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[1] The deployment of a seismic network along the Adélie
and George V coasts in East Antarctica during the period
2009–2012 provides the opportunity to monitor cryoseismic
activity and to obtain new insights on the relationship
between tidal cycles and coastal glacier dynamics. Here we
focus on records from a seismometer located on a rocky
outcrop in the vicinity of the grounding line of the 35 km
broad Mertz glacier, a major outflow of this region. We detect
numerous icequakes (50,000 events within 10 months and up
to 100 events/h) and demonstrate their clear tidal modulation.
We suggest that they result from ice friction and fracturing
around the rocky peak and from the glacier flexure in
response to the falling and rising tides at its grounding area.
We propose that such icequake monitoring could be used as a
climate proxy since grounding lines are subject to migrate
with sea level changes. Citation: Barruol, G., E. Cordier,
J. Bascou, F. R. Fontaine, B. Legrésy, and L. Lescarmontier (2013),
Tide-induced microseismicity in the Mertz glacier grounding area, East
Antarctica,Geophys. Res. Lett., 40, 5412–5416, doi:10.1002/2013GL057814.

1. Introduction

[2] Coastal Antarctic and Greenland regions are subject to
many kinds of cryoseismic events such as glacial earthquakes
[e.g., Tsai and Ekstrom, 2007], iceberg collision [e.g.,
Talandier et al., 2006], glacier basal deformation [e.g.,
Anandakrishnan and Alley, 1997], and calving [O’Neel
et al., 2007]. Here we focus the present study on the so-called
“icequakes,” events of small magnitude known to be induced
by ice fracturing and crevasse opening [e.g., Neave and
Savage, 1970; Sinadinovski et al., 1999]. Most of them are
characterized by short-duration (<5 s) impulsive waveforms
and by a 1–100 Hz frequency content [O’Neel et al., 2007].
Icequakes are of great interest since they occur as a result

of the ice response to the local stress regime related to
cryosphere dynamics and may reveal interaction with the
ocean. Few experiments have demonstrated that tides may
modulate glacier’s motion [Bindschadler et al., 2003;
Murray et al., 2007] and basal seismicity [Zoet et al.,
2012], but to our knowledge, seismological observations
of the tide modulation of surface icequakes are very rare
[e.g., von der Osten-Woldenburg, 1990].
[3] The ArLiTA (Architecture de la Lithosphère de Terre

Adélie) project comprises four broadband three-component
seismic stations deployed in Adélie and George V lands
(Figure 1a; see supporting information for instrument
details). One of these stations was installed on Correll
Nunatak (CN), a rocky peak emerging from the surrounding
Mertz glacier, at its grounding zone, i.e., at the transition
between grounded to floating ice. The Mertz glacier, a major
ice outflow of this region (Figure 1a), is characterized by a
large floating ice tongue flowing at about 3 m/d [Wendler
et al., 1996] within a 35 km wide fjord into the open ocean.
This tongue was up to 145 km long in 2009, 1200 m thick
at its grounding line, gradually thinning to 300 m at its ocean
end and broke in February 2010 to release a 80 × 40 km large
iceberg [Lescarmontier, 2012].
[4] The sinuous geometry of the Mertz grounding line,

defined by double-difference interferometric synthetic aper-
ture radar (InSAR) interferograms [Legresy et al., 2004]
(Figure 1b) and the surface crevassing visible on the
SPOT satellite image (Figure 1c), suggest that the nunatak
interacts with the glacier’s flow and induces large down-
stream ice fracturing. The interaction of the glacier with
the bedrock topography, together with the tide-induced ver-
tical and lateral displacement resulting in along- and across-
flow flexural deformations [Reeh et al., 2003; Vaughan,
1995], points to strain localization in this area through ice
damage and crevassing that should have a cryoseismic
signature. In order to monitor such microseismicity at the
Mertz grounding line, we focus this study on the icequakes,
ubiquitous within the raw seismic signals, particularly at
station CN (Figure 2a).

