1364.full.pdf

I. U. Schraufstatter, R. G. Discipio, M. Zhao, and S. K. Khaldoyanidi, C3a and C5a Are Chemotactic Factors for Human Mesenchymal Stem Cells, Which Cause Prolonged ERK1/2 Phosphorylation, The Journal of Immunology, vol.182, issue.6, pp.3827-3836, 2009.
DOI : 10.4049/jimmunol.0803055

URL : http://www.jimmunol.org/content/jimmunol/182/6/3827.full.pdf

S. Meri, P. Mattila, and R. Renkonen, Regulation of CD59 expression on the human endothelial cell line EA.hy 926, European Journal of Immunology, vol.22, issue.10, pp.2511-2516, 1993.
DOI : 10.1042/bj2640001

C. Yang, J. L. Jones, and S. R. Barnum, Expression of decay-accelerating factor (CD55), membrane cofactor protein (CD46) and CD59 in the human astroglioma cell line, D54-MG, and primary rat astrocytes, Journal of Neuroimmunology, vol.47, issue.2, pp.123-132, 1993.
DOI : 10.1016/0165-5728(93)90022-Q

S. R. Barnum, Complement in Central Nervous System Inflammation, Immunologic Research, vol.26, issue.1-3, pp.7-13, 2002.
DOI : 10.1385/IR:26:1-3:007

M. R. Griffiths, J. W. Neal, M. Fontaine, T. Das, and P. Gasque, Complement Factor H, a Marker of Self Protects against Experimental Autoimmune Encephalomyelitis, The Journal of Immunology, vol.182, issue.7, pp.4368-4377, 2009.
DOI : 10.4049/jimmunol.0800205

URL : https://hal.archives-ouvertes.fr/hal-01274635

R. J. Meade, J. W. Neal, and M. R. Griffiths, Deficiency of the complement regulator CD59a enhances disease severity, demyelination and axonal injury in murine acute experimental allergic encephalomyelitis, Laboratory Investigation, vol.6, issue.1, pp.21-28, 2004.
DOI : 10.1056/NEJM199010253231707

P. Gasque, M. Fontaine, and B. P. Morgan, Complement expression in human brain: biosynthesis of terminal pathway components and regulators in human glial cells and cell lines, Journal of Immunology, vol.154, issue.9, pp.4726-4733, 1995.

P. Gasque, A. Thomas, M. Fontaine, and B. P. Morgan, Complement activation on human neuroblastoma cell lines in vitro: route of activation and expression of functional complement regulatory proteins, Journal of Neuroimmunology, vol.66, issue.1-2, pp.29-40, 1996.
DOI : 10.1016/0165-5728(96)00015-X

D. G. Walker, S. U. Kim, and P. L. Mcgeer, Complement and cytokine gene expression in cultured microglia derived from postmortem human brains, Journal of Neuroscience Research, vol.88, issue.4, pp.478-493, 1995.
DOI : 10.1016/S0171-2985(82)80072-7

A. Kojima, K. Iwata, and T. Seya, Membrane cofactor protein (CD46) protects cells predominantly from alternative complement pathway-mediated C3-fragment deposition and cytolysis, Journal of Immunology, vol.151, issue.3, pp.1519-1527, 1993.

A. Moutabarrik, I. Nakanishi, and M. Namiki, Cytokinemediated regulation of the surface expression of complement regulatory proteins Clusterin (SGP 2): a multi functional glycoprotein with regional expression in astrocytes and neurons of the adult rat brain, CD55(DAF), and CD59 on human vascular endothelial cells, pp.46-167, 1993.

P. Gasque and B. P. Morgan, Complement regulatory protein expression by a human oligodendrocyte cell line: cytokine regulation and comparison with astrocytes, Immunology, vol.89, issue.3, pp.338-347, 1996.
DOI : 10.1046/j.1365-2567.1996.d01-756.x

J. Zajicek, M. Wing, J. Skepper, and A. Compston, Human oligodendrocytes are not sensitive to complement: a study of CD59 expression in the human central nervous system, Laboratory Investigation, vol.73, issue.1, pp.128-138, 1995.

