H. Murray, J. Berman, C. Davies, and N. Saravia, Advances in leishmaniasis, The Lancet, vol.366, issue.9496, pp.1561-1577, 2005.
DOI : 10.1016/S0140-6736(05)67629-5

S. Duclos and M. Desjardins, Subversion of a young phagosome: the survival strategies of intracellular pathogens. Microreview, Cellular Microbiology, vol.153, issue.5, pp.365-377, 2000.
DOI : 10.1146/annurev.micro.48.1.449

M. Olivier, D. Gregory, and G. Forget, Subversion Mechanisms by Which Leishmania Parasites Can Escape the Host Immune Response: a Signaling Point of View, Clinical Microbiology Reviews, vol.18, issue.2, pp.293-305, 2005.
DOI : 10.1128/CMR.18.2.293-305.2005

N. Peters and D. Sacks, The impact of vector-mediated neutrophil recruitment on cutaneous leishmaniasis, Cellular Microbiology, vol.40, issue.Suppl., pp.1290-1296, 2009.
DOI : 10.4049/jimmunol.173.11.6521

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1462-5822.2009.01348.x/pdf

I. Moreno, M. Dominguez, D. Cabanes, C. Aizpurua, and A. Torano, Kinetic Analysis of Ex Vivo Human Blood Infection by Leishmania, PLoS Neglected Tropical Diseases, vol.21, issue.7, p.743, 2010.
DOI : 10.1371/journal.pntd.0000743.s006

URL : https://doi.org/10.1371/journal.pntd.0000743

N. Reiner, W. Ng, and W. Mcmaster, Parasite-accessory cell interactions in murine leishmaniasis. II. Leishmania donovani suppresses macrophage expression of class I and class II major histocompatibility complex gene products, J Immunol, vol.138, pp.1926-1932, 1987.

P. Kaye, N. Rogers, A. Curry, and J. Scott, Deficient expression of co-stimulatory molecules onLeishmania-infected macrophages, European Journal of Immunology, vol.5, issue.11, pp.2850-2854, 1994.
DOI : 10.1146/annurev.iy.07.040189.002305

S. Bhardwaj, N. Srivastava, R. Sudan, and B. Saha, Leishmania interferes with host cell signaling to devise a survival strategy, J Biomed Biotechnol, p.109189, 2010.
DOI : 10.1155/2010/109189

URL : http://doi.org/10.1155/2010/109189

M. Shadab and N. Ali, : Subversion of Signaling Pathways, Molecular Biology International, vol.17, issue.19, p.343961, 2011.
DOI : 10.1371/journal.pntd.0000305

M. Shio, K. Hassani, A. Isnard, B. Ralph, and I. Contreras, Host cell signalling and leishmania mechanisms of evasion, J Trop Med, vol.2012, p.819512, 2012.
DOI : 10.1155/2012/819512

URL : http://downloads.hindawi.com/journals/jtm/2012/819512.pdf

C. Bogdan, Mechanisms and consequences of persistence of intracellular pathogens: leishmaniasis as an example, Cellular Microbiology, vol.166, issue.6, pp.1221-1234, 2008.
DOI : 10.1038/nm1108

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1462-5822.2008.01146.x/pdf

M. Teixeira, C. Teixeira, B. Andrade, M. Barral-netto, and A. Barral, Chemokines in host???parasiteinteractions in leishmaniasis, Trends in Parasitology, vol.22, issue.1, pp.32-40, 2006.
DOI : 10.1016/j.pt.2005.11.010

M. Mcconville and T. Naderer, Annual Review of Microbiology, vol.65, issue.1, pp.543-561, 2011.
DOI : 10.1146/annurev-micro-090110-102913

K. Moore and G. Matlashewski, Intracellular infection by Leishmania donovani inhibits macrophage apoptosis, J Immunol, vol.152, pp.2930-2937, 1994.