2. Results

2.1. Icequake Detection, Duration, and Magnitude

[5] We performed an extensive detection of icequakes at
the broadband stations by applying a short-term average/
long-term average algorithm [Lesage, 2009] (details are
given in the supporting information). We found a clear spa-
tial and temporal variability in the number of detected events.
We observed about 700 events/month at PM and CP stations
(Figure 1a), located at large distances (>10 km) to an active
glacier with a developed floating ice tongue; higher values of

Additional supporting information may be found in the online version of
this article.
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about 1500 events/month at DRV and PP stations, installed at
1 and 10 km, respectively, to glaciers with developed floating
ice tongues; and a large seismicity up to 5000 events/month
at station CN, located on the Mertz grounding zone.
[6] The detected icequakes are characterized by impulsive

signals containing a wide frequency spectrum up to at least
20 Hz (the Nyquist frequency, since the data are sampled at
40 Hz), as shown Figure 2b. These events do not show evi-
dence of distinct P and S wave arrivals but are horizontally
polarized along directions ranging from N90°E to N150°E.
This suggests that they are generated by ice fracturing and
crevassing processes [e.g., Neave and Savage, 1970] occur-
ring east to southeast of CN. The event duration (Figure 2c)

is dominated by a single class of events, with a maximum
occurrence at 0.5 s.
[7] Assuming that icequakes are governed by similar

laws as earthquakes, which seems to be the case from
Amery ice shelf seismicity analysis [Bassis et al., 2007],
we estimate their magnitudes by using an empirical relation-
ship linking the event duration d and the magnitude Md, such
asMd≈�0.9 + 2log(d) [Lee et al., 1972]. At station CN, most
durations are smaller than 2.0 s and indicate mostly negative
magnitudes and likely small epicentral distances.
[8] The frequency-duration distribution of icequakes at

CN does not follow a Gaussian-like distribution but better
fits a Gutenberg-Richter distribution [Gutenberg and Richter,
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Figure 1. (a) Location of the seismic stations deployed during the period from November 2009 to November 2012 by the
ArLITA project: PM=Port Martin, CP =Cape Pigeon, CN=Correll Nunatak, PP = Penguin Point, DRV=Dumont
d’Urville GEOSCOPE station. Also reported on this map are the contours of the floating glaciers (dashed grey lines) and
the line along which the February 2010Mertz glacier calving occurred (dotted line). (b) Zoom of the InSAR double-difference
interferogram [Legresy et al., 2004] around Correll Nunatak showing the complex geometry of the grounding line, together
with 2 km and 5 km radius circles around CN. (c) Zoom on a SPOT satellite image around CN showing the surface crevassing
downstream of the Correll Nunatak, together with the Mertz grounding line and the flow vector.

Figure 2. (a) Example of the signal recorded at station CN. Twenty-five minutes of seismicity on 14 May 2010, starting at
05:00:00, vertical seismogram, band-pass filtered between 1 and 18 Hz showing the numerous impulsive icequakes. (b) Time-
frequency plot of the above seismogram showing the short duration and the broad frequency content of the icequakes. (c)
Distribution of the duration of the 48,959 icequakes detected at CN for the 10 month recording period.
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1944] with small icequakes more numerous than long-duration
events. We found that the number N of events of a given dura-
tion is linked to the duration magnitudeMd through the relation
logN= 3.12� 0.86Md, with a linear trend and a correlation
coefficient of R=�0.94. Such distribution of apparent magni-
tude suggests that the detected icequakes originate from faults
or crack ruptures at short distance to the station.

2.2. Icequake Occurrences, Sea Level Height,
and Tide Velocity

[9] The hourly occurrence of detected icequakes shows
large variations from 0 to 100 events/h that may occur within
a few hours. A time series of icequake activity recorded at
CN between April and July 2010 is presented in Figure 3a,
together with the sea level variation calculated from the
Toulouse Unstructured Grid Ocean (TUGO) tide model
[Lescarmontier et al., 2012; Mayet et al., 2013] (Figure 3b).
This barotropic model uses the model FES2004 [Lyard et al.,
2006] as boundary conditions and takes into account accurate
coastlines, shallow water bathymetry, geometry, and thickness
of the floating ice, together with the pressure and wind atmo-
spheric forcing, to calculate the local tide and the induced local
water circulation.
[10] We observe daily and fortnightly modulation of the