K. Zhang, S. Junnikkala, and M. G. Erlander, Up-regulated expression of decay-accelerating factor (CD55) confers increased complement resistance to sprouting neural cells, European Journal of Immunology, vol.14, issue.4, pp.1189-1196, 1998.
DOI : 10.1007/978-3-7091-6842-4_17

B. Sivasankar, R. M. Donev, and M. P. Longhi, CD59a deficient mice display reduced B cell activity and antibody production in response to T-dependent antigens, Molecular Immunology, vol.44, issue.11, pp.2978-2987, 2007.
DOI : 10.1016/j.molimm.2006.12.025

J. Liu, T. Miwa, and B. Hilliard, The complement inhibitory protein DAF (CD55) suppresses T cell immunity in vivo, The Journal of Experimental Medicine, vol.100, issue.4, pp.567-577, 2005.
DOI : 10.4049/jimmunol.173.4.2227

URL : http://europepmc.org/articles/pmc2213052?pdf=render

M. P. Longhi, B. Sivasankar, N. Omidvar, B. P. Morgan, and A. Gallimore, Cutting Edge: Murine CD59a Modulates Antiviral CD4+ T Cell Activity in a Complement-Independent Manner, The Journal of Immunology, vol.175, issue.11, pp.7098-7102, 2005.
DOI : 10.4049/jimmunol.175.11.7098

URL : http://www.jimmunol.org/content/jimmunol/175/11/7098.full.pdf

M. P. Longhi, C. L. Harris, B. P. Morgan, and A. Gallimore, Holding T cells in check ??? a new role for complement regulators?, Trends in Immunology, vol.27, issue.2, pp.102-108, 2006.
DOI : 10.1016/j.it.2005.12.008

A. Cerwenka and L. L. Lanier, Natural killer cells, viruses and cancer, Nature Reviews Immunology, vol.31, issue.1, pp.41-49, 2001.
DOI : 10.1002/1521-4141(200104)31:4<1076::AID-IMMU1076>3.0.CO;2-Y

K. Elward, M. Griffiths, and M. Mizuno, CD46 Plays a Key Role in Tailoring Innate Immune Recognition of Apoptotic and Necrotic Cells, Journal of Biological Chemistry, vol.164, issue.43, pp.36342-36354, 2005.
DOI : 10.4049/jimmunol.164.4.1839

C. Jones, M. Virji, and P. R. Crocker, Recognition of sialylated meningococcal lipopolysaccharide by siglecs expressed on myeloid cells leads to enhanced bacterial uptake, Molecular Microbiology, vol.275, issue.5, pp.1213-1225, 2003.
DOI : 10.1074/jbc.M002788200

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2958.2003.03634.x/pdf

P. R. Crocker and A. Varki, Siglecs, sialic acids and innate immunity, Trends in Immunology, vol.22, issue.6, pp.337-342, 2001.
DOI : 10.1016/S1471-4906(01)01930-5

C. Broderick, R. M. Hoek, J. V. Forrester, J. Liversidge, J. D. Sedgwick et al., Constitutive Retinal CD200 Expression Regulates Resident Microglia and Activation State of Inflammatory Cells during Experimental Autoimmune Uveoretinitis, The American Journal of Pathology, vol.161, issue.5, pp.1669-1677, 2002.
DOI : 10.1016/S0002-9440(10)64444-6

URL : http://europepmc.org/articles/pmc1850781?pdf=render

N. Koning, D. F. Swaab, R. M. Hoek, and I. Huitinga, Distribution of the Immune Inhibitory Molecules CD200 and CD200R in the Normal Central Nervous System and Multiple Sclerosis Lesions Suggests Neuron-Glia and Glia-Glia Interactions, Journal of Neuropathology and Experimental Neurology, vol.35, issue.2, pp.159-167, 2009.
DOI : 10.1042/BST0351122

M. D. Rosenblum, E. Olasz, and J. E. Woodliff, CD200 is a novel p53-target gene involved in apoptosis-associated immune tolerance, Blood, vol.103, issue.7, pp.2691-2698, 2004.
DOI : 10.1182/blood-2003-09-3184

