NMPC of an industrial crystallization process using model-based observers
Abstract
This paper illustrates the benefits of a nonlinear model-based predictive control (NMPC) approach applied to an industrial crystallization process. This relevant approach proposes a setpoint tracking of the crystal mass. The controlled variable, unavailable, is obtained using an extended Luenberger observer. A neural network model is used as internal model to predict process outputs. An optimization problem is solved to compute future control actions taking into account real-time control objectives. The performances of this strategy are demonstrated via simulation in cases of setpoint tracking and disturbance rejection. The results reveal a significant improvement in terms of robustness and energy efficiency.