Cytoplasmic Incompatibility as a Means of Controlling Culex pipiens quinquefasciatus Mosquito in the Islands of the South-Western Indian Ocean

Célestine Atyame Nten, Nicole Pasteur, Emilie Dumas, Pablo Tortosa, Michaël L. Tantely, Nicolas Pocquet, Séverine Licciardi, Ambicadutt Bheecarry, Betty Zumbo, Mylène Weill, et al.

To cite this version:
Célestine Atyame Nten, Nicole Pasteur, Emilie Dumas, Pablo Tortosa, Michaël L. Tantely, et al.. Cytoplasmic Incompatibility as a Means of Controlling Culex pipiens quinquefasciatus Mosquito in the Islands of the South-Western Indian Ocean. PLoS Neglected Tropical Diseases, Public Library of Science, 2011, 5 (12), pp.e1440. 10.1371/journal.pntd.0001440. hal-01274608
Cytoplasmic Incompatibility as a Means of Controlling *Culex pipiens quinquefasciatus* Mosquito in the Islands of the South-Western Indian Ocean

Célesteine M. Atyame¹, Nicole Pasteur¹, Emilie Dumas¹, Pablo Tortosa²,³, Michaël Luciano Tantely⁴, Nicolas Pocquet⁵, Séverine Liciardi²,⁴, Ambicadutt Bheecarry⁷, Betty Zumbo⁵, Mylène Weill¹, Olivier Duron¹*¹

¹ Institut des Sciences de l’Evolution, CNRS UMR 5554, Université Montpellier 2, Montpellier, France, ² Centre de Recherche et de Veille sur les Maladies Émergentes dans l’Océan Indien (CRVOI), Ste Clotilde, France, ³ Fédération de Recherche Environnement, Biodiversité et Santé, Université de La Réunion, Ste Clotilde, France, ⁴ Department of Entomology, Faculty of Science, University of Antananarivo, Antananarivo, Madagascar, ⁵ Agence Régionale de Santé (ARS) Océan Indien, Délégation de l’île de Mayotte, Mamoudzou, France, ⁶ Groupement d’Intérêt Public Cyclotron Réunion Océan Indien (GIP CYROI), CIRAD UMR 15, Ste Clotilde, France, ⁷ Vector Biology and Control Division, Ministry of Health and Quality of Life, Port Louis, Mauritius

Abstract

The use of the bacterium *Wolbachia* is an attractive alternative method to control vector populations. In mosquitoes, as in members of the *Culex pipiens* complex, *Wolbachia* induces a form of embryonic lethality called cytoplasmic incompatibility, a sperm-egg incompatibility occurring when infected males mate either with uninfected females or with females infected with incompatible *Wolbachia* strain(s). Here we explore the feasibility of the Incompatible Insect Technique (IIT), a species-specific control approach in which field females are sterilized by inundative releases of incompatible males. We show that the *Wolbachia* wPip(Is) strain, naturally infecting *C. p. pipiens* mosquitoes from Turkey, is a good candidate to control *Cx. p. quinquefasciatus* populations on four islands of the south-western Indian Ocean (La Réunion, Mauritius, Grande Glorieuse and Mayotte). The wPip(Is) strain was introduced into the nuclear background of *C. p. quinquefasciatus* mosquitoes from La Réunion, leading to the LR[wPip(Is)] line. Total embryonic lethality was observed in crosses between LR[wPip(Is)] males and all tested field females from the four islands. Interestingly, most crosses involving LR[wPip(Is)] females and field males were also incompatible, which is expected to reduce the impact of any accidental release of LR[wPip(Is)] females. Cage experiments demonstrate that LR[wPip(Is)] males are equally competitive with La Réunion males resulting in demographic crash when LR[wPip(Is)] were introduced into La Réunion laboratory cages. These results, together with the geographic isolation of the four south-western Indian Ocean islands and their limited land area, support the feasibility of an IIT program using LR[wPip(Is)] males and stimulate the implementation of field tests for a *Cx. p. quinquefasciatus* control strategy on these islands.

Introduction

The last few years have witnessed an increasing interest in the alpha-proteobacterium *Wolbachia* (Rickettsiales) for the biological control of insect pest populations [for reviews see [1–5]]. *Wolbachia* is the most common intracellular bacterium yet described [6,7], present in more than 65% of insect species and found in all major insect families [8]. Some medically important mosquitoes are naturally infected by *Wolbachia*, such as the common house mosquito *Aedes aegypti* [9,10] and the Asian tiger mosquito *Aedes albopictus* [11], or can otherwise be artificially infected, such as the yellow fever mosquito *Ae. aegypti* [12–14]. *Wolbachia* is vertically inherited from a female host to its progeny through the egg cytoplasm, males being a dead end in terms of transmission [4,15]. *Wolbachia* is usually termed a ‘reproductive parasite’ in the sense that it optimizes its transmission by manipulating its host’s reproductive biology [15,16]. In mosquitoes, *Wolbachia* induces a form of embryonic death called cytoplasmic incompatibility (CI) [9]. This phenomenon results from sperm-egg incompatibility occurring when *Wolbachia*-infected males mate with uninfected females or females infected with an incompatible *Wolbachia* strain [17]. Therefore, CI has been investigated as a mechanism to control field populations [1,18,19,20–22], or to drive transgenes into field populations [2,3,10,23]. In addition, recent investigations showed that...
Author Summary