URL : http://www.bloodjournal.org/content/bloodjournal/103/7/2691.full.pdf

G. J. Wright, M. Jones, M. J. Puklavec, M. H. Brown, and A. N. Barclay, The unusual distribution of the neuronal/lymphoid cell surface CD200 (OX2) glycoprotein is conserved in humans, Immunology, vol.162, issue.2, pp.173-179, 2001.
DOI : 10.1126/science.290.5497.1768

M. I. Reinhold, F. P. Lindberg, D. Plas, S. Reynolds, M. G. Peters et al., In vivo expression of alternatively spliced forms of integrin-associated protein (CD47), Journal of Cell Science, vol.108, issue.11, pp.3419-3425, 1995.

S. Latour, H. Tanaka, and C. Demeure, Bidirectional Negative Regulation of Human T and Dendritic Cells by CD47 and Its Cognate Receptor Signal-Regulator Protein-??: Down-Regulation of IL-12 Responsiveness and Inhibition of Dendritic Cell Activation, The Journal of Immunology, vol.167, issue.5, pp.2547-2554, 2001.
DOI : 10.4049/jimmunol.167.5.2547

L. Lamy, A. Foussat, E. J. Brown, P. Bornstein, M. Ticchioni et al., Interactions between CD47 and Thrombospondin Reduce Inflammation, The Journal of Immunology, vol.178, issue.9, pp.5930-5939, 2007.
DOI : 10.4049/jimmunol.178.9.5930

URL : http://www.jimmunol.org/content/jimmunol/178/9/5930.full.pdf

P. Oldenborg, H. D. Gresham, and F. D. Lindberg, Cd47-Signal Regulatory Protein ?? (Sirp??) Regulates Fc?? and Complement Receptor???Mediated Phagocytosis, The Journal of Experimental Medicine, vol.8, issue.7, pp.855-862, 2001.
DOI : 10.1016/S0092-8674(00)81357-4

URL : http://jem.rupress.org/content/jem/193/7/855.full.pdf

P. P. Manna, J. Dimitry, P. Oldenborg, and W. A. Frazier, CD47 Augments Fas/CD95-mediated Apoptosis, Journal of Biological Chemistry, vol.263, issue.33, pp.29637-29644, 2005.
DOI : 10.1023/A:1025598609965

URL : http://www.jbc.org/content/280/33/29637.full.pdf

S. Pluchino and G. Martino, Neural stem cell-mediated immunomodulation: repairing the haemorrhagic brain, Brain, vol.131, issue.3, pp.604-605, 2008.
DOI : 10.1093/brain/awn015

URL : https://academic.oup.com/brain/article-pdf/131/3/604/908296/awn015.pdf

J. Ourednik, V. Ourednik, W. P. Lynch, M. Schachner, and E. Y. Snyder, Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons, Nature Biotechnology, vol.17, issue.Suppl. 1, pp.1103-1110, 2002.
DOI : 10.1002/aja.1001370106

P. Lu, L. L. Jones, E. Y. Snyder, and M. H. Tuszynski, Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury, Experimental Neurology, vol.181, issue.2, pp.115-129, 2003.
DOI : 10.1016/S0014-4886(03)00037-2

G. Martino and S. Pluchino, The therapeutic potential of neural stem cells, Nature Reviews Neuroscience, vol.270, issue.Suppl. 1, pp.395-406, 2006.
DOI : 10.1074/jbc.270.8.3710

S. Pluchino, L. Zanotti, and B. Rossi, Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism, Nature, vol.12, issue.suppl., pp.266-271, 2005.
DOI : 10.1046/j.1460-9568.2000.00894.x

C. Zhao, W. Deng, and F. H. Gage, Mechanisms and Functional Implications of Adult Neurogenesis, Cell, vol.132, issue.4, pp.645-660, 2008.
DOI : 10.1016/j.cell.2008.01.033

URL : https://doi.org/10.1016/j.cell.2008.01.033

A. Alvarez-buylla and D. A. Lim, For the Long Run, Neuron, vol.41, issue.5, pp.683-686, 2004.
DOI : 10.1016/S0896-6273(04)00111-4

