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Laurent D. Noël9,10, Juan F. Ortiz Quiñones3, Daniela Osorio1, Carolina Pardo1¤, Prabhu B. Patil12,
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Abstract

Xanthomonas axonopodis pv. manihotis (Xam) is the causal agent of bacterial blight of cassava, which is among the main
components of human diet in Africa and South America. Current information about the molecular pathogenicity factors
involved in the infection process of this organism is limited. Previous studies in other bacteria in this genus suggest that
advanced draft genome sequences are valuable resources for molecular studies on their interaction with plants and could
provide valuable tools for diagnostics and detection. Here we have generated the first manually annotated high-quality
draft genome sequence of Xam strain CIO151. Its genomic structure is similar to that of other xanthomonads, especially
Xanthomonas euvesicatoria and Xanthomonas citri pv. citri species. Several putative pathogenicity factors were identified,
including type III effectors, cell wall-degrading enzymes and clusters encoding protein secretion systems. Specific
characteristics in this genome include changes in the xanthomonadin cluster that could explain the lack of typical yellow
color in all strains of this pathovar and the presence of 50 regions in the genome with atypical nucleotide composition. The
genome sequence was used to predict and evaluate 22 variable number of tandem repeat (VNTR) loci that were
subsequently demonstrated as polymorphic in representative Xam strains. Our results demonstrate that Xanthomonas
axonopodis pv. manihotis strain CIO151 possesses ten clusters of pathogenicity factors conserved within the genus
Xanthomonas. We report 126 genes that are potentially unique to Xam, as well as potential horizontal transfer events in the
history of the genome. The relation of these regions with virulence and pathogenicity could explain several aspects of the
biology of this pathogen, including its ability to colonize both vascular and non-vascular tissues of cassava plants. A set of
16 robust, polymorphic VNTR loci will be useful to develop a multi-locus VNTR analysis scheme for epidemiological
surