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Frédéric Pagès4, Anne Laudisoit5,6, Koussay Dellagi2, Pablo Tortosa1,7

1 Centre de Recherche et de Veille sur les Maladies Emergentes dans l’Océan Indien, Plateforme de Recherche CYROI, Sainte Clotilde, Reunion Island, France, 2 Institut de

Recherche pour le Développement, Sainte Clotilde, Reunion Island, France, 3 Unité Mixte de Recherche Contrôle des Maladies Animales Exotiques Emergentes, CIRAD,

Montpellier, France, 4 Regional Office of the French Institute for Public Health Surveillance (Cire OI - Institut de veille sanitaire), Saint Denis, Reunion Island, France,

5 Institute of Integrative Biology, School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom, 6 Evolutionary Ecology Group, University of Antwerp,
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Abstract

The diversity and geographical distribution of fleas parasitizing small mammals have been poorly investigated on Indian
Ocean islands with the exception of Madagascar where endemic plague has stimulated extensive research on these
arthropod vectors. In the context of an emerging flea-borne murine typhus outbreak that occurred recently in Reunion
Island, we explored fleas’ diversity, distribution and host specificity on Reunion Island. Small mammal hosts belonging to
five introduced species were trapped from November 2012 to November 2013 along two altitudinal transects, one on the
windward eastern and one on the leeward western sides of the island. A total of 960 animals were trapped, and 286 fleas
were morphologically and molecularly identified. Four species were reported: (i) two cosmopolitan Xenopsylla species which
appeared by far as the prominent species, X. cheopis and X. brasiliensis; (ii) fewer fleas belonging to Echidnophaga gallinacea
and Leptopsylla segnis. Rattus rattus was found to be the most abundant host species in our sample, and also the most
parasitized host, predominantly by X. cheopis. A marked decrease in flea abundance was observed during the cool-dry
season, which indicates seasonal fluctuation in infestation. Importantly, our data reveal that flea abundance was strongly
biased on the island, with 81% of all collected fleas coming from the western dry side and no Xenopsylla flea collected on
almost four hundred rodents trapped along the windward humid eastern side. The possible consequences of this sharp
spatio-temporal pattern are discussed in terms of flea-borne disease risks in Reunion Island, particularly with regard to
plague and the currently emerging murine typhus outbreak.
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Introduction

Reunion is a small oceanic island of volcanic origin located in

the Indian Ocean, Southern Hemisphere (21u69S and 55u369E)

that forms, together with Mauritius and Rodrigues Islands, the

Mascarene archipelago. This oceanic island is geographically

isolated from continental landmasses and located within one of the

34 recognized world biodiversity hotspots [1]. The island lies

therefore in a biogeographic context favourable to species

radiation and potentially high endemism. Its dramatic relief

has shaped a highly contrasted climate: the mountainous centre

(.3,000 meters) separates a humid windward coast (scoring some

rain world records) from a dry leeward coast, which lower part

consists mainly in savannah. This peculiar situation has led to the

evolution of a strong vegetal endemism with a well-described

altitudinal succession of vegetal species observed on both

windward and leeward coasts [2]. The diversity of terrestrial

animals, specifically mammals, is clearly much less prominent: the

only endemic mammal species is the insectivorous bat Mormop-
terus francoimoutoui [3]. Following human colonization which

started in the XVIIth century, five small mammal species have

been introduced, namely the insectivores Suncus murinus
Linnaeus 1766 (Asiatic house shrew) and Tenrec eucaudatus
Schreber 1778 (tailless tenrec) from Madagascar, and the three

cosmopolitan murid rodents Rattus rattus Linnaeus 1758 (black

rat), Rattus norvegicus Linnaeus 1769 (brown rat) and Mus
musculus Linnaeus 1758 (house mouse). Tropical countries and

especially tropical islands are known at higher risk for the

emergence or re-emergence of infectious diseases [4]. Therefore,

updated information on zoonotic pathogens and on the diversity

and distribution of their arthropod vectors is warranted for a

quicker response to outbreaks threats.

Fleas (Order Siphonaptera) form a unique group of insects

comprising 15 families with a total of about 220 genera and some

2,500 described species [5]. Five families including 25 genera are

ectoparasites of birds, while all other flea species specifically feed
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on mammals. In Madagascar, located about 800 km west of

Reunion Island, flea diversity has been extensively studied, mainly

because of their role as vectors of Yersinia pestis, the plague agent,

especially in this country that reports most human plague cases

worldwide [6,7]. Flea diversity is high in Madagascar, with several

endemic species together with a few cosmopolitan ones, which host

specificity and distribution have been partly described [6,7].

Surprisingly, Xenopsylla brasiliensis (Baker, 1904) has never been

collected in Madagascar, even though this species is recognized as

a main plague vector in Eastern and Southern Africa [8,9] and has

been collected in Moroni (Grande Comore) and notified on two

other islands of the Southwestern Indian ocean: Mayotte

(Comoros archipelago) and Mauritius [10]. By contrast, almost

no data are currently available on flea diversity on the other

islands of the Southwestern Indian Ocean, including Reunion.

The cosmopolitan and/or tropical species possibly present in the

region are Pulex irritans Linné, 1758, Echidnophaga gallinacea
Westwood, 1875, Leptopsylla segnis Schönherr, 1811, Xenopsylla
cheopis Rothschild, 1903 as well as Ctenocephalides spp. Hence,

the recent emergence of murine typhus in Reunion Island, where

ten autochthonous human confirmed cases were reported between

2011 and 2013 (Balleydier E. 2014 pers. comm.) has stimulated

the investigation of fleas for vector-assessment of indigenous

species for the agent Rickettsia typhi. The objective of our study

was therefore to report the diversity and distribution of fleas in

Reunion Island with the aim of highlighting patterns of possible

epidemiological importance.

Materials and Methods

Small mammals trapping
Trapping was conducted throughout a one-year period survey

(November 14th 2012–November 16th 2013) in different biotopes

along two altitudinal transects lying on each side of the island:

the eastern transect comprised eight sampling sites and the

western transect, seven. In addition, two sites located in the

western coast and a few sites in the urban northern part of the

island were included in the present survey (Figure 1). The

sampling encompassed the two local seasons, i.e. hot-wet summer

from November to June, and cool-dry season from July to

October, with twelve out of the twenty sampling sites being

sampled twice, i.e. during the two seasons. Trapping was

conducted following a standardized protocol: wire cage live

traps (29 by 18 by 12 cm) were used for rats trapping (and

accidentally tenrecs), and Sherman live traps for mice and

shrews. On each sampling site, forty to eighty traps were placed

in line approximately 15 meters apart in the afternoon; trapped

animals were collected the following morning and brought back

to the laboratory for processing. Traps were baited during three

consecutive nights using successively within each line cheese,

coconut or a mixture of peanut butter and canned sardine oil.

This baiting setup (bait A, bait B, bait C, bait A, …) was

implemented in order to trap most of the prevalent mammal

diversity at each sampling site. Traps were left open in the same

place during the day, with productive traps being immediately

replaced every morning with the same bait over the 3-days

trapping session.

Ethics statement
Animals were sacrificed by cervical dislocation without anaes-

thesia to avoid bleeding in accordance with guidelines accepted by

the scientific community for the handling of wild mammals [11]

and the institutional guidelines published by the Centre National

de la Recherche Scientifique (http://www.cnrs.fr/infoslabos/

reglementation/euthanasie2.htm). All animal procedures carried

out in this study were approved by the French Institutional Ethical

Committee ‘‘Comité d’éthique du CYROI’’ (No. 114).

Mammals and fleas’ morphological diagnosis
Following sacrifice, each animal was visually examined for

10 minutes and all ectoparasites, including fleas, were manually

collected either with a brush soaked in ethanol when insects jumped

off the host, or forceps when eye-spotted in the fur. Collected fleas

were preserved in 70% ethanol for later morphological and

molecular analyses. Fleas were identified at the species level using

taxonomic keys provided by Lewis [12], and Hoogstraal and Traub

[13]. A subsample of Xenopsylla spp. fleas were mounted

permanently on slides using Euparal medium, following a procedure

adapted from Brigham Young University (http://fleasoftheworld.

byu.edu/Systematics/MountingTechniques.aspx). The gender, ge-

nus, and species were recorded for each flea specimen. Xenopsylla
cheopis and X. brasiliensis were mainly differentiated using the

occurrence of marginal cones at the basis of the antepygidial bristle

in males, and shape of spermatheca on mounted females [7].

Rodents body mass, ear, and back foot lengths, together with tail

and body lengths were recorded. Rattus spp. was identified using

morphological criteria including the comparison of (i) the ratio of

tail to body lengths, (ii) the ear length and (iii) the hind foot length

[14].

Mammals and fleas’ molecular diagnosis
The morphological diagnosis of Rattus spp. was confirmed by

molecular data through sequencing of cytB locus from 15

randomly selected animals morphologically identified as R. rattus
or R. norvegicus. Briefly, DNA was prepared from 20 mg of

kidney tissue as previously described [15] and used as a template

with L14723 and H15915 primers set, following a previously

described PCR protocol [14].

For molecular diagnosis of fleas, DNA was prepared as follows:

fleas were dried individually and subsequently crushed with a

TissueLyser (Qiagen, Valencia, CA) using 3 mm tungsten beads

and cetyl trimethyl ammonium bromide 2%; DNA was further

Author Summary

Fleas are blood-feeding parasites involved in the trans-
mission of several arthropod borne pathogens. Rat-fleas
(Xenopsylla spp.) are known vectors of bubonic plague
together with other human diseases receiving less
attention such as murine typhus. This latter disease was
recorded for the first time in 2011 on Reunion Island where
seven human cases were further confirmed within the
following year. The outbreak motivated a large survey of
fleas, as these insects of major veterinary and medical
importance have never been investigated on this oceanic
island. We collected fleas on almost 1000 small wild
mammals trapped on two altitudinal transects along the
humid eastern and dry western sides of the island. Our
data reveal the presence of four cosmopolitan flea species
and shows an astonishing distribution pattern: 81% of all
collected fleas were sampled on the western transect while
not a single rat-flea was sampled on the eastern humid
side of the island. Interestingly, this distribution did at least
in part overlay the map of murine typhus human cases.
These data stimulate the need for a diagnosis of
pathogens in natural flea populations together with a
comprehensive distribution map of fleas, allowing a risk
assessment of flea-borne diseases in humans.

Fleas on Reunion Island: Epidemiological Consequences
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extracted following a previously described procedure [16]. Both

nuclear and mitochondrial loci were sequenced by amplifying 28S

ribosomal RNA (28S rRNA gene) and cytochrome oxidase II

(COII) encoding gene using 28S A/28S rD7b1 and COII F-leu/

COII R-lys primer pairs, that produce 1473-bp and 770-bp PCR

fragments respectively [17]. Amplicons were sequenced on both

strands by Genoscreen (Lille, France) using the same PCR

primers, and sequences were edited using Geneious Pro [18]. All

sequences used in this study were deposited in Genbank and are

accessible under accession numbers KJ638526 to KJ638590.

Molecular analysis
All sequences were automatically aligned using MUSCLE

implemented in Geneious Pro version 5.3.4 [18]. Alignments were

constructed separately for the nuclear (28S) and mitochondrial

(COII) datasets using sequences available in GenBank to complete

our dataset. Bayesian analyses were performed to infer phyloge-

netic relationships between flea species. First, the best-fitting model

and associated parameters were selected by jModelTest [19] and

phylogenies were constructed by Bayesian inference. Two sets of

four MCMCMC (Metropolis Coupled Markov Chain Monte

Carlo) chains incrementally-heated were run in MrBayes 3.1.2

[20] for 20,000,000 generations. Trees and associated model

parameters were sampled every 300 generations. The initial 2,000

trees were discarded as a conservative ‘‘burn-in’’ and the harmonic

mean of the likelihood was calculated by combining the two

independent runs. The 50% majority-rule consensus tree was then

computed from the sampled trees in the two independent runs

under the best model.

Statistical analysis
The data were entered into EPIData 3.1 and analyzed with Epi

info 6.04 statistical software using the chi-squared or Fisher exact

tests for observed frequencies. We used a p-value threshold of

0.001. The effect of ‘‘habitat’’ on fleas’ diversity was measured at

two scales, host and sampling region, by using the flea percentage

incidence index (PII: mammals parasitized by fleas of species A/

mammals caught (%)), the specific flea index (SFI: number of fleas

of species A collected from host species Y/mammals of species Y

parasitized by fleas of species A) and the total flea index (TFI: total

fleas collected/total trapped mammals, i.e. mean number of fleas

per trapped mammal) [21]. The seasonality of flea diversity was

tested by comparing PII on animals trapped at each site during the

cool-dry versus hot-wet seasons.

Results

Flea sampling and morphological diagnosis
A total of 960 small mammals were trapped. They belong to the

five introduced small terrestrial mammal species occurring in

Reunion Island: 39 mice (Mus musculus), 168 shrews (Suncus
murinus) and 25 tenrecs (Tenrec eucaudatus), all other specimens

being rats (Rattus rattus: N = 554; R. norvegicus: N = 174)

(Table 1). Almost 10% (95) of trapped mammals were infested

with fleas (Table 1) and the TFI (mean number of fleas per host)

was equal to 0.3 when based on all trapped mammals, and equal

to 3 when based on parasitized mammals only. Of 288 fleas

collected during the survey, 286 could be identified on a

morphological basis. They were distributed within three genera

Figure 1. Sampling sites along the two altitudinal transects on western and eastern coasts, together with additional sampling sites
in the north and west coast of Reunion Island.
doi:10.1371/journal.pntd.0003129.g001

Fleas on Reunion Island: Epidemiological Consequences
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and four distinct species, namely Xenopsylla cheopis (N = 171),

Xenopsylla brasiliensis (N = 63), Leptopsylla segnis (N = 43) and

Echidnophaga gallinacea (N = 9) (Table 2).

Host prevalence and host specificity
Rattus rattus was found to be the most parasitized host,

predominantly by Xenopsylla spp. (p,1023). Only five mice, eight

shrews and one tenrec were found parasitized by fleas (Xenopsylla
spp. and L. segnis) (Table 2). Rattus rattus was more heavily

infested in the western side of the island (p,1027) whereas R.
norvegicus was most infested in the northern part (p,1024) and

mice in the eastern part (p,1024). No difference according to the

sampling region was found in shrews or tenrecs. When considering

Xenospylla spp., X. cheopis was mainly found on Rattus spp. (p,

1025) with no difference between R. rattus and R. norvegicus but

X. brasiliensis was significantly more abundant on R. rattus (p,

1024) than on any other mammal species. The number of flea

species per host species ranged from one to four (Table 2), but

most mammals were parasitized by a single flea species although

nine R. rattus were found co-infested with two distinct species as

follows: X. cheopis+X. brasiliensis (N = 1), X. cheopis+E. gallinacea
(N = 3), and X. cheopis+L. segnis (N = 3).

Flea index and distribution
Xenopsylla spp. were by far the most common fleas (234/286

fleas) with X. cheopis and X. brasiliensis representing 59% (171/

286) and 22% (63/286) of all identified fleas, respectively

(Table 2). Xenopsylla cheopis was also the most geographically

widespread species, as it was present in all of the fourteen flea-

positive sampling sites out of the twenty prospected ones. X.
brasiliensis was collected at only two sites throughout the island,

both of them being located on the western transect. Noteworthy,

X. brasiliensis/R. rattus SFI index was relatively high in one of

those 2 sites (Sans Soucis, SFI = 2). Leptopsylla segnis was collected

on mice and both rat species in four elevated sites (.1,000 me-

ters), and E. gallinacea was only collected on R. rattus at three

distinct sites along the western transect (Figure 2).

Windward and leeward transects displayed dramatically differ-

ent results, in terms of abundance of fleas and species richness

(Table 3). The PII was significantly lower (p,1027) in the eastern

region compared to the northern and western regions. Indeed, 201

Xenopsylla fleas were collected out of 405 mammals trapped in the

western transect while this species was totally absent on the 464

rodents trapped on the eastern transect (see Tables 1, 3); the only

two X. cheopis specimens collected in the eastern side were from

one tenrec trapped on the top of the eastern transect located in an

elevated plateau at the centre of the island (Table 3; Figure 2). All

other fleas collected in the eastern transect were identified as L.
segnis (21 of 24 collected fleas; Table 3).