J. Imitola, M. Comabella, and A. K. Chandraker, Neural Stem/Progenitor Cells Express Costimulatory Molecules That Are Differentially Regulated by Inflammatory and Apoptotic Stimuli, The American Journal of Pathology, vol.164, issue.5, pp.1615-1625, 2004.
DOI : 10.1016/S0002-9440(10)63720-0

URL : http://europepmc.org/articles/pmc1615661?pdf=render

G. Moalem, A. Gdalyahu, and Y. Shani, Production of Neurotrophins by Activated T Cells: Implications for Neuroprotective Autoimmunity, Journal of Autoimmunity, vol.15, issue.3, pp.331-345, 2000.
DOI : 10.1006/jaut.2000.0441

J. Kipnis, T. Mizrahi, E. Hauben, I. Shaked, E. Shevach et al., Nonlinear partial differential equations and applications: Neuroprotective autoimmunity: Naturally occurring CD4+CD25+ regulatory T cells suppress the ability to withstand injury to the central nervous system, Proceedings of the National Academy of Sciences, vol.167, issue.8, pp.15620-15625, 2002.
DOI : 10.4049/jimmunol.167.8.4187

URL : http://www.pnas.org/content/99/24/15620.full.pdf

F. Powrie and K. J. Maloy, IMMUNOLOGY: Regulating the Regulators, Science, vol.299, issue.5609, pp.1030-1031, 2003.
DOI : 10.1126/science.1082031

M. Kerschensteiner, E. Gallmeier, and L. Behrens, Activated Human T Cells, B Cells, and Monocytes Produce Brain-derived Neurotrophic Factor In Vitro and in Inflammatory Brain Lesions: A Neuroprotective Role of Inflammation?, The Journal of Experimental Medicine, vol.58, issue.5, pp.865-870, 1999.
DOI : 10.1093/brain/120.5.865

M. Kerschensteiner, C. Stadelmann, G. Dechant, H. Wekerle, and R. Hohlfeld, Neurotrophic cross-talk between the nervous and immune systems: Implications for neurological diseases, Annals of Neurology, vol.112, issue.3, pp.292-304, 2003.
DOI : 10.1016/S0165-5728(00)00408-2

C. Stadelmann, M. Kerschensteiner, T. Misgeld, W. Brück, R. Hohlfeld et al., BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells?, Brain, vol.125, issue.1, pp.75-85, 2002.
DOI : 10.1016/0306-4522(96)00237-0

URL : https://academic.oup.com/brain/article-pdf/125/1/75/17864664/1250075.pdf

H. Hammarberg, O. Lidman, and C. Lundberg, Neuroprotection by Encephalomyelitis: Rescue of Mechanically Injured Neurons and Neurotrophin Production by CNS-Infiltrating T and Natural Killer Cells, The Journal of Neuroscience, vol.20, issue.14, pp.5283-5291, 2000.
DOI : 10.1523/JNEUROSCI.20-14-05283.2000

URL : http://www.jneurosci.org/content/20/14/5283.full.pdf

E. Polazzi, L. E. Altamira, and S. Eleuteri, Neuroprotection of microglial conditioned medium on 6-hydroxydopamine-induced neuronal death: role of transforming growth factor beta-2, Journal of Neurochemistry, vol.11, issue.2, pp.545-556, 2009.
DOI : 10.1515/REVNEURO.2002.13.3.221

M. Aharonowiz, O. Einstein, N. Fainstein, H. Lassmann, B. Reubinoff et al., Neuroprotective Effect of Transplanted Human Embryonic Stem Cell-Derived Neural Precursors in an Animal Model of Multiple Sclerosis, PLoS ONE, vol.10, issue.9, 2008.
DOI : 10.1371/journal.pone.0003145.t002

E. Gonzalez-rey, M. A. Gonzalez, and N. Varela, Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis, Annals of the Rheumatic Diseases, vol.69, issue.01, pp.241-248, 2010.
DOI : 10.1136/ard.2008.101881