F. Guerfali, D. Laouini, L. Guizani-tabbane, F. Ottones, and K. Ben-aissa, Simultaneous gene expression profiling in human macrophages infected with Leishmania major parasites using SAGE, BMC Genomics, vol.9, issue.1, p.238, 2008.
DOI : 10.1186/1471-2164-9-238

URL : https://hal.archives-ouvertes.fr/hal-00289936

K. Akarid, D. Arnoult, J. Micic-polianski, J. Sif, and J. Estaquier, -mediated prevention of programmed cell death induction in infected macrophages is associated with the repression of mitochondrial release of cytochrome c, Journal of Leukocyte Biology, vol.169, issue.1, pp.95-103, 2004.
DOI : 10.4049/jimmunol.169.2.898

A. Ruhland, N. Leal, and P. Kima, Leishmania promastigotes activate PI3K/Akt signalling to confer host cell resistance to apoptosis, Cellular Microbiology, vol.174, issue.1, pp.84-96, 2007.
DOI : 10.4049/jimmunol.174.12.7939

C. Barbato, I. Arisi, M. Frizzo, R. Brandi, D. Sacco et al., Computational Challenges in miRNA Target Predictions: To Be or Not to Be a True Target?, Journal of Biomedicine and Biotechnology, vol.4, issue.2, p.803069, 2009.
DOI : 10.1038/nbt1417

A. Krek, D. Grun, M. Poy, R. Wolf, and L. Rosenberg, Combinatorial microRNA target predictions, Nature Genetics, vol.32, issue.5, pp.495-500, 2005.
DOI : 10.1093/nar/gkh023

B. Lewis, C. Burge, and D. Bartel, Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets, Cell, vol.120, issue.1, pp.15-20, 2005.
DOI : 10.1016/j.cell.2004.12.035

V. Scaria, M. Hariharan, S. Maiti, B. Pillai, and S. Brahmachari, Host-virus interaction: a new role for microRNAs, Retrovirology, vol.3, issue.1, p.68, 2006.
DOI : 10.1186/1742-4690-3-68

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1462-5822.2007.01050.x/pdf

R. Skalsky and B. Cullen, Viruses, microRNAs, and Host Interactions, Annual Review of Microbiology, vol.64, issue.1, pp.123-141, 2010.
DOI : 10.1146/annurev.micro.112408.134243

URL : http://europepmc.org/articles/pmc3621958?pdf=render

S. Katiyar-agarwal and J. H. , Role of Small RNAs in Host-Microbe Interactions, Annual Review of Phytopathology, vol.48, issue.1, pp.225-246, 2010.
DOI : 10.1146/annurev-phyto-073009-114457

URL : http://europepmc.org/articles/pmc3752435?pdf=render

A. Eulalio, L. Schulte, and J. Vogel, The mammalian microRNA response to bacterial infections, RNA Biology, vol.9, issue.6, pp.742-750, 2012.
DOI : 10.4161/rna.20018

URL : http://www.tandfonline.com/doi/pdf/10.4161/rna.20018?needAccess=true

M. Hakimi and D. Cannella, Apicomplexan parasites and subversion of the host cell microRNA pathway, Trends in Parasitology, vol.27, issue.11, pp.481-486, 2011.
DOI : 10.1016/j.pt.2011.07.001

G. Zeiner, K. Norman, J. Thomson, S. Hammond, and J. Boothroyd, Toxoplasma gondii Infection Specifically Increases the Levels of Key Host MicroRNAs, PLoS ONE, vol.5, issue.1, p.8742, 2010.
DOI : 10.1371/journal.pone.0008742.s004

URL : https://doi.org/10.1371/journal.pone.0008742

M. Nahid, M. Satoh, and E. Chan, MicroRNA in TLR signaling and endotoxin tolerance, Cellular & Molecular Immunology, vol.392, issue.5, pp.388-403, 2011.
DOI : 10.1038/nature09121

URL : http://www.nature.com/cmi/journal/v8/n5/pdf/cmi201126a.pdf

Y. Liu and W. Kao, Human macrophage adhesion on fibronectin, Cellular Signalling, vol.14, issue.2, pp.145-152, 2002.
DOI : 10.1016/S0898-6568(01)00246-7