Lower flea species richness was recorded in animals trapped

along the eastern than in the western transect: fleas were absent on

six of the nine eastern sampling sites,and on the remaining sites,

only seven mammals were found parasitized. The specific flea

indexes (SFI) were 1.47 for X. cheopis/R. norvegicus on the

northern sampling sites; 0.53 for X. cheopis/R. rattus in the western

sites; and 0.26 for X. brasiliensis/R. rattus in the western sites (see

Tables 4 and 5).

Seasonality of infestation
There is no apparent seasonality of flea abundance in the

eastern region, which could be explained by the absence or very

low abundance of fleas, even during the peak season observed on

Table 1. Flea indices.

PII No parasitized mammals/No mammals caught (%) TFI

North East West Total

Mice - 5/11 (45.5) 0/28 (0) 5/39 (12.8) 20/39 (0.5)

RN 6/19 (31.6) 1/90 (1.1) 3/65 (4.6) 70/174 (5.7) 33/174 (0.2)

RR 1/26 (3.8) 1/291 (0.3) 69/237 (29.1) 71/554 (12.8) 221/554 (0.4)

Shrews 2/27 (7.4) 0/72 (0) 6/69 (8.7) 8/168 (4.8) 12/168 (0.1)

Tanrecs - 1/19 (5.3) 0/6 (0) 1/25 (4.0) 2/25 (0.1)

Total 9/72 (12.5) 8/483 (1.7) 78/405 (19.3) 95/960 (9.9) 288/960 (0.3)

Sample results by host species and region indicating the number of mammals parasitized by fleas per total number of trapped mammals (PII index in brackets), and the
mean number of fleas per trapped mammal (TFI index in brackets). RN: Rattus norvegicus; RR: Rattus rattus.
doi:10.1371/journal.pntd.0003129.t001

Table 2. Number of collected fleas per flea and host species.

X. cheopis X. brasiliensis L. segnis E. gallinacea NA Total

Mice 0 0 19 0 1 20

RN 32 0 1 0 0 33

RR 126 62 23 9 1 221

Shrews 11 0 0 0 0 12

Tenrecs 2 1 0 0 0 2

Total 171 63 43 9 2 288

NA: non available (unidentified escaped fleas).
doi:10.1371/journal.pntd.0003129.t002

Fleas on Reunion Island: Epidemiological Consequences
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other parts of the Island. Seasonality is observed in the west, with

greater abundance observed during the hot-wet season. Over the

fourteen flea-positive sampling sites, seven were sampled during

the two seasons. Two sampling sites were flea-positive during both

seasons, four were flea-positive only during the hot-wet season and

one was found flea-negative during the hot-wet season, and flea-

positive during the cool-dry season (one R. norvegicus and one S.
murinus parasitized by one X. cheopis flea each), but the difference

was not statistically significant (Table 6). This seasonality was

significant for X. brasiliensis on sampling site « Sans soucis »

(p = 0.01; RR = 2.2 [1.1–4.3]), and for X. cheopis on sampling site

« Port est » (p,1023; RR = 11.7 [1.6–86.5]).

Molecular analysis
Sixty (28S) and seventy (COII) sequences were obtained from

fleas sampled in Reunion Island. As all sequences of X. cheopis
and X. brasiliensis were 100% identical, only a dozen sequences

representative of each of those two species were included in the

analyses. Few sequences from Genbank were added, including

Parapsyllus longicornis used as an extra-group. Since no 28S or

COII sequences were available on databases for X. brasiliensis,
we sequenced three X. brasiliensis specimens sampled in

Tanzania (KJ638557-59 in COII; KJ638585, 638589-90 in

28S: collectors Laudisoit A., Makundi R., Katakweba A.,

S3u5899890 E35u2195600, 1994 m, 10/02/2009). Models selected

Figure 2. Prevalence of flea infestation on mammal hosts, i.e. percentage of hosts infested by different flea species over all
captured hosts, for each sampling site.
doi:10.1371/journal.pntd.0003129.g002

Table 3. Number of collected fleas per flea species in each region.