Mosquitoes of the Culex pipiens complex are important vectors of human pathogens including filarial parasites and many currently expanding arboviruses. The absence of effective vaccines and the evolution of insecticide resistance stress the urgent need for the development of novel control strategies. One strategy that is receiving increasing attention is based upon the use of the intracellular bacteria Wolbachia, which induce a form of sterility known as cytoplasmic incompatibility in mosquitoes. Here, we show that a Wolbachia strain, named wPip(Is) and naturally infecting Cx. p. pipiens from Turkey, can be used in the Incompatible Insect Technique (IIT) to sterilize Cx. p. quinquefasciatus females from several islands of the southwestern Indian Ocean (SWIO). The wPip(Is) strain was introduced into SWIO Cx. p. quinquefasciatus nuclear background leading to the LR[wPip(Is)] line. Males from this latter line were found to sterilize all wild females tested, and no difference in mating competition was observed between LR[wPip(Is)] and wild males. These results encourage the development of an IIT program based on the wPip(Is) strain to control mosquito populations in the SWIO.

Wolbachia can affect virus transmission both by reducing the lifespan of the infected vector and by interfering with the arthropod-borne parasite [14,24–26].

Mosquitoes of the Cx. pipiens complex are of special interest for Wolbachia-based control strategies. The most common members of the complex are the subspecies Cx. p. quinquefasciatus (Say) and Cx. p. pipiens (Linnaeus) (also considered as true species, depending on the authors), representing the southern and northern mosquito populations, which are ubiquitous in tropical and temperate regions, respectively [27]. This mosquito is the main vector of lymphatic filarial in Comoros and Madagascar [28] as well as a known vector for many arboviruses worldwide [29]. This is the case, for example, of the West Nile Virus (WNV), reoccurcences in Mediterranean countries [30,31] and in the United States where thousands of cases have been identified in the last decade [32,33]. This species also transmits the Rift Valley Fever (RVF) virus, currently expanding in the Indian Ocean [34,35].

Members of the Cx. pipiens complex are naturally infected with different Wolbachia strains, referred as wPip strains. The prevalence is high in natural populations with wPip infections near to fixation [10,36,37]. Recent multi-loci typing approaches revealed that the wPip strains cluster into five distinct phylogenetic groups (referred as wPip-I to V) which form a robust monophyletic clade within the B group of Wolbachia [38]. The Cx. pipiens complex exhibits the largest variation of CI crossing types observed in arthropods thus far [39–43]. When Cx. pipiens individuals are infected by different Wolbachia strains (here arbitrarily named wPip(1) and wPip(2)), their crosses can be (a) compatible and produce viable offspring; (b) incompatible in both directions and produce infertile eggs (a phenomenon called bidirectional CI); or (c) incompatible in one direction only (unidirectional CI, e.g. the cross between wPip(1) males and wPip(2) females is incompatible, while the reciprocal cross is compatible). The presence of incompatible wPip infections in the Cx. pipiens system makes unnecessary the artificial introduction of exogenous Wolbachia strains, and encourages the development of a Wolbachia-based control strategy.

Here, we examined the feasibility of an ‘Incompatible Insect Technique’ (IIT) strategy targeting Cx. pipiens natural populations. IIT derives from the ‘Sterile Insect technique’ (SIT) notably used in the control of the New World screwworm Cochliomyia hominivorax [44]. In both SIT and IIT, mating of released sterilizing males with native females leads to a decrease in the females’ reproductive potential and ultimately, if males are released in sufficient numbers over a sufficient period of time, to the local elimination or eradication of the pest population [3,20,22,45]. In the SIT program, males are sterilized with irradiation or chemicals, which might weaken the fitness of sterilized insects, making them less competitive than field males for mating [46,47]. In the IIT strategy, Cx. pipiens males are infected with a wPip strain incompatible with the wPip strain(s) infecting field females. In this case, the released incompatible males are not expected to suffer any reduction in mating when competing with field males. The IIT strategy has been successfully applied in a field trial assay targeting Cx. pipiens populations in Burma [48] as well as in cage experiments with the Polynesian tiger mosquito Aedes polynesiensis [49] and the medfly Ceratitis capitata [19].

We focused on natural populations of Cx. p. quinquefasciatus collected on five islands in the south-western Indian Ocean (SWIO): La Réunion, Mauritius, Mayotte, Madagascar and Grande Glorise. Prior studies have demonstrated that Cx. p. quinquefasciatus lines from La Réunion are infected with closely related wPip strains which express complete CI (ca. 100% embryo mortality) with Cx. pipiens lines from distant geographic areas and infected by genetically different wPip strains [43]. The Cx. p. pipiens Is line from Turkey, infected by the wPip(Is) strain, is of particular interest: all crosses between Is males and females from La Réunion are incompatible and almost all reciprocal crosses are incompatible as well [43]. This complete bidirectional CI makes the wPip(Is) strain a good candidate for an IIT program.

In this study, we obtained robust data that encourage the use of wPip(Is)-infected Cx. p. quinquefasciatus males in an IIT program which could be implemented on the SWIO islands. First, the regional genetic diversity of wPip infections is low as all identified wPip strains belong to the wPip-I group; this indicates that immigration of mosquitoes into the controlled area is unlikely to introduce a new wPip strain compatible with wPip(Is)-infected males. Second, the wPip(Is) strain, from the wPip-IV group, was introduced into the nuclear background of Cx. p. quinquefasciatus mosquitoes, leading to a line (LR[wPip(Is)]) expressing complete CI with wild females sampled from all 5 SWIO Islands. Last, CI properties expressed by this line are optimal as (i) there is no effect of males ageing on CI expression, (ii) LR[wPip(Is)] males show similar body size and longevity as males from La Réunion Island, suggesting good competitiveness of incompatible males vs. wild males, which was further confirmed in cage confrontations and (iii) LR[wPip(Is)] mosquitoes are mainly bidirectionally incompatible with La Réunion, Mauritius, Mayotte and Grande Glorise field mosquitoes: this lowers the risk of Wolbachia replacement possibly induced by accidental releases of LR[wPip(Is)] females.

Materials and Methods

Mosquito collections

Two laboratory lines of Cx. p. pipiens mosquitoes naturally infected by Wolbachia were used in the experiments: the isofemale line Is, a Cx. p. pipiens line from Turkey infected by the wPip(Is) strain, and the Cx. p. quinquefasciatus LR line, infected by the wPip(LR) strain, and established from several hundred field-caught larvae in La Réunion Island (Table 1 and Figure 1). In addition, one uninfected line, LR-TG, was generated by curing Wolbachia of mosquitoes from the LR line with antibiotic, following the protocol described in [50]. Briefly, ca. 5,000 LR larvae were reared for three
generations in a solution containing tetracycline hydrochloride at concentrations of 10^{-3}, 2 \times 10^{-4} and 4 \times 10^{-4} M for the first, second and third-instar larvae, respectively. Mosquitoes from LR-TC were next reared for at least two generations in the absence of tetracycline before experiments, to prevent any possible side-effects of the treatment.

Field *Culex quinquefasciatus* larvae and pupae were collected during the summers 2007–2011 in 29 natural breeding sites on five islands of the Indian Ocean: La Réunion (16 populations), Mauritius (four populations), Mayotte (three populations) Madagascar (five populations) and Grande Glorieuse (one population) (Table 1 and Figure 1). Specimens were brought to the laboratory for emergence and identification. Individuals were either directly stored in 70% EtOH for molecular analyses or kept alive for experimental crossing experiments. All mosquitoes were reared in 65 dm$^3$ cages kept at ca. 25±2°C with 12 h/12 h light/dark cycle. Larvae were fed *ad libitum* with a mixture of shrimp powder and rabbit pellets, and adults with a honey solution.

![Image](https://www.plosntds.org/doi/10.1371/journal.pntd.0001440.t001)