microseismicity at this station, confirmed by the periodogram

calculated from 10 months of continuous data (Figure 3c).
The power spectrum of hourly detected icequakes exhibits
clear peaks close to the dominant tide periods such as the
semidiurnal (2 cycles/d), diurnal (1 cycle/d), and fortnightly
(0.07 cycles/d) variations. One also sees higher frequencies
at 3 and 4 times/d that may correspond to complex local
tide–bathymetry interaction [e.g., Murray et al., 2007].
[11] The harmonic analysis of the icequake activity using

the T-Tide software package [Pawlowicz et al., 2002] confirms
the clear tidal modulation of the icequake frequency by the fort-
nightly (MSF and MF), diurnal (K1, P1, O1), and semidiurnal
(M2, S2) tide components. Among the 58 tide frequencies
analyzed, these eight components explain about 40% of the
total number of icequakes observed at station CN, but if one
considers the significant tidal constituents with a signal-to-noise
ratio larger than 2.0, one retrieves 37 tide frequencies that
explain about 90% of the icequake seismicity, demonstrating
the major role of the tide on the local cryoseismicity.
[12] The comparison of icequake occurrences at station CN

and the sea level height deduced from the TUGO tide model
calculated on a point located on the Mertz glacier at 5 km east
from CN shows a first icequake activity peak of small ampli-
tude at midrising tide and a second peak of larger amplitude
at midfalling tide. These midtide peaks correspond to the
maximum of sea level velocity variation. The analysis of

Figure 3. (a) Number of hourly detected icequakes at station CN during the period from 10 April 2010 to 20 July 2010. (b)
Tide height output from the TUGOmodel at a point of latitude�67.6° and of longitude 144.4° (at about 5 km from station CN
in the middle of the Mertz glacier) for the same time period. (c) Power spectrum of the icequake activity at station CN issued
from 10 months of continuous data. The vertical dashed lines indicate the main tidal frequencies (MM: monthly; MSF and
MF: fortnightly; K1, P1, O1: diurnal; M2, S2: semidiurnal) calculated from the T-Tide software [Pawlowicz et al., 2002].

06/06 06/07 06/08 06/09 06/10 06/11 06/12 06/13

Date (mm/dd) of 2010
06/14 06/15 06/16 06/17 06/18 06/19

 0

15

30

45

60

  0

0.1

0.2

0.3

0.4

N
b

 o
f 

ic
eq

u
ak

e/
h

o
u

r

T
id

e 
ve

lo
ci

ty
 (

m
/h

)

R F

R F

R F

R F R F R F R F R F
R F

R F

R F

icequakes tide velocity

Figure 4. Example of variation of the hourly detected icequakes at station CN (grey bars) together with the predicted
tide velocity amplitude (black line) for the 2 week period from 6 to 19 June 2010. R and F indicate rising and falling
tides, respectively.
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icequake hourly frequency at station CN (Figure 4), together
with the tide vertical velocities issued from the TUGO model
(rising and falling tides are indicated by R and F, respec-
tively), reveals the following features.
[13] 1. No icequakes are detected at low tide velocity, i.e.,

close to high and low stages.
[14] 2. Icequakes are detected above a tide velocity threshold

of about 0.1 m/h.
[15] 3. On a diurnal cycle, the icequake activity is lower

during rising (R) than falling (F) tides, and the maximum peak
occurs during falling tides close to the maximum tide velocity.
[16] 4. On a 2 week cycle, the maximum number of

icequakes coincides with spring tides, whereas neap tides
do not generate any significant number of icequakes.

3. Discussion and Conclusion

[17] The extremely small event magnitudes and the station
spacing impede to locate the detected icequakes. The difficulty
in retrieving events recorded simultaneously by several sta-
tions was already described in several glacier experiments
using a station spacing of 2–3 km [Smith, 2006; West et al.,
2010], but icequakes were successfully located by using
short-scale seismic deployments (<1 km) [e.g., Bassis et al.,
2007]. This suggests that icequakes can be detected within
the few kilometers around the station. Such a very local source
of seismicity is consistent with the surface crevassing of the
Mertz glacier starting southeast of the CN station (Figure 1c)
and with the nearby presence of the grounding line (Figure 1b).
We propose three different (and nonexclusive) origins
(Figure S5 in the supporting information) to explain the
observed seismicity.
[18] 1. Friction of the glacier on the outcropping basement

(Figure S5a in the supporting information). The vertical up
and down tide-induced motions of the floating Mertz glacier,
with a typical amplitude of 1 m, may generate local ice frac-
turing and seismicity in contact with the Correll Nunatak.
Such friction is expected to be larger at falling tides, during
the resettlement of the glacier on the nunatak, than at rising
tides, which is consistent with our observations. In this
hypothesis, the periods with no icequake suggest that the
continuous Mertz flow is either undisturbed by bedrock
topography in the vicinity of the nunatak or may generate
microseismic events too small to be detected.
[19] 2. Brittle deformation of the glacier generated by its

flexure during falling tides (Figure S5b in the supporting
information). The relative vertical motion between the
grounded and floating ice tongues is expected to bend the
glacier [e.g., Vaughan, 1995], generating an extensive state
of stress in the upper part of the glacier along the grounding
line and inducing mode I microfracturing at the glacier outer
curve. This may explain the icequake occurrences during
the tide descending phase and the maximum number of
icequakes corresponding to the maximum velocity of the
sea level variation.
[20] 3. Brittle deformation of the glacier induced by its

flexure during rising tides (Figure S5c in the supporting
information). If the glacier is mechanically coupled to the
fjord walls on its lateral sides, one expects a flexure of the
ice slab along the lateral boundaries during the rising tides,
as evidenced by geodetic measurements in Greenland [Reeh
et al., 2003] and mode I ice surface fracturing along the zone
of maximum flexure, expected to be at 2–5 km from the fjord

walls [Reeh et al., 2003; Walker et al., 2013]. Such a lateral
boundary, parallel to the N30°EMertz flow direction, is pres-
ent south and northwest of CN, as observed by GPS and
InSAR [Legresy et al., 2004] (Figure 1b). The smaller ampli-
tude of these peaks (Figure 4) may reflect the larger distance
between CN and the lateral boundary of the Mertz glacier.
[21] In the flexure models, the glacier behaves differently

during phases of bending and unbending: flexure gives rise
to stretching brittle deformation on its outer curve above
the ice brittle-ductile transition [Schulson et al., 1984] and
likely to a plastic and, therefore, seismically silent compres-
sive deformation below. After the flexure, while the glacier
recovers its initial position, unbending is expected to close
and heal the surface microfractures, which is an aseismic pro-
cess, and to induce a tensile deformation at the bottom of the
glacier. The absence of detected event during this phase can
be explained either by the larger distance to the station or
by ductile and aseismic deformation. This may explain why
only the bending phases may generate icequakes, whereas
the unbending phases remain seismically quiet.
[22] The threshold of about 0.1 m h�1 in the vertical sea

level velocity below which no icequake is detected may have
several explanations: (i) Brittle deformation may occur above
a strain rate threshold, which is consistent with laboratory
experiments indicating that icequake generation, i.e., brittle de-
formation, requires large strain rates [Schulson et al., 1984]. (ii)
Subcritical, slow, and silent deformation may follow mode I
crack opening [Weiss, 2004]. (iii) Non-tide-induced events
may originate too far from the nunatak to be detected.
[23] Continuous icequake detection performed in the

grounding area of the Mertz glacier reveals that local defor-
mation processes are closely related to tide vertical velocity.
The glacier flexure and its friction on the bedrock are
proposed to be the dominant mechanisms that generate
icequakes in the few kilometers around Correll Nunatak.
The bending is likely to be active at both rising and falling
tides by increasing the tensile state of stress at the surface
of the glacier: first, in the grounding area during falling tides
and, second, along the lateral boundary of the glacier at rising
tides. The complex shape of the grounding line around
Correll Nunatak may explain the simultaneous presence of
along- and across-flow bending occurring at falling and
rising tides, respectively. The tide-induced microseismicity
at the Mertz glacier grounding line is also observed, but at
a lower degree, at stations DRV and PP, both located at less
than 10 km from floating ice tongues, suggesting that the
seismic observations of the kind performed at the Mertz
grounding line may be made at other sites and may provide
insights on the mechanical stability of ice shelves in regard
of sea level rise.
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