North East West Total

X. cheopis 31 2 139 171

X. brasiliensis 0 0 62 63

L. segnis 0 21 22 43

E. gallinacea 0 0 9 9

NA 0 1 1 2

Total 31 24 233 288

NA: non available (unidentified escaped fleas).
doi:10.1371/journal.pntd.0003129.t003

Fleas on Reunion Island: Epidemiological Consequences
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by jModelTest were GTR+I for 28S phylogeny (AIC

weight = 0.62), and GTR+G for COII phylogeny (AIC

weight = 0.85). All X. cheopis (from Reunion Island and two

haplotypes from Genbank, 28S sequence) branched within a

single well supported clade, while X. brasiliensis haplotypes fell

within two well supported clades, one containing sequences from

Tanzanian fleas, the second harboring all haplotypes from

Reunion Island (Figure 3). Both clades formed a well supported

monophyletic X. brasiliensis clade distinct from X. cheopis and

embedded within Xenopsylla group.

Discussion

The present investigation provides the first information on flea

diversity and distribution on the five introduced small mammal

species present on Reunion Island, where no data were available

thus far. We describe the presence of three genera composed of

four distinct cosmopolitan species, namely X. cheopis, X.
brasiliensis, L. segnis and E. gallinacea. Morphological diagnosis

of X. cheopis and X. brasiliensis was further confirmed by

sequencing of 28S and COII markers: for X. cheopis, fleas

sampled in Reunion Island showed 99% and 100% identity with

sequences accessible in Genbank (i.e. EU336145.1 and

HM188404.1 for 28S and COII sequences, respectively). As no

sequences were currently available for X. brasiliensis on these 2

loci, we generated sequence data using specimens previously

sampled in Tanzania and morphologically identified as X.
brasiliensis by A. Laudisoit and colleagues. Again, molecular data

confirmed X. brasiliensis morphological diagnosis, with 28S and

COII sequences obtained from fleas sampled in Reunion Island

showing respectively 99% and 94% identity with sequences

obtained from Tanzanian fleas.

Phylogenetic analysis carried out with both nuclear and

cytoplasmic markers provided two well resolved mostly congruent

trees, suggesting that no hybridization nor introgression (two

molecular events known to lead to molecular misdiagnosis [22])

has occurred within our sample. However, the analyses did reveal

one incongruency for L. segnis: while 28S-based analysis was

coherent with classical taxonomy, COII sequences unexpectedly

clusterized L. segnis within Pulicidae. Additional and more

informative markers need to be investigated in order to address

this incoherence together with other more basic questions such as

a previously reported paraphylly of Leptopsyllidae [23]. The

absence of molecular data for L. segnis together with the overall

scarcity of accessible DNA sequences for other flea species

(including X. brasiliensis, see above) should stimulate an increased

effort towards the release of a proper barcoding tool facilitating the

diagnosis of cosmopolitan species. As for X. brasiliensis, nuclear

and mitochondrial sequences from Tanzanian specimens formed a

cluster separated from Reunion Island sequences, which might

indicate an ongoing diversification. However, a proper investiga-

tion of eastern African and Indian Ocean X. brasiliensis
populations would be required to ascertain any level of genetic

structuration. Altogether, our data indicate a low diversity of fleas

on small mammals from Reunion Island. In addition, all flea

species were cosmopolitan and likely result from the recent

introduction of their vertebrate hosts on the island, or from the

importation of food stocks with preimaginal stages. This feature is

not unexpected considering the low specific richness in mammal

hosts, which strikingly contrasts with the neighbouring island of

Table 4. Indices of X. cheopis fleas according to small mammal host species trapped during the survey.

PII X. cheopis SFI X. cheopis

North East West Global

Mice - 0/11 (0) 0/28 (0) 0/39 (0) 0 (0/39)

RN 6/19 (31.6) 0/90 (0) 3/65 (4.6) 9/174 (5.2) 0.2 (32/174)

RR 0/26 (0) 0/291 (0) 40/237 (16.9) 40/554 (7.1) 0.2 (126/554)

Shrews 2/27 (7.4) 0/72 (0) 5/69 (7.2) 7/168 (4.2) 0.1 (11/168)

Tenrecs - 1/19 (5.3) 0/6 (0) 1/25 (4.0) 0.1 (2/25)

Total 8/72 (11.1) 1/483 (0.2) 48/405 (11.9) 57/960 (5.9) 0.2 (171/960)

PII: percentage incidence index; PII X. cheopis: mammals parasitized by X. cheopis/mammals caught (%); TFI: total flea index; SFI: specific flea index.
doi:10.1371/journal.pntd.0003129.t004

Table 5. Indices of X. brasiliensis fleas according to small mammal host species trapped during the survey.