<table>
<thead>
<tr>
<th>Mosquito collections</th>
<th><em>Culex pipiens</em> taxon</th>
<th>Origin</th>
<th>Number of screened field specimens$^a$</th>
<th>Year of collection</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Laboratory lines</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Istanbul (Is)</td>
<td><em>pipiens</em></td>
<td>Istanbul (Turkey)</td>
<td></td>
<td>2003</td>
<td>[34]</td>
</tr>
<tr>
<td>LR</td>
<td><em>quinquefasciatus</em></td>
<td>Etang Salé, Saint Pierre and Saint Louis (La Réunion)$^a$</td>
<td></td>
<td>2009</td>
<td>This study</td>
</tr>
<tr>
<td>LR-TC</td>
<td><em>quinquefasciatus</em></td>
<td>derived from LR$^a$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR[wPip(Is)]</td>
<td></td>
<td>derived from LR and Is$^a$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Natural populations</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1, Tana1</td>
<td><em>quinquefasciatus</em></td>
<td>Antananarivo (Madagascar)</td>
<td>23</td>
<td>2010</td>
<td>This study</td>
</tr>
<tr>
<td>#2, Tana2</td>
<td><em>quinquefasciatus</em></td>
<td>Antananarivo (Madagascar)</td>
<td>22</td>
<td>2010</td>
<td>This study</td>
</tr>
<tr>
<td>#3, Itaosy1</td>
<td><em>quinquefasciatus</em></td>
<td>Antananarivo (Madagascar)</td>
<td>20</td>
<td>2010</td>
<td>This study</td>
</tr>
<tr>
<td>#4, Itaosy2</td>
<td><em>quinquefasciatus</em></td>
<td>Antananarivo (Madagascar)</td>
<td>20</td>
<td>2010</td>
<td>This study</td>
</tr>
<tr>
<td>#5, Mada</td>
<td><em>quinquefasciatus</em></td>
<td>Antananarivo (Madagascar)</td>
<td>20</td>
<td>2011</td>
<td>This study</td>
</tr>
<tr>
<td>#6, Grande Glorieuse</td>
<td><em>quinquefasciatus</em></td>
<td>Grande Glorieuse</td>
<td>24</td>
<td>2011</td>
<td>This study</td>
</tr>
<tr>
<td>#7, Acoua</td>
<td><em>quinquefasciatus</em></td>
<td>Acoua (Mayotte)</td>
<td>24</td>
<td>2011</td>
<td>This study</td>
</tr>
<tr>
<td>#8, Tsoundzou</td>
<td><em>quinquefasciatus</em></td>
<td>Tsoundzou (Mayotte)</td>
<td>21</td>
<td>2010</td>
<td>This study</td>
</tr>
<tr>
<td>#9, M'Tsamoudou</td>
<td><em>quinquefasciatus</em></td>
<td>M'Tsamoudou (Mayotte)</td>
<td>24</td>
<td>2011</td>
<td>This study</td>
</tr>
<tr>
<td>#10, Saint Leu</td>
<td><em>quinquefasciatus</em></td>
<td>Saint Leu (La Réunion)</td>
<td>24</td>
<td>2007</td>
<td>[41]</td>
</tr>
<tr>
<td>#11, Etang Salé</td>
<td><em>quinquefasciatus</em></td>
<td>Etang Salé (La Réunion)</td>
<td>24</td>
<td>2009</td>
<td>[41]</td>
</tr>
<tr>
<td>#12, Saint Louis</td>
<td><em>quinquefasciatus</em></td>
<td>Saint Louis (La Réunion)</td>
<td>23</td>
<td>2009</td>
<td>[41]</td>
</tr>
<tr>
<td>#13, Saint Pierre</td>
<td><em>quinquefasciatus</em></td>
<td>Saint Pierre (La Réunion)</td>
<td>24</td>
<td>2009</td>
<td>[41]</td>
</tr>
<tr>
<td>#14, Saint Joseph</td>
<td><em>quinquefasciatus</em></td>
<td>Saint Joseph (La Réunion)</td>
<td>19</td>
<td>2007</td>
<td>[41]</td>
</tr>
<tr>
<td>#15, Plaine des Cafres</td>
<td><em>quinquefasciatus</em></td>
<td>Plaine des Cafres (La Réunion)</td>
<td>24</td>
<td>2009</td>
<td>[41]</td>
</tr>
<tr>
<td>#16, Plaine des Palmistes</td>
<td><em>quinquefasciatus</em></td>
<td>Plaine des Palmistes (La Réunion)</td>
<td>22</td>
<td>2007</td>
<td>[41]</td>
</tr>
<tr>
<td>#17, Sainte Rose</td>
<td><em>quinquefasciatus</em></td>
<td>Sainte Rose (La Réunion)</td>
<td>24</td>
<td>2007</td>
<td>[41]</td>
</tr>
<tr>
<td>#18, Saint Benoît</td>
<td><em>quinquefasciatus</em></td>
<td>Saint Benoît (La Réunion)</td>
<td>24</td>
<td>2007</td>
<td>[41]</td>
</tr>
<tr>
<td>#19, Bras Panon</td>
<td><em>quinquefasciatus</em></td>
<td>Bras Panon (La Réunion)</td>
<td>32</td>
<td>2007</td>
<td>[41]</td>
</tr>
<tr>
<td>#20, Saint André</td>
<td><em>quinquefasciatus</em></td>
<td>Saint André (La Réunion)</td>
<td>24</td>
<td>2007</td>
<td>[41]</td>
</tr>
<tr>
<td>#21, Sainte Suzanne</td>
<td><em>quinquefasciatus</em></td>
<td>Sainte Suzanne (La Réunion)</td>
<td>24</td>
<td>2007</td>
<td>[41]</td>
</tr>
<tr>
<td>#22, Sainte Marie</td>
<td><em>quinquefasciatus</em></td>
<td>Sainte Marie (La Réunion)</td>
<td>24</td>
<td>2009</td>
<td>[41]</td>
</tr>
<tr>
<td>#23, Saint Denis</td>
<td><em>quinquefasciatus</em></td>
<td>Saint Denis (La Réunion)</td>
<td>24</td>
<td>2007</td>
<td>[41]</td>
</tr>
<tr>
<td>#24, Samuel</td>
<td><em>quinquefasciatus</em></td>
<td>Saint Denis (La Réunion)</td>
<td>24</td>
<td>2010</td>
<td>[41]</td>
</tr>
<tr>
<td>#25, La Possession</td>
<td><em>quinquefasciatus</em></td>
<td>La Possession (La Réunion)</td>
<td>24</td>
<td>2007</td>
<td>[41]</td>
</tr>
<tr>
<td>#26, Beau Bassin</td>
<td><em>quinquefasciatus</em></td>
<td>Beau Bassin – Rose Hill (Mauritius)</td>
<td>42</td>
<td>2010</td>
<td>This study</td>
</tr>
<tr>
<td>#27, Salines</td>
<td><em>quinquefasciatus</em></td>
<td>Les Salines (Mauritius)</td>
<td>7</td>
<td>2010</td>
<td>This study</td>
</tr>
<tr>
<td>#28, Port Louis</td>
<td><em>quinquefasciatus</em></td>
<td>Port Louis (Mauritius)</td>
<td>19</td>
<td>2010</td>
<td>This study</td>
</tr>
<tr>
<td>#29, Cap Malheureux</td>
<td><em>quinquefasciatus</em></td>
<td>Cap Malheureux (Mauritius)</td>
<td>23</td>
<td>2010</td>
<td>This study</td>
</tr>
</tbody>
</table>

$^a$, the LR line was established from several hundred of field-caught larvae from three natural populations, i.e. Etang Salé, Saint Pierre and Saint Louis.

$^b$, LR-TC is Wolbachia-uninfected line generated by antibiotic exposure of specimens from the LR line.

$^c$, the LR[wPip(Is)] line combined the Is cytoplasm, including the wPip(Is) strain, and the LR nuclear genome.

$^d$, number of field specimens examined for wPip genetic diversity.

doi:10.1371/journal.pntd.0001440.t001
Molecular typing

Mosquito DNA was extracted using a CetylTrimethylAmmonium Bromide (CTAB) protocol [51]. The \textit{wPip} infections were characterized through the analysis of one \textit{Wolbachia} marker, the ankyrin domains encoding gene, \textit{ank2} [52] (primers are listed in Table S1). This marker differentiated \textit{wPip} strains from groups I and IV on the basis of the size of the PCR amplified fragments: 313 bp and 511 bp fragment for group I and IV, respectively. For field samples, the \textit{ank2} PCR products from two specimens per sample site were sequenced to confirm their identity with \textit{La Réunion} \textit{ank2} allele [Genbank AM397068; [43]].

The examination of the mosquito nuclear genome was assessed by PCR/RFLP tests based on \textit{Cx. pipiens ace-2} and \textit{Ester2} genes (primers are in Table S1). The \textit{ace-2} gene is located on chromosome I and encodes acetylcholinesterase 2 (AChE2) [53]. The \textit{Ester2} gene is located on chromosome II and encodes a carboxylester hydrolase [54]. A PCR/RFLP test on \textit{ace-2} using the \textit{ScaI} restriction enzyme (37°C, 3 hours; see [55]) allows the discrimination between the Is (two fragments: 230 and 470 bp) and the LR (three fragments: 120, 230 and 350 bp) nuclear genomes. We developed a PCR/RFLP test on \textit{Ester2} using the \textit{AvaII} enzyme (37°C, 3 hours) that also generated different restriction fragments for the Is (three fragments: 37, 519 and 544 bp) and LR (four fragments: 91, 176, 313 and 520 bp) nuclear genomes.

All PCRs were performed with ca. 20 ng of genomic DNA solution in a 40 μl final volume reaction for 35 cycles (94°C, 5 min; 94°C, 30 sec; 52°C, 30 sec; 72°C, 1 min). Direct sequencing of PCR products was performed on an ABI Prism 3130 sequencer using the BigDye Terminator Kit (Applied Biosystems) after purification with the QIAquick gel extraction kit (QIAGEN, Valencia, CA). Sequence alignment and analyses were done using MEGA software [56].

Backcrossing

The cytoplasm of the Is line, including the \textit{wPip(Is)} strain, was introduced into the LR nuclear background through eight generations of backcrossing, a procedure that should result in at least 99% genome replacement of the Is line by the LR nuclear genome. A first cross was performed using 200 virgin Is females and 250 LR-TC males. For the following generations, 200 hybrid females were backcrossed with 250 LR-TC males. Using this protocol, we obtained the LR[\textit{wPip(Is)}] line which carries the LR nuclear genome and the \textit{wPip(Is)} strain.

Crossing experiments

We examined the crossing relationships between mosquito lines through crossing experiments. Mass crosses were carried out using 35–200 two-day-old males and an equivalent number of females.

Figure 1. Sample site locations. A: location of the study area; B, Madagascar and surrounding islands, including Grande Glorieuse; C, Mayotte; D, \textit{La Réunion}; E, Mauritius. Populations are numbered from 1 to 29. Numbers correspond to those in Table 1.

doi:10.1371/journal.pntd.0001440.g001
that had been individually separated at the pupal stage (age was assessed from the emergence of adults; day 0 = emergence). We also tested the effect of male aging on CI by comparing crossing relationships of young males (two-day-old) to that of older males (24-day-old). For all crosses, females were allowed to blood feed 5 days after caging. Egg rafts were collected and stored separately until hatching at 25°C±2°C. Hatching rates (HR) were scored 72 h after egg raft collection to determine the CI phenotype. All unhatched egg rafts were checked for fertilization through observation of embryonic development following the procedure of [57].

Male performance

The longevity of the LR[wPip] and LR males was compared. We obtained males from larvae reared in standardized laboratory conditions at ca. 25°C±2°C. For each line, three containers containing 300 first-instar larvae with 1 L of water were set up. The water of each container was changed every two days and food provided ad libitum. Pupae were randomly sampled from the three containers to minimize possible rearing bias. Pupae were placed separately in 5 mL vials for emergence. Freshly-emerged males were kept in their vials until they died, and mortality was checked twice a day. No food was provided to the adults but they had access to the water in their tube. Survival data were fitted to the Cox proportional hazards models (coxph, survival package) [58] and a ratio for each line was estimated as their instantaneous risk of death relative to each other. These analyses were performed using R software (www.r-project.org). One posterior leg was removed on dead specimens and the tibia was measured with a micrometer (NIKON Digital Counter CM-6S).

Four cages were set up to compare the mating performance of both LR[wPip] and LR males. Each cage contained an equal number of two-day-old virgin LR females and LR males (1:1), as well as different numbers of two-day-old virgin LR[wPip] males so that different ratios of the three types of mosquitoes could be tested (1:1:0, 1:1:1, 1:1:5 and 1:1:10). Thus the total number of adults for each of these confrontations was 200, 300, 350 and 600, respectively. For each confrontation, all the mosquitoes were introduced into the cage at the same time. Females were allowed to blood feed five days after caging and their egg rafts were collected daily to score HR. To assess the stability of the expression of CI over the mosquito lifespan, a second blood meal needs to be investigated since the host nuclear genome has been reported to affect the penetration of the CI phenotype induced by Wolbachia [27]. To circumvent this problem, we introduced the wPip[wPip] strain into the Cx. quinquefasciatus nuclear background from La Réunion. First a LR line was established from a large number (>5,000) of field-caught Cx. quinquefasciatus from three localities of La Réunion in order to have a good representation of the local genetic diversity. This line was then cured of its Wolbachia by tetracycline treatment of larvae during three generations (LR-TC line). Finally wPip[wPip] from the Is line was introduced into the nuclear background of the LR-TC line by successive backcrossing. The LR[wPip[wPip]] line thus created shares the same nuclear genetic background as the LR line but is infected by the wPip[wPip] strain (Figure S1). This was verified by PCR/RFLP tests on ace-2 and Esterase2 (Cx. pipiens nuclear genes (Figure S2A and S2B) and by analyzing the allelic profiles of the ank2 gene of the infecting Wolbachia (Figure S2C).

