NMPC of an industrial crystallization process using model-based observers - Université de La Réunion Access content directly
Journal Articles Journal of Industrial and Engineering Chemistry Year : 2010

NMPC of an industrial crystallization process using model-based observers

Cédric Damour
Connectez-vous pour contacter l'auteur
Michel Benne
Connectez-vous pour contacter l'auteur
Brigitte Grondin-Perez
  • Function : Correspondent author
  • PersonId : 970429

Connectez-vous pour contacter l'auteur
Jean-Pierre Chabriat
Connectez-vous pour contacter l'auteur

Abstract

This paper illustrates the benefits of a nonlinear model-based predictive control (NMPC) approach applied to an industrial crystallization process. This relevant approach proposes a setpoint tracking of the crystal mass. The controlled variable, unavailable, is obtained using an extended Luenberger observer. A neural network model is used as internal model to predict process outputs. An optimization problem is solved to compute future control actions taking into account real-time control objectives. The performances of this strategy are demonstrated via simulation in cases of setpoint tracking and disturbance rejection. The results reveal a significant improvement in terms of robustness and energy efficiency.

Dates and versions

hal-01202295 , version 1 (19-09-2015)

Identifiers

Cite

Cédric Damour, Michel Benne, Lionel Boillereaux, Brigitte Grondin-Perez, Jean-Pierre Chabriat. NMPC of an industrial crystallization process using model-based observers. Journal of Industrial and Engineering Chemistry, 2010, 16 (5), pp.708--716. ⟨10.1016/j.jiec.2010.07.014⟩. ⟨hal-01202295⟩
136 View
0 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More