PII X. brasiliensis SFI X. brasiliensis

North East West Global

Mice - 0/11 (0) 0/28 (0) 0/39 (0) 0 (0/39)

RN 0/19 (0) 0/90 (0) 0/65 (0) 0/174 (0) 0 (0/174)

RR 0/26 (0) 0/291 (0) 26/237 (11.0) 26/554 (4.7) 0.1 (62/554)

Shrews 0/27 (0) 0/72 (0) 1/69 (1.4) 1/168 (0.6) 0 (1/168)

Tanrecs - 0/19 (0) 0/6 (0) 0/25 (0) 0 (0/25)

Total 0/72 (0) 0/483 (0) 27/405 (6.7) 27/960 (2.8) 0.1 (63/960)

PII X. brasiliensis: percentage incidence index: mammals parasitized by X. brasiliensis/mammals caught (%).
doi:10.1371/journal.pntd.0003129.t005
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Madagascar where species richness and endemism of both flea [7]

and small mammal hosts are high [24], flea endemism likely

resulting from long host-parasite co-evolutionary processes.

Host specificity differed between fleas: E. gallinacea was only

collected on R. rattus which is likely a spill over host from poultry

breeding sites near the concerned sampling sites, i.e. rural areas

where R. norvegicus is likely to be less common. Xenopsylla
brasiliensis appeared mostly associated with R. rattus (one flea

found on a shrew) a situation reminiscent to that previously

described in the Canary islands [25]. On the contrary there was

low host specificity for X. cheopis that was found to most

commonly infest Rattus spp. (92%), but was also found on shrews

and tenrecs (Tables 4 and 5), which is in accordance with previous

report from Madagascar [7]. The number of collected specimens

from the two other species was too low to conclude about host

specificity.

This is the first report of Xenopsylla brasiliensis in Reunion

Island. This species is native to continental subsaharian Africa

where it is the most common plague vector in some areas, often

more abundant than X. cheopis [9]. This expanding species has

spread to other parts of the world such as Brazil and India [26].

This known plague vector, particularly effective in rural environ-

ments, is less tolerant to high temperatures than X. cheopis but is

more resistant to drier conditions [21]. These ecological traits are

in agreement with X. brasiliensis distribution in Reunion Island,

where the species was restricted -in our sample- to a semi-xerophil

landscape partly covered with Tamarinus indica and patches of

exotic Furcraea foetida and Agave americana on the western side

of the island.

The heterogeneous distribution of fleas over Reunion Island,

with no Xenopsylla flea collected along the windward humid

eastern side, might be related to excessive rainfall in this coast.

Indeed, temperature, rainfall and relative humidity have direct

effects on development and survival of fleas, and a direct effect of

rainfall is supposed to occur when high intensity rainfall causes

flooding of rodent burrows [27]. Seasonal abundance of fleas that

has been largely reported in literature is also driven by climate

variables. Warm-moist weather has been described to provide

higher flea indices [27]. This is in agreement with the decrease in

flea abundance observed during the cool-dry season on the two

sampling sites were seasonality was significant.

Fleas are of tremendous medical and economic importance as

vectors of several diseases including bubonic plague, murine

typhus and tularaemia [28]. The discovery of fleas as vectors of

Yersina pestis, and later of Rickettsia typhi, the ethiological agent of

murine typhus, stimulated flea studies in the early 20th century.

Xenopsylla cheopis is now considered as the most important

cosmopolitan vector of both Y. pestis and R. typhi, and an

important Bartonella spp. carrier, and X. brasiliensis is an efficient

plague vector, especially in rural environments. Leptopsylla segnis
is a weak vector of Y. pestis according to old standards (but no

recent experimental studies have been performed to establish if the

early-phase transmission apply to this species) and is a dubious

vector of R. typhi [29]. Hence, our study showing that Reunion

Island hosts several flea species of medical importance warrants

better surveillance of potentially emerging flea-borne zoonoses.

Among flea-borne diseases, the situation of plague is of major

concern for the region. Plague was introduced in Madagascar

from India in 1898 and has become endemic in the highlands [30].

Xenopsylla cheopis and the endemic flea Synopsyllus fonquerniei
are known as the primary vectors of Y. pestis on Madagascar [31].