PCR assays using ank2 indicated the occurrence of wPip infection in all Cx. p. quinquefasciatus field specimens, as observed in other geographic areas for this species [10,36,37], and all shared the same ank2 allele as indicated by the length of ank2 PCR products (313 bp). This similarity was further confirmed by sequencing the ank2 gene of two individuals per population from Mauritius, Mayotte, Madagascar and Grande Glorieuse.

All sequences were found to be strictly identical to that found in the wPip strains infecting all 10 laboratory isofemale lines from La Réunion and to other wPip strains belonging to the wPip-I group [38]. This result shows that wPip strains from La Réunion, Mauritius, Mayotte, Madagascar and Grande Glorieuse are genetically closely related and are genetically different from the wPip[wPip] strain belonging to the wPip-IV group.

Establishment of the LR[wPip] line

Males from the Is line belong to Cx. p. pipiens subspecies and may not be optimally adapted to the tropical environment of the Indian Ocean where Cx. quinquefasciatus is found. More specifically the two subspecies known to differ by behavioral and physiological characters including mating behavior [27]. To circumvent this problem, we introduced the wPip[wPip] strain into the Cx. p. quinquefasciatus nuclear background from La Réunion. First a LR line was established from a large number (>5,000) of field-caught Cx. p. quinquefasciatus from three localities of La Réunion in order to have a good representation of the local genetic diversity. This line was then cured of its Wolbachia by tetracycline treatment of larvae during three generations (LR-TC line). Finally wPip[wPip] from the Is line was introduced into the nuclear background of the LR-TC line by successive backcrossing. The LR[wPip[wPip]] line thus created shares the same nuclear genetic background as the LR line but is infected by the wPip[wPip] strain (Figure S1). This was verified by PCR/RFLP tests on ace-2 and Esterase2 (Cx. pipiens nuclear genes (Figure S2A and S2B) and by analyzing the allelic profiles of the ank2 gene of the infecting Wolbachia (Figure S2C).

Crossing experiments between LR[wPip[wPip]] and Is lines were conducted to check that Cx. p. quinquefasciatus nuclear background has not altered the CI phenotype of the wPip[wPip] strain. This aspect needs to be investigated since the host nuclear genome has been reported to affect the penetration of the CI phenotype induced by a Wolbachia strain [59–61]. Our data show that both lines behave similarly: LR[wPip[wPip]] and Is showed bidirectional CI with LR while LR[wPip[wPip]] and Is were mutually compatible (Table 2). The intensity of CI was very high, with 98–100% of the embryos that did not hatch in incompatible crosses. In addition, crosses between infected and uninfected lines showed unidirectional CI: males from all infected lines (LR[wPip[wPip]], Is and LR ) induced complete CI (100% embryo mortality) when crossed with uninfected females (LR-TC), the reverse crosses (i.e. uninfected males and infected females) being always compatible. Overall, no significant difference of hatching rate (HR) was found when the LR[wPip[wPip]] and Is lines were compared (Wilcoxon test; all P>0.14). This shows that the CI phenotype of the wPip[wPip] strain was not altered by the LR genetic background, and that the CI phenotype is controlled by the wPip infection rather than by nuclear genes, which is in accordance with most studies involving species of the Cx. pipiens complex [43,62].

The effect of male aging on CI intensity was also tested as, in a few host species including some mosquitoes, CI intensity has been shown to decrease with male aging [63–67]. Such an effect could impede the use of LR[wPip[wPip]] males to sterilize field females. To investigate this aspect, we crossed two-day and 24-day old LR[wPip[wPip]] males with two-day old LR females. No viable embryo was obtained in incompatible crosses with both young and
old LR[wPip{Is}] males (Table 3). Thus CI is expressed with the same intensity throughout the LR[wPip{Is}] males’ lifespan, a result also observed in diverse Cx. pipiens laboratory lines [10,68].

**LR[wPip{Is}] males sterilize field females from islands of the SWIO**

LR[wPip{Is}] males were crossed with field females from five populations: Samuel (La Réunion; n = 75 females), Salines (Mauritius; n = 37), Tsoundzou (Mayotte; n = 75) Mada (Madagascar; n = 44) and Grande Glorieuse (Grande Glorieuse; n = 97 males). All crosses were compatible, displaying >99% embryo mortality (Table 4). Thus, LR[wPip{Is}] males express high CI intensity with field females from the four islands, as observed with females of the LR line.

Crossing relationships between LR[wPip{Is}] females and field males were also investigated to determine how the LR[wPip{Is}] line may evolve in Cx. p. quinquefasciatus field populations in the case of accidental release of LR[wPip{Is}] females. LR[wPip{Is}] females were incompatible with all males from Samuel (n = 36 males), Salines (n = 37) and Grande Glorieuse (n = 40) (Table 4). This shows that LR[wPip{Is}] expresses bidirectional CI with field specimens from these populations. However, males from Tsoundzou (n = 16) were polymorphic for their CI properties, the majority (n = 14) expressing complete CI with LR[wPip{Is}] females and a few (n = 2) being compatible (HR = 0.895 ± 0.035) (Table 4). This shows that LR[wPip{Is}] expresses either bidirectional CI or unidirectional CI with field specimens from Tsoundzou. Thus, two crossing types coexist in Mayotte, but it is likely that the bidirectional CI crossing type is the most frequent one. Males from Mada were also polymorphic for their CI properties but, in contrast to Tsoundzou males, most Mada males were compatible with LR[wPip{Is}] females (n = 18, HR = 0.804 ± 0.283) while only two males expressed CI. So the unidirectional CI type was the most frequent in the Mada population.