K. Sato, K. Ozaki, and I. Oh, Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells, Blood, vol.109, issue.1, pp.228-234, 2007.
DOI : 10.1182/blood-2006-02-002246

URL : http://www.bloodjournal.org/content/bloodjournal/109/1/228.full.pdf

G. Ren, L. Zhang, and X. Zhao, Mesenchymal Stem Cell-Mediated Immunosuppression Occurs via Concerted Action of Chemokines and Nitric Oxide, Cell Stem Cell, vol.2, issue.2, pp.141-150, 2008.
DOI : 10.1016/j.stem.2007.11.014

URL : https://doi.org/10.1016/j.stem.2007.11.014

J. Kim, S. Hong, and B. Lee, The inhibition of T-cells proliferation by mouse mesenchymal stem cells through the induction of p16INK4A-cyclin D1/cdk4 and p21waf1, p27kip1-cyclin E/cdk2 pathways, Cellular Immunology, vol.245, issue.1, pp.16-23, 2007.
DOI : 10.1016/j.cellimm.2007.03.003

B. T. Kawasaki, T. Mistree, E. M. Hurt, M. Kalathur, and W. L. Farrar, Co-expression of the toleragenic glycoprotein, CD200, with markers for cancer stem cells, Biochemical and Biophysical Research Communications, vol.364, issue.4, pp.778-782, 2007.
DOI : 10.1016/j.bbrc.2007.10.067

URL : http://europepmc.org/articles/pmc2168034?pdf=render

S. J. Morrison and A. C. Spradling, Stem Cells and Niches: Mechanisms That Promote Stem Cell Maintenance throughout Life, Cell, vol.132, issue.4, pp.598-611, 2008.
DOI : 10.1016/j.cell.2008.01.038

URL : https://doi.org/10.1016/j.cell.2008.01.038

E. D. Laywell, P. Rakic, V. G. Kukekov, E. C. Holland, and D. A. Steindler, Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain, Proceedings of the National Academy of Sciences, vol.16, issue.11, pp.13883-13888, 2000.
DOI : 10.1038/3481

F. Doetsch, J. M. García-verdugo, and A. Alvarez-buylla, Cellular Composition and Three-Dimensional Organization of the Subventricular Germinal Zone in the Adult Mammalian Brain, The Journal of Neuroscience, vol.17, issue.13, pp.5046-5061, 1997.
DOI : 10.1523/JNEUROSCI.17-13-05046.1997

D. A. Lim, A. D. Tramontin, J. M. Trevejo, D. G. Herrera, J. M. García-verdugo et al., Noggin Antagonizes BMP Signaling to Create a Niche for Adult Neurogenesis, Neuron, vol.28, issue.3, pp.713-726, 2000.
DOI : 10.1016/S0896-6273(00)00148-3

URL : https://doi.org/10.1016/s0896-6273(00)00148-3

R. Reca, D. Mastellos, and M. Majka, Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1, Blood, vol.101, issue.10, pp.3784-3793, 2003.
DOI : 10.1182/blood-2002-10-3233

URL : http://www.bloodjournal.org/content/bloodjournal/101/10/3784.full.pdf

M. Kucia, R. Reca, and K. Miekus, Trafficking of Normal Stem Cells and Metastasis of Cancer Stem Cells Involve Similar Mechanisms: Pivotal Role of the SDF-1-CXCR4 Axis, Stem Cells, vol.27, issue.7, pp.879-894, 2005.
DOI : 10.1016/j.mcn.2004.07.004

J. D. Abbott, Y. Huang, D. Liu, R. Hickey, D. S. Krause et al., Stromal Cell-Derived Factor-1?? Plays a Critical Role in Stem Cell Recruitment to the Heart After Myocardial Infarction but Is Not Sufficient to Induce Homing in the Absence of Injury, Circulation, vol.110, issue.21, pp.3300-3305, 2004.
DOI : 10.1161/01.CIR.0000147780.30124.CF