G. Spath and S. Beverley, A Lipophosphoglycan-Independent Method for Isolation of Infective Leishmania Metacyclic Promastigotes by Density Gradient Centrifugation, Experimental Parasitology, vol.99, issue.2, pp.97-103, 2001.
DOI : 10.1006/expr.2001.4656

L. Hulten, F. Olson, H. Aberg, J. Carlsson, and L. Karlstrom, 15-Lipoxygenase-2 is expressed in macrophages in human carotid plaques and regulated by hypoxia-inducible factor-1????, European Journal of Clinical Investigation, vol.195, issue.1, pp.11-17, 2010.
DOI : 10.1161/01.ATV.20.9.2100

M. Daigneault, J. Preston, H. Marriott, M. Whyte, and D. Dockrell, The Identification of Markers of Macrophage Differentiation in PMA-Stimulated THP-1 Cells and Monocyte-Derived Macrophages, PLoS ONE, vol.5, issue.1, p.8668, 2010.
DOI : 10.1371/journal.pone.0008668.t001

J. Vandesompele, D. Preter, K. Pattyn, F. Poppe, B. et al., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol, vol.3, p.34, 2002.

A. Saeed, V. Sharov, J. White, J. Li, and W. Liang, TM4: a free, opensource system for microarray data management and analysis, Biotechniques, vol.34, pp.374-378, 2003.

H. Dweep, C. Sticht, P. Pandey, and N. Gretz, miRWalk ??? Database: Prediction of possible miRNA binding sites by ???walking??? the genes of three genomes, Journal of Biomedical Informatics, vol.44, issue.5, pp.839-847, 2011.
DOI : 10.1016/j.jbi.2011.05.002

D. Lynn, G. Winsor, C. Chan, N. Richard, and M. Laird, InnateDB: facilitating systems-level analyses of the mammalian innate immune response, Molecular Systems Biology, vol.36, p.218, 2008.
DOI : 10.1038/ni1087

URL : http://msb.embopress.org/content/msb/4/1/218.full.pdf

S. Maere, K. Heymans, and M. Kuiper, BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks, Bioinformatics, vol.5, issue.4, pp.3448-3449, 2005.
DOI : 10.1186/1471-2105-5-16

URL : https://academic.oup.com/bioinformatics/article-pdf/21/16/3448/573651/bti551.pdf

P. Shannon, A. Markiel, O. Ozier, N. Baliga, and J. Wang, Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks, Genome Research, vol.13, issue.11, pp.2498-2504, 2003.
DOI : 10.1101/gr.1239303

URL : http://genome.cshlp.org/content/13/11/2498.full.pdf

M. Smoot, K. Ono, J. Ruscheinski, P. Wang, and T. Ideker, Cytoscape 2.8: new features for data integration and network visualization, Bioinformatics, vol.104, issue.4, pp.431-432, 2011.
DOI : 10.1073/pnas.0606914104

J. Wang, M. Lu, C. Qiu, and Q. Cui, TransmiR: a transcription factor???microRNA regulation database, Nucleic Acids Research, vol.36, issue.suppl_1, pp.119-122, 2010.
DOI : 10.1093/nar/gkm995

URL : https://academic.oup.com/nar/article-pdf/38/suppl_1/D119/11217661/gkp803.pdf

A. Whitney, M. Diehn, S. Popper, A. Alizadeh, and J. Boldrick, Individuality and variation in gene expression patterns in human blood, Proceedings of the National Academy of Sciences, vol.18, issue.2, pp.1896-1901, 2003.
DOI : 10.1038/ng0298-91

URL : http://www.pnas.org/content/100/4/1896.full.pdf

N. Turan, S. Katari, C. Coutifaris, and C. Sapienza, Explaining inter-individual variability in phenotype: Is epigenetics up to the challenge?, Epigenetics, vol.5, issue.1, pp.16-19, 2010.
DOI : 10.4161/epi.5.1.10557

