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We present the data of a mode-I fracture experiment. The samples are broken under imposed

pressure. The acoustic emission of microfractures before the breakup of the sample is registered. From
the acoustic signals, the position of microfractures and the energy released are calculated. A measure
of the clustering of microfractures yields information about the critical load. The statistics from energy
measurements strongly suggest that the fracture can be viewed as a critical phenomenon; energy events
are distributed in magnitude as a power law, and a critical exponent is found for the energy near fracture.
[S0031-9007(97)04346-9]

PACS numbers: 62.20.Mk, 46.30.Nz

Fracture is a problem which has recently received a lot
of attention in the physics community [1–3]. It is trouble-
some to calculate the force needed to break a heteroge-
neous material. Instead, it is customary to resort to tests
involving the destruction of the sample. Therefore it is
interesting to provide additional knowledge about cracks
by studying the events that occur prior to the fracture. Be-
sides, despite great experimental and numerical efforts [1–
6], many aspects still remain unclear about the fracture
process itself. Conceptually simple models, such as per-
colation [6] and self-organized criticality [7], are attractive
but often fail to convey the complex phenomenology ob-
served. The main motivation of this work is to understand
if these models can reproduce the main features of crack
formation.
We report here some experimental results that may

help to gain valuable information in that direction. Our
main tool is the monitoring of the microfractures, which
occur before the final breakup, by recording their acoustic
emissions (AE). Because of its ability to pinpoint the
emission source, this technique has been widely used in
seismography and to map the nucleation of fractures [8].
From these signals, we have also obtained the acoustic
energy of each microfracture, which is a fraction of the
total energy released. The behavior of the energy just
before fracture is a good parameter to compare with the
above mentioned models.
In order to avoid noise, we have designed a setup

in which there are no moving parts, the force being
exerted by pressurized air (see Fig. 1). A circular sample
having a diameter of 22 cm and a thickness of 5 mm is
placed between two chambers between which a pressure
difference P ≠ P

2

2 P
1

is imposed. The deformation of
the plate at the center is bigger than its thickness, then the
load is mainly radial [9,10]. Therefore, the experience can
be thought of as a mode-I test with circular symmetry.
The pressure difference P supported by the sample is
slowly increased and it is monitored by a differential
transducer. This measure has a stability of 0.002 atm.
The fracture pressure for the different tested materials
ranges from 0.7 to 2 atm. We regulate P by means of

a feedback loop and an electronically controlled valve
which connects one of the two chambers to a pressurized
air reservoir. The time taken to correct pressure variations
(about 0.1 s) is smaller than the characteristic time of the
strain rate. An inductive displacement sensor gives the
deformation at the center of the plate with a precision
of about 10 mm (the deformation just before fracture is
of the order of 1 cm). The apparatus is placed inside
a copper box covered with a thick foam layer to avoid
both electrical and acoustical noise. Four wide-band
piezoelectric microphones are placed on the side of the
sample (see Fig. 1). The signal is amplified, low-pass
filtered at 70 kHz, and sent to a digitizing oscilloscope
and to an electronic device which measures the acoustic
energy detected by the microphones. The signal captured
by the oscilloscope is sent to a computer where a program
automatically detects the arrival time of the AE at each
microphone. Afterwards, a calculation yields the position
of the source inside the sample. A fraction of the detected
events is rejected, either as a result of a large uncertainty
of the location, or because they are regarded as noise.
The mean standard error for the calculated positions is
about 6 mm, which results mainly from the uncertainty
of the arrival time. The electronic device that measures
the energy performs the square of the AE amplitude and
then integrates it over a time window of 30 ms, which is
the maximum duration of one acoustic event. The output
signal is proportional to the energy of the events [11], and

FIG. 1. Sketch of the setup. (a) Top view. S: sample;
M: microphones; DS: displacement sensor. (b) Side view.
EV: electronic valve. HPR: high pressure reservoir.
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its value is sent to the computer. The dynamic range for
the energy measurement is four decades, and the device is
adjusted in such a way that only the strong sound emitted
by the final crack saturates it. The global results of the
measurements are the following: a list of the positions of
microfractures, the strain of the samples, and the energy
released as a function of P. Further details of the setup
will be described elsewhere [12].
The loading can be applied in several ways. In order to

allow comparison with some numerical models (specially
those involving fuse networks, see, for example, [3,13]),
we load the sample in such a way that P is imposed
and slowly increased. The analogy with a fuse network
goes like this: the electric current is formally equivalent to
the stress, the voltage across the lattice to the strain, and
the conductivity to the Young modulus. Our experiment
corresponds to a situation where current is imposed and
voltage is the dependent variable, which is the standard
situation in numerical simulations. This is important
because the features of energy near fracture are different
if displacement, instead of pressure, is imposed, as is
often done in fracture experiments. Energy from AE
released by fractures has been studied in many different
situations: in granite [8], in volcanoes [14], in chemically
induced fracture [15], in plaster samples cracked by
piercing through them [16], and in the explosion of a
spherical tank [17]. In our experiment we pay special
attention to the following points. First, we place ourselves
in a clearly defined situation, namely, mode-I fracture.
Second, we follow a load procedure in which we impose
the control parameter. Third, we take care to ensure that
the energy detected, which is the “order parameter,” is not
contaminated from noise.
The samples are made of composite inhomogeneous ma-

terials, such as plaster, wood, or fiberglass. The experi-
mental results are similar for all the materials. In this
paper we present results for chipboard wood plates, which
are most representative of the observed behavior. The
chipboard we employed is made of glued short fibers ran-
domly oriented, and cracks when stressed without defoli-
ating. Each run is carried out in the following way. A
sample is placed in the apparatus and a pressure ramp is
applied. The rate of pressure increase, which is adjusted
so that the succession of microfractures does not proceed
too fast, is about 0.5 atmyh. In this way, the run lasts for
about 2 h. In several runs, we have changed the pressure
increase rate so that the sample cracks after a time span-
ning from 30 min to 5 h without noticing significant dif-
ferences. However, if the sample is loaded, then unloaded
before fracture, and loaded again, only a small number of
microfractures are detected before attaining the previous
load (Kaiser effect). In all the runs reported here, we have
increased the pressure monotonically. Several hundreds,
even thousands, of microfractures are detected prior to the
destruction of the sample.
With the data acquired we are able to replay a “movie”

of the run, plotting the location of the microfractures as the

pressure is increased (Fig. 2). Figures 2(a)–2(e) show the
localization of microfractures at pressure intervals sm 2
1dy5 , p , my5, where m ≠ 1, . . . , 5 and p ≠ PyPc is
the normalized pressure, Pc being the fracture pressure.
Figure 2(f) shows all the microfractures registered. The
final distribution of microfractures agrees well with the
observed crack pattern. It has been noticed [8] that as
the applied stress is increased, microfractures tend to nu-
cleate and form a major fault, eventually causing the failure
of the material. If microfractures are tightly clustered, it
can be suspected that the material is severely damaged. It
is therefore natural to try to quantify the extent to which
microfractures are grouped together. Several measures of
disorder have been proposed [18,19] that can be applied
to this case. We have proceeded as follows. We look
for the distribution of microfractures that happen within a
given pressure interval. The sample surface is divided in
squares and the number of microfractures ni inside each
square is evaluated. The entropy S is then computed:
S ≠ 2

P
i qi lnqi , where qi ≠ niyN , N being the total

number of microfractures in the pressure interval. To com-
pare between different pressure intervals, each of them
having a different number of microfractures, the entropy
for each interval is normalized to the equipartition entropy
Se (the entropy of N events evenly distributed through the
grid), so a normalized entropy s ≠ SySe is obtained. The
values s ≠ 1 and s ≠ 0 correspond, respectively, to total
disorder and extreme concentration. We have used a grid
containing a number of squares of the same order as the
average N . In this way, the smallest structure that can be
detected has a size of about 2 cm, which is slightly larger
than the typical size of the clusters of microfractures. The
value of s slightly depends on the grid size; the aspect of
the curve, however, remains the same for the different grids
we have used.
In Fig. 3 s is plotted versus p. It can be seen that

s monotonically decreases as the control parameter is
increased. In this way, the extent to which faults have