W. D. Hill, D. C. Hess, and A. Martin-studdard, SDF-1 (CXCL12) Is Upregulated in the Ischemic Penumbra Following Stroke: Association with Bone Marrow Cell Homing to Injury, Journal of Neuropathology & Experimental Neurology, vol.65, issue.1, pp.84-96, 2004.
DOI : 10.1016/S0006-8993(01)02328-9

URL : https://academic.oup.com/jnen/article-pdf/63/1/84/9554737/63-1-84.pdf

N. Wright, T. L. De-lera, and C. García-moruja, Transforming growth factor-??1 down-regulates expression of chemokine stromal cell-derived factor-1: functional consequences in cell migration and adhesion, Blood, vol.102, issue.6, pp.1978-1984, 2003.
DOI : 10.1182/blood-2002-10-3190

URL : http://www.bloodjournal.org/content/bloodjournal/102/6/1978.full.pdf

M. Z. Ratajczak, R. Reca, M. Wysoczynski, J. Yan, and J. Ratajczak, Modulation of the SDF-1???CXCR4 axis by the third complement component (C3)???Implications for trafficking of CXCR4+ stem cells, Experimental Hematology, vol.34, issue.8, pp.986-995, 2006.
DOI : 10.1016/j.exphem.2006.03.015

K. Zhang, S. Junnikkala, and M. G. Erlander, Up-regulated expression of decay-accelerating factor (CD55) confers increased complement resistance to sprouting neural cells, European Journal of Immunology, vol.14, issue.4, pp.1189-1196, 1998.
DOI : 10.1007/978-3-7091-6842-4_17

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291521-4141%28199804%2928%3A04%3C1189%3A%3AAID-IMMU1189%3E3.0.CO%3B2-D

P. H. Wang, T. T. Schwindt, and G. F. Barnabé, Administration of Neural Precursor Cells Ameliorates Renal Ischemia-Reperfusion Injury, Nephron Experimental Nephrology, vol.112, issue.1, pp.20-28, 2009.
DOI : 10.1159/000210575

O. Einstein, N. Grigoriadis, and R. Mizrachi, Transplanted neural precursor cells reduce brain inflammation to attenuate chronic experimental autoimmune encephalomyelitis, Experimental Neurology, vol.198, issue.2, pp.275-284, 2006.
DOI : 10.1016/j.expneurol.2005.11.007

O. Einstein, N. Fainstein, and I. Vaknin, Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression, Annals of Neurology, vol.20, issue.pt 1, pp.209-218, 2007.
DOI : 10.4049/jimmunol.169.10.5415

I. Kassis, N. Grigoriadis, and B. Gowda-kurkalli, Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis Soluble mediators from human neural stem cells play a critical role in suppression of T-cell activation and proliferation, Archives of Neurology Journal of Neuroscience Research, vol.65, issue.87 10, pp.753-761, 2008.

W. F. Hickey and H. Kimura, Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo, Science, vol.239, issue.4837, pp.290-292, 1988.
DOI : 10.1126/science.3276004

M. Djukic, A. Mildner, and H. Schmidt, Circulating monocytes engraft in the brain, differentiate into microglia and contribute to the pathology following meningitis in mice, Brain, vol.129, issue.9, pp.2394-2403, 2006.
DOI : 10.1093/brain/awl206

N. J. Robertson, F. A. Brook, R. L. Gardner, S. P. Cobbold, H. Waldmann et al., Embryonic stem cell-derived tissues are immunogenic but their inherent immune privilege promotes the induction of tolerance, Proceedings of the National Academy of Sciences, vol.172, issue.4, pp.20920-20925, 2007.
DOI : 10.4049/jimmunol.172.4.2201

URL : http://www.pnas.org/content/104/52/20920.full.pdf

A. Setzu, J. D. Lathia, and C. Zhao, Inflammation stimulates myelination by transplanted oligodendrocyte precursor cells, Glia, vol.207, issue.4, pp.297-303, 2006.
DOI : 10.1093/jnen/61.7.623

I. Glezer, A. Lapointe, and S. Rivest, Innate immunity triggers oligodendrocyte progenitor reactivity and confines damages to brain injuries, The FASEB Journal, vol.20, issue.6, pp.750-752, 2006.
DOI : 10.1096/fj.05-5234fje