In Reunion Island, plague has quite a long history: the disease was

likely misdiagnosed as lymphatic filariasis until 1899 when Y. pestis
was isolated by André Thiroux and formally identified by Emile
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Roux [32]. Thus plague was described within the same year in

Madagascar, Reunion and Hawaii, but it was considered as

introduced in Madagascar [32] and Hawaii [33] where foci were

first described in harbors, while André Thirioux described plague

as endemic in Reunion [32].

Plague is not a concern anymore in Reunion Island where the

last human cases were reported in 1926 [34]. Indeed, an SFI of 0.5

to 1 is considered sufficient to maintain plague in a locality and an

index $1 is reported to represent a potentially dangerous situation

with respect to the risk of plague outbreak [8]. Some indexes

reported herein (Tables 4 and 5), specifically the X. cheopis/R.
norvegicus SFI measured on the north of the island may be

considered of concern and should be monitored systematically.

This area is close to the city of Le Port, the only international

harbour of Reunion Island, and the most likely entry port for

parasitized rodents and/or food. Although the risk of plague

introduction from Madagascar is expected to be limited with an

SFI index in this area ,0.5 [7], the substantial shipping trade

between Reunion and Madagascar where plague has already been

described in harbours [35,36] command a cautious control in

Figure 3. Flea phylogenetic trees constructed with (A) nuclear 28S and (B) mitochondrial COII markers. Sequences obtained in the
present study are coloured (red for Tanzania, purple for Reunion Island). Only bootstrap supports .70% are shown (black dots). Genbank accession
numbers are indicated. When several sequences obtained from different fleas showed 100% sequence identity, only one of them was written with
the number (N) of identical haplotypes between brackets. Sequences obtained from three cat fleas (Ctenocephalides felis) sampled in the house of a
murine thyphus human case were included in the analysis.
doi:10.1371/journal.pntd.0003129.g003
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order to prevent introduction of rodents from this plague endemic

country [28–29]. Finally, the role of domestic cats should not be

overlooked since Felidea – in contrast to Canidea in general - are

sensitive to the disease, can become infected by ingesting infested

rodents and develop pulmonary form of the disease, with a risk of

direct respiratory transmission of infectious droplets to the people

caring for them [37].

Considering other flea-borne diseases, rickettsioses represent an

important concern. Interestingly, a retrospective French study

(2008–2010) on travellers returning from Madagascar and

Reunion reported two patients who were infected with murine

typhus during their trip [38]. More recently, in 2012 and 2013,

several autochthonous human confirmed cases of murine typhus

were reported by hospital clinicians from the western and southern

parts of the island (Balleydier E., pers. comm.). The authors were

wondering if the heterogeneous distribution of human cases could

be related to medical surveillance bias. Although incomplete, since

the southern coast of the island wasn’t sampled, the distribution of

fleas reported herein is at least in part overlaid with that of human

cases. This may suggest that the risk of murine typhus in Reunion

Island is related to fleas’ geographical distribution driven by

environmental determinants. The detection of R. typhi in fleas

together with the presentation of a more complete Xenopsylla sp.

distribution map throughout the island may provide public health

agencies with a useful tool for implementing a specific surveillance

system for better risk assessment of murine typhus and other

emerging flea-borne zoonoses in Reunion Island.
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Acta Bot Gallica 151: 181–196.

3. Goodman SM, van Vuuren BJ, Ratrimomanarivo F, Probst J-M, Bowie RCK
(2008) Specific status of populations in the Mascarene Islands referred to

Mormopterus acetabulosus (Chiroptera: Molossidae), with description of a new
species. J Mammal 89: 1316–1327. doi:10.1644/07-MAMM-A-232.1.

4. Tortosa P, Pascalis H, Guernier V, Cardinale E, Le Corre M, et al. (2012)

Deciphering arboviral emergence within insular ecosystems. Infect Genet Evol
12: 1333–1339. doi:10.1016/j.meegid.2012.03.024.

5. Durden LA, Hinkle NC (2009) Fleas (Siphonaptera). In: Mullen GR, Durden
LA, editors. Medical and Veterinary Entomology. San Diego (California):

Academic Press. pp. 115–136.

6. Beaucournu JC, Fontenille D (1991) Contribution à un catalogue des puces de
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