**LR[wPip{Is}] and LR males show similar mating performances**

Inferior competitive ability of LR[wPip{Is}] males compared with field males may limit the efficiency of an IIT program. Thus, the performances of LR[wPip{Is}] and LR males, reared in standardized conditions, were examined for different life history traits. Longevity of LR[wPip{Is}] and LR males (n = 154 and n = 238, respectively) was investigated in conditions where males had to survive by metabolizing nutritional reserves accumulated during their larval life (see material and methods) [69]. No significant difference was found (χ² = 0.04, P = 0.84; Figure 2), suggesting that the infection by wPip{Is} did not alter mosquito metabolism. There was also no significant difference between LR[wPip{Is}] and LR male tibia length (n = 30 and n = 30; Wilcoxon two-sided test, P = 0.34; Figure 3), a parameter known to be positively correlated with mosquitoes’ adult size and reproductive success [70]. This suggests that LR[wPip{Is}] and LR males most probably exhibit similar mating performance.

To further test this assumption, mating competition between LR[wPip{Is}] and LR males was investigated in laboratory cages. Four cages containing different ratios of LR females to LR males to LR[wPip{Is}] males (1:1:0, 1:1:1, 1:1:5 and 1:1:10) were set up. Note that as CI occurring between LR[wPip{Is}] males and LR females is complete, it was easy to distinguish egg-rafts produced from compatible (LR males × LR females) or incompatible (LR[wPip{Is}] males × LR females) crosses. Two successive collections of egg-rafts were obtained for each cage by giving females two distinct blood meals. There was no significant variation in the proportion of incompatible egg-rafts between the first and the second series of egg-rafts (Fisher exact test, all P>0.57).

As expected, when only LR males were present, all the egg-rafts were compatible (Table 5). In the other cages, no significant

---

**Table 2. Comparisons of CI properties of different mosquito lines.**

<table>
<thead>
<tr>
<th>Females</th>
<th>LR[wPip{Is}]</th>
<th>Is</th>
<th>LR</th>
<th>LR-TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR[wPip{Is}]</td>
<td>0.919 ± 0.027 (2298; 14)</td>
<td>0.967 ± 0.010 (1405; 12)</td>
<td>0.000 ± 0.000 (&gt;6000; 47)</td>
<td>0.915 ± 0.070 (2953; 19)</td>
</tr>
<tr>
<td>Is</td>
<td>0.958 ± 0.016 (1414; 12)</td>
<td>0.951 ± 0.061 (1402; 10)</td>
<td>0.021 ± 0.021 (&gt;6000; 47)</td>
<td>n.d.</td>
</tr>
<tr>
<td>LR</td>
<td>0.000 ± 0.000 (&gt;3500; 31)</td>
<td>0.000 ± 0.000 (&gt;8000; 68)</td>
<td>0.930 ± 0.031 (1432; 10)</td>
<td>n.d.</td>
</tr>
<tr>
<td>LR-TC</td>
<td>0.000 ± 0.000 (&gt;2000; 21)</td>
<td>0.000 ± 0.000 (&gt;1200; 15)</td>
<td>0.905 ± 0.028 (1423; 10)</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

LR[wPip{Is}] and Is lines were both infected by the wPip{Is} strain but had different nuclear genomes. LR-TC is a Wolbachia-uninfected line derived from the LR line. For each cross, mean hatching rate ± standard error, number of eggs and egg-rafts are reported.

---

**Table 3. Effect of LR[wPip{Is}] males ageing on CI phenotype.**

<table>
<thead>
<tr>
<th>Crosses</th>
<th>Hatching rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24-day old males</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>LR[wPip{Is}] x LR[wPip{Is}]</td>
<td>0.919 ± 0.027 (2298; 14)</td>
</tr>
<tr>
<td>LR[wPip{Is}] x LR</td>
<td>0.000 ± 0.000 (&gt;3500; 31)</td>
</tr>
</tbody>
</table>

For each cross, mean hatching rate ± standard error, number of eggs and egg-rafts are reported.

---

This cross is the same as shown in Table 2. doi:10.1371/journal.pntd.0001440.t002
difference between LR[wPip(Is)] and LR males’ mating capacity was found. Indeed, the number of incompatible egg-rafts observed was not significantly different from expected values assuming an equal competitiveness of LR[wPip(Is)] and LR males and random mating (Binomial test, all P > 0.18; Table 5). For instance, with an identical ratio of LR[wPip(Is)] and LR males (1:1), ca. 50% of the egg-rafts produced by LR females were incompatible. When the LR[wPip(Is)] males’ ratio was higher than that of LR males, i.e. at 1:5 and at 1:10, we observed ca. five and ten times more incompatible egg-rafts than compatible ones. Taken together, these results showed that LR[wPip(Is)] males are as fit as LR males, at least in our laboratory conditions. These experiments also established that LR females cannot discriminate between compatible LR males and incompatible LR[wPip(Is)] males, a result consistent with previous observations of random mating between Cx. pipiens mosquitoes infected by incompatible Wolbachia strains [37,48,71].