FIG. 2. Localization of microfractures for one sample as P is
increased. The microfractures occurring at five equal pressure
intervals are represented in (a)–(e). Pressure grows from (a) to
(e). In (f) all the microfractures occurring during the run are
plotted.
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FIG. 3. Normalized entropy s versus p. The linear fit (dashed
line) is a guide for the eye. Eleven samples were used to
calculate the average and the error bars. (For pressures less
than p ≠ 0.2, it is not possible to calculate s due to the small
number of microfractures.)

developed can be grasped. This measure may provide a
nondestructive, albeit damaging test. While this is valid
for the other materials we have tested, we are not in a
position to state that the decrease of entropy follows in all
cases the same law. More work is needed to develop this
method, but with present results the point where half the
critical pressure is reached can be already predicted with
an error of 620% at s ¯ 0.8 (see Fig. 3).
We now study the behavior of the released energy as

a function of P. The instantaneous energy ´ released
by a sample is shown in Fig. 4(a) as a function of p.
The energy signal consists of bursts, which correspond to
microcracks. In particular, we are interested in analyzing
the dependence on P of the energy near fracture. In
percolation models, the order parameter diverges following
a power law as the control parameter is increased. A
critical exponent is then found. This is valid only close
to the phase transition, say within 5% of the critical value.
To do this, we first calculate the cumulated energy E,
i.e., the total energy released up to a pressure P. We
then search a law in the form E ≠ E

0

s Pc2P
Pc

d2a , where
E

0

and a are constants to be fitted. In Fig. 4(b) we
present such a fit for the normalized data of 11 wood
samples. We obtain a ≠ 0.27 6 0.05. This value shows
small variations between different samples of the same
material but presents a little dependency on the material.
For fiberglass, for instance, a ≠ 0.22 6 0.05. This is not
surprising since the behavior near the critical point, even
in numerical models [6], is expected to depend strongly
on microscopic features such as the geometry and the
type of the bonds. It would be tempting to compare this
figure to other exponents obtained in percolation models
[6,13] or in other experiments [17]. This would not be
reasonable, given the sensitivity to the specific details of
the model. Nevertheless, the power law behavior is clearly
seen close to Pc. This is a good indicator that fracture
could be modeled using those frameworks, and described
as a critical phenomenon.
The probability density function for ´ is plotted in

Fig. 4(c). The upper and lower energy limits are, respec-

FIG. 4. (a) The energy released ´ as a function of p for one
of the samples. Energy bursts correspond to microfractures.
(b) Cumulated normalized energy EyE

max

versus reduced
pressure sPc 2 PdyPc , where E

max

is the total energy. A
power fit has been done near Pc (solid line). The inset is a
zoom near Pc . (c) Histogram of ´ from the events registered
in 11 wood plates. Energy intervals have a width of 5 times
the measurement precision. The fit lnN ≠ ln´

0

2 g ln ´ is
shown.

tively, the strongest event recorded and the noise level.
A power law is obtained spanning through more than
two decades. This has also been observed in numerical
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simulations of the fracture of a bundle of fibers [20].
Again the exponent shows little variation between differ-
ent samples of the same material. For wood, the expo-
nent is g ≠ 21.51 6 0.05. This value compares well
to the one given in [7] and [21], but it differs a little
from one material to another. For fiberglass, for example,
g ≠ 22.0 6 0.1. Even if the exponent agreement is co-
incidental or if it is not universal, the power law behavior
strongly suggests a critical dynamics. An important re-
mark should be made here. This feature may depend on
the experimental procedure. In our experiment P is im-
posed and slowly increased, and this may easily trigger an
avalanche, as in the scenario of self-organized criticality.
If the loading is instead carried out by slowly increasing
the strain, the power law might not be found. A detailed
discussion about the dependence of the results on the load-
ing methods will be treated in a forthcoming article [12].
In summary, we have presented experimental data show-

ing a strong analogy between the formation of a crack in
composite materials and percolation in a fuse network. On
a qualitative level the microcracks clusterize around the
final crack. On a more quantitative level, if the system is
driven at imposed pressure, the data show the existence of
a critical exponent for the energy released by microfrac-
tures near the critical point, supporting the view that frac-
ture can be thought of as a critical phenomenon. We have
also shown that the probability density function of the en-
ergy can be fitted by a power law. Finally, we propose
that the localization entropy can provide some information
about the critical load before the fracture is reached.
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