URL : http://www.tandfonline.com/doi/pdf/10.4161/epi.5.1.10557?needAccess=true

C. Stratz, T. Nuhrenberg, H. Binder, C. Valina, and D. Trenk, Summary, Thrombosis and Haemostasis, vol.107, issue.04, pp.634-641, 2012.
DOI : 10.1160/TH11-10-0742

D. Nandan, C. De-oliveira, C. Moeenrezakhanlou, A. Lopez, M. Silverman et al., Myeloid Cell IL-10 Production in Response to Leishmania Involves Inactivation of Glycogen Synthase Kinase-3?? Downstream of Phosphatidylinositol-3 Kinase, The Journal of Immunology, vol.188, issue.1, pp.367-378, 2012.
DOI : 10.4049/jimmunol.1100076

A. Singh, C. Mukhopadhyay, S. Biswas, V. Singh, and C. Mukhopadhyay, Intracellular Pathogen Leishmania donovani Activates Hypoxia Inducible Factor-1 by Dual Mechanism for Survival Advantage within Macrophage, PLoS ONE, vol.209, issue.9, p.38489, 2012.
DOI : 10.1371/journal.pone.0038489.g007

URL : https://doi.org/10.1371/journal.pone.0038489

T. Calegari-silva, R. Pereira, L. De-melo, E. Saraiva, and D. Soares, NF-??B-mediated repression of iNOS expression in Leishmania amazonensis macrophage infection, Immunology Letters, vol.127, issue.1, pp.19-26, 2009.
DOI : 10.1016/j.imlet.2009.08.009

A. Cheng, M. Byrom, J. Shelton, and L. Ford, Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis, Nucleic Acids Research, vol.33, issue.4, pp.1290-1297, 2005.
DOI : 10.1093/nar/gki200

M. Crawford, K. Batte, L. Yu, X. Wu, and G. Nuovo, MicroRNA 133B targets pro-survival molecules MCL-1 and BCL2L2 in lung cancer, Biochemical and Biophysical Research Communications, vol.388, issue.3, pp.483-489, 2009.
DOI : 10.1016/j.bbrc.2009.07.143

URL : http://europepmc.org/articles/pmc2824514?pdf=render

Y. Chan, J. Banerjee, and S. Choi, miR-210: The Master Hypoxamir, Microcirculation, vol.8, issue.Suppl 1, pp.215-223
DOI : 10.4161/cc.8.17.9387

A. Degrossoli, M. Bosetto, C. Lima, and G. S. , Expression of hypoxia-inducible factor 1?? in mononuclear phagocytes infected with Leishmania amazonensis, Immunology Letters, vol.114, issue.2, pp.119-125, 2007.
DOI : 10.1016/j.imlet.2007.09.009

F. Bazzoni, M. Rossato, M. Fabbri, D. Gaudiosi, and M. Mirolo, Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals, Proceedings of the National Academy of Sciences, vol.167, issue.4, pp.5282-5287, 2009.
DOI : 10.4049/jimmunol.167.4.2312

URL : http://www.pnas.org/content/106/13/5282.full.pdf

S. Quinn, O. Neill, and L. , A trio of microRNAs that control Toll-like receptor signalling, International Immunology, vol.285, issue.27, pp.421-425, 2011.
DOI : 10.1074/jbc.M110.102111

URL : https://academic.oup.com/intimm/article-pdf/23/7/421/1965508/dxr034.pdf

K. Taganov, M. Boldin, K. Chang, and D. Baltimore, NF-??B-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses, Proceedings of the National Academy of Sciences, vol.21, issue.19, pp.12481-12486, 2006.
DOI : 10.1093/emboj/cdf505

E. Tili, J. Michaille, A. Cimino, S. Costinean, and C. Dumitru, Modulation of miR-155 and miR-125b Levels following Lipopolysaccharide/TNF-?? Stimulation and Their Possible Roles in Regulating the Response to Endotoxin Shock, The Journal of Immunology, vol.179, issue.8, pp.5082-5089, 2007.
DOI : 10.4049/jimmunol.179.8.5082

O. Connell, R. Taganov, K. Boldin, M. Cheng, G. Baltimore et al., MicroRNA-155 is induced during the macrophage inflammatory response, Proceedings of the National Academy of Sciences, vol.309, issue.5742, pp.1604-1609, 2007.
DOI : 10.1126/science.1112304

M. Ceppi, P. Pereira, I. Dunand-sauthier, E. Barras, and W. Reith, MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells, Proceedings of the National Academy of Sciences, vol.8, issue.8, pp.2735-2740, 2009.
DOI : 10.1182/blood-2004-04-1448

URL : https://hal.archives-ouvertes.fr/hal-00407802

L. Schulte, A. Westermann, and J. Vogel, Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing, Nucleic Acids Research, vol.30, issue.1, pp.542-553, 2012.
DOI : 10.1016/j.it.2009.07.009

URL : https://academic.oup.com/nar/article-pdf/41/1/542/3955826/gks1030.pdf

A. Wanet, A. Tacheny, T. Arnould, and R. P. , miR-212/132 expression and functions: within and beyond the neuronal compartment, Nucleic Acids Research, vol.23, issue.4, pp.4742-4753, 2012.
DOI : 10.1177/039463201002300427

URL : https://academic.oup.com/nar/article-pdf/40/11/4742/7167510/gks151.pdf

M. Faria, F. Reis, and A. Lima, Toll-like receptors in leishmania infections: guardians or promoters?, J Parasitol Res, vol.2012, p.930257, 2012.
DOI : 10.1155/2012/930257

URL : https://doi.org/10.1155/2012/930257

C. Gallego, D. Golenbock, M. Gomez, and N. Saravia, ABSTRACT, Infection and Immunity, vol.79, issue.7, pp.2871-2879, 2011.
DOI : 10.1128/IAI.01388-10

S. Srivastav, S. Kar, A. Chande, R. Mukhopadhyaya, and P. Das, Leishmania donovani Exploits Host Deubiquitinating Enzyme A20, a Negative Regulator of TLR Signaling, To Subvert Host Immune Response, The Journal of Immunology, vol.189, issue.2, pp.924-934, 2012.
DOI : 10.4049/jimmunol.1102845

URL : http://www.jimmunol.org/content/jimmunol/189/2/924.full.pdf

K. Reinhard, M. Huber, M. Lohoff, and A. Visekruna, The role of NF-??B activation during protection against Leishmania infection, International Journal of Medical Microbiology, vol.302, issue.4-5, pp.230-235, 2012.
DOI : 10.1016/j.ijmm.2012.07.006

J. Ji, J. Sun, and L. Soong, Impaired Expression of Inflammatory Cytokines and Chemokines at Early Stages of Infection with Leishmania amazonensis, Infection and Immunity, vol.71, issue.8, pp.4278-4288, 2003.
DOI : 10.1128/IAI.71.8.4278-4288.2003

URL : http://iai.asm.org/content/71/8/4278.full.pdf

D. Gregory, M. Godbout, I. Contreras, G. Forget, and M. Olivier, A novel form of NF-??B is induced byLeishmaniainfection: Involvement in macrophage gene expression, European Journal of Immunology, vol.169, issue.4, pp.1071-1081, 2008.
DOI : 10.4049/jimmunol.169.12.7026

URL : http://onlinelibrary.wiley.com/doi/10.1002/eji.200737586/pdf

B. Neves, R. Silvestre, M. Resende, A. Ouaissi, and J. Cunha, Activation of Phosphatidylinositol 3-Kinase/Akt and Impairment of Nuclear Factor-??B, The American Journal of Pathology, vol.177, issue.6, pp.2898-2911, 2010.
DOI : 10.2353/ajpath.2010.100367

URL : http://europepmc.org/articles/pmc2993270?pdf=render

L. Guizani-tabbane, K. Ben-aissa, M. Belghith, A. Sassi, and K. Dellagi, Leishmania major Amastigotes Induce p50/c-Rel NF-??B Transcription Factor in Human Macrophages: Involvement in Cytokine Synthesis, Infection and Immunity, vol.72, issue.5, pp.2582-2589, 2004.
DOI : 10.1128/IAI.72.5.2582-2589.2004