**Discussion**

The recent expansion of the Rift Valley Fever (RVF) virus [34,35] combined with high frequencies of insecticide resistance genes in Cx. p. quinquefasciatus populations in the SWIO [72] encourage the development of new research to reduce mosquito population densities. Among these approaches, the most promising is the use of Wolbachia in an ‘Incompatible Insect Technique’ (IIT), a species-specific control approach in which inundative releases of incompatible males sterilize field Cx. p. quinquefasciatus females and possibly lead to the reduction of mosquito population densities. The present study was undertaken to explore the feasibility of the IIT strategy on the islands of SWIO. We first acquired genetic diversity of wPip strains infecting Cx. p. quinquefasciatus mosquitoes from five islands including La Réunion, Mauritius, Mayotte, Madagascar and Grande Glorieuse. All wPip strains from these islands are genetically closely related, belonging to the wPip-I
group, which indicates that the \(w\) strain diversity is relatively low over
this region. However, the variability of crossing types found in
Mayotte and Madagascar shows that genetically close \(W. a. \) strains can exhibit distinct CI properties, as observed in some
\(W. a. \) pipiens populations [43,52] and also in \(Drosophila\) spp. [73].

Next, we constructed a \(C. \) p. quinquefasciatus LR[\(w\)Pip(Is)] line
that is stably infected with the \(w\)Pip strain – a \(w\)Pip strain
previously known to induce bi-directional CI with most La
Réalisation \(w\)Pip strains [43]. Care was taken to have a nuclear
genetic variability of this line as representative of La Réunion \(w\)Pip strains [43]. An efficient sexing system producing only LR[\(w\)Pip] males is thus required. Several methods including biological,
genetic and transgenic methods have been developed for sex
separation of insects [20,76]. For instance, a biological method
consisting of visual separation has been used to hand-select \(C. \) p.
quinquefasciatus males [48], but this method is of very limited
interest in the context of the large numbers of males needed.
Concerning genetic methods, a sex ratio distorter allele, linked to
the dominant male-determining gene, has been described in \(C. \) p.
quinquefasciatus females [77] leading to \(>80\% \) males in brood.
For transgenic methods, a sexing strategy based on the use of Y-linked transgenes
expressing fluorescent proteins may be considered, as shown for
sexing larvae and pupae in the medfly \(Ceratitis\) capitata [78].
However, while distorter alleles or transgenes should maximize the
production of males for releases, it remains to verify that they do
not alter male fitness. An alternative method is the combination of
irradiation with CI. Although several studies showed that
irradiation can affect male fitness, this scheme was recently tested
on \(Ae. \) polynesiensis by [79] who determined an irradiation dose
sufficient to cause sterility of females without sterilising the males
or harming their fitness.

In this paper, we present a simple diagnostic PCR based test to
generate \(w\)Pip infections using the \(ank2\) marker that could be used

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
\textbf{LR[\(w\)Pip(Is)] ratio} & \textbf{Number of adults (number of LR[\(w\)Pip(Is)]/number of LR)} & \textbf{Number of egg-rafts (number of eggs)} & \textbf{Observed frequency of infertile egg-rafts (n)} & \textbf{Expected frequency of infertile egg-rafts} & \textbf{P-value*} \\
\hline
\textbf{First blood meal} & & & & & \\
1:0 & 200 (100, 100, 0) & 72 (7500) & 0.00 (72) & 0.00 & 0.99 \\
1:1 & 300 (100, 100, 100) & 90 (9000) & 0.52 (47) & 0.50 & 0.75 \\
1:5 & 350 (50, 50, 250) & 43 (4500) & 0.91 (39) & 0.83 & 0.22 \\
1:10 & 600 (50, 50, 500) & 45 (4600) & 0.98 (44) & 0.91 & 0.18 \\
\hline
\textbf{Second blood meal} & & & & & \\
1:0 & \_ & 38 (7500) & 0.00 (38) & 0.00 & 0.99 \\
1:1 & \_ & 42 (9000) & 0.45 (19) & 0.50 & 0.64 \\
1:5 & \_ & 12 (4500) & 0.92 (11) & 0.83 & 0.70 \\
1:10 & \_ & 14 (4600) & 1.00 (14) & 0.91 & 0.63 \\
\hline
\end{tabular}
\caption{Competition cages with different ratio of LR[\(w\)Pip(Is)] males.}
\end{table}
to regularly monitor the accidental introduction of the aPip(Is) strain in wild populations. Such a presence would be monitored by analysing aPip strain diversity in mixtures of larvae from natural breeding sites. In the case of the presence of field aPip(Is)-infected individuals, LR[aPip(Is)] male release would have to be suspended until the elimination of aPip(Is) individuals in the controlled area. Indeed, the bidirectional CI between LR[aPip(Is)] line and field mosquitoes will prevent the establishment of aPip(Is) infected individuals in these islands.

Conclusion
The study presented here supports the feasibility of an IIT strategy using the LR[aPip(Is)] males and targeting field Cx. p. quinquefasciatus populations, a species of medical and veterinary concern in the SWIO islands. This method now needs to be further tested in semi-field conditions in order to optimize several key parameters, i.e. the number of males to be released as well as the timing of releases. Recently, new semi-field cages were developed to measure the impact of the life-shortening Wolbachia pMelPop strain on populations of Aedes aegypti [80]. Such cages provide a realistic transitional platform between laboratory and field conditions. The risk of accidental releases of females needs also to be limited by developing an efficient sexing method to prevent any unintentional Wolbachia replacement.

Supporting Information

Figure S1 Backcrossing procedure. Mosquito nuclear backgrounds are indicated by colours: black represents Cx. p. quinquefasciatus nuclear background (LR and LR-TC lines) and red represents Cx. p. pipiens nuclear background (Is line). Wolbachia infection types are indicated by w-labelled symbols: black-filled symbols represent the nuclear background and the aPip(Is) infection; LR-TC is an uninfected mosquito line. M, molecular weight markers; kb, kilo bases.

References

www.plosntds.org

December 2011 | Volume 5 | Issue 12 | e1440

Mosquito Population Control