URL : http://iai.asm.org/content/72/5/2582.full.pdf

W. Filipowicz, S. Bhattacharyya, and N. Sonenberg, Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?, Nature Reviews Genetics, vol.131, issue.2, pp.102-114, 2008.
DOI : 10.1038/ncb1333

H. Guo, N. Ingolia, J. Weissman, and D. Bartel, Mammalian microRNAs predominantly act to decrease target mRNA levels, Nature, vol.5, issue.7308, pp.835-840, 2010.
DOI : 10.1038/nature09267

URL : http://europepmc.org/articles/pmc2990499?pdf=render

E. Huntzinger and E. Izaurralde, Gene silencing by microRNAs: contributions of translational repression and mRNA decay, Nature Reviews Genetics, vol.457, issue.2, pp.99-110, 2011.
DOI : 10.1038/nature07755

R. Kumar, R. Bumb, and P. Salotra, Evaluation of localized and systemic immune responses in cutaneous leishmaniasis caused by Leishmania tropica: interleukin-8, monocyte chemotactic protein-1 and nitric oxide are major regulatory factors, Immunology, vol.50, issue.2, pp.193-201, 2010.
DOI : 10.1093/infdis/173.3.699

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2567.2009.03223.x/pdf

U. Ritter and H. Moll, Monocyte chemotactic protein-1 stimulates the killing of Leishmania major by human monocytes, acts synergistically with IFN-?? and is antagonized by IL-4, European Journal of Immunology, vol.184, issue.11, pp.3111-3120, 2000.
DOI : 10.1084/jem.184.3.1191

O. Brandonisio, M. Panaro, I. Fumarola, M. Sisto, and D. Leogrande, Macrophage chemotactic protein-1 and macrophage inflammatory protein-1 alpha induce nitric oxide release and enhance parasite killing in Leishmania infantum-infected human macrophages, Clinical and Experimental Medicine, vol.2, issue.3, pp.125-129, 2002.
DOI : 10.1007/s102380200017

D. Vargas-inchaustegui, A. Hogg, G. Tulliano, A. Llanos-cuentas, and J. Arevalo, CXCL10 Production by Human Monocytes in Response to Leishmania braziliensis Infection, Infection and Immunity, vol.78, issue.1, pp.301-308, 2010.
DOI : 10.1128/IAI.00959-09

URL : http://iai.asm.org/content/78/1/301.full.pdf

U. Ritter and H. Korner, Divergent expression of inflammatory dermal chemokines in cutaneous leishmaniasis*, Parasite Immunology, vol.166, issue.6, pp.295-301, 2002.
DOI : 10.1084/jem.192.2.205

G. Tan, Y. Shi, and Z. Wu, MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN, Biochemical and Biophysical Research Communications, vol.417, issue.1, pp.546-551, 2012.
DOI : 10.1016/j.bbrc.2011.11.160

URL : http://europepmc.org/articles/pmc3259290?pdf=render

H. Zhang, Z. Zuo, X. Lu, L. Wang, and H. Wang, MiR-25 regulates apoptosis by targeting Bim in human ovarian cancer, Oncol Rep, vol.27, pp.594-598, 2012.

M. Koch, H. Mollenkopf, U. Klemm, and T. Meyer, Induction of microRNA-155 is TLR- and type IV secretion system-dependent in macrophages and inhibits DNA-damage induced apoptosis, Proceedings of the National Academy of Sciences, vol.187, issue.7, pp.1153-1162, 2012.
DOI : 10.4049/jimmunol.1101772

URL : http://www.pnas.org/content/109/19/E1153.full.pdf

R. Kulshreshtha, M. Ferracin, S. Wojcik, R. Garzon, and H. Alder, A MicroRNA Signature of Hypoxia, Molecular and Cellular Biology, vol.27, issue.5, pp.1859-1867, 2007.
DOI : 10.1128/MCB.01395-06

URL : http://mcb.asm.org/content/27/5/1859.full.pdf

Z. Yang, L. Wu, X. Zhu, J. Xu, and R. Jin, MiR-29a modulates the angiogenic properties of human endothelial cells, Biochemical and Biophysical Research Communications, vol.434, issue.1, pp.143-149, 2013.
DOI : 10.1016/j.bbrc.2013.03.054

URL : http://europepmc.org/articles/pmc3646542?pdf=render

H. Peng, R. Hamanaka, J. Katsnelson, L. Hao, and W. Yang, MicroRNA-31 targets FIH-1 to positively regulate corneal epithelial glycogen metabolism, The FASEB Journal, vol.23, issue.8, pp.3140-3147, 2012.
DOI : 10.1152/ajpcell.00100.2006

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405266/pdf

I. Babar, J. Czochor, A. Steinmetz, J. Weidhaas, and P. Glazer, Inhibition of hypoxia-induced miR-155 radiosensitizes hypoxic lung cancer cells, Cancer Biology & Therapy, vol.8, issue.10, pp.908-914, 2011.
DOI : 10.1038/nprot.2006.339

URL : http://www.tandfonline.com/doi/pdf/10.4161/cbt.12.10.17681?needAccess=true

E. Aga, D. Katschinski, G. Van-zandbergen, H. Laufs, and B. Hansen, Inhibition of the Spontaneous Apoptosis of Neutrophil Granulocytes by the Intracellular Parasite Leishmania major, The Journal of Immunology, vol.169, issue.2, pp.898-905, 2002.
DOI : 10.4049/jimmunol.169.2.898

L. Valdes-reyes, J. Argueta, J. Moran, N. Salaiza, and J. Hernandez, Leishmania mexicana: Inhibition of camptothecin-induced apoptosis of monocyte-derived dendritic cells, Experimental Parasitology, vol.121, issue.3, pp.199-207, 2009.
DOI : 10.1016/j.exppara.2008.10.020

S. Lisi, M. Sisto, A. Acquafredda, R. Spinelli, and M. Schiavone, Infection with Leishmania infantum Inhibits Actinomycin D-Induced Apoptosis of Human Monocytic Cell Line U-937, Journal of Eukaryotic Microbiology, vol.22, issue.3, pp.211-217, 2005.
DOI : 10.4049/jimmunol.169.6.3172

H. Kim, H. Haider, S. Jiang, and M. Ashraf, Ischemic Preconditioning Augments Survival of Stem Cells via miR-210 Expression by Targeting Caspase-8-associated Protein 2, Journal of Biological Chemistry, vol.1783, issue.48, pp.33161-33168, 2009.
DOI : 10.1016/j.bbamcr.2008.07.002

D. Gou, R. Ramchandran, X. Peng, L. Yao, and K. Kang, 2012) miR-210 has an anti-apoptotic effect in pulmonary artery smooth muscle cells during hypoxia, Am J Physiol Lung Cell Mol Physiol
DOI : 10.1152/ajplung.00344.2011

URL : http://ajplung.physiology.org/content/ajplung/303/8/L682.full.pdf

W. Yang, T. Sun, J. Cao, F. Liu, and Y. Tian, Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro, Experimental Cell Research, vol.318, issue.8, pp.944-954, 2012.
DOI : 10.1016/j.yexcr.2012.02.010

J. Qi, Y. Qiao, P. Wang, S. Li, and W. Zhao, microRNA-210 negatively regulates LPS-induced production of proinflammatory cytokines by targeting NF-??B1 in murine macrophages, FEBS Letters, vol.286, issue.8, pp.1201-1207
DOI : 10.1074/jbc.M110.170852

URL : http://onlinelibrary.wiley.com/doi/10.1016/j.febslet.2012.03.011/pdf

J. Ghosh, M. Bose, S. Roy, and S. Bhattacharyya, Leishmania donovani Targets Dicer1 to Downregulate miR-122, Lower Serum Cholesterol, and Facilitate Murine Liver Infection, Cell Host & Microbe, vol.13, issue.3, pp.277-288, 2013.
DOI : 10.1016/j.chom.2013.02.005

URL : https://doi.org/10.1016/j.chom.2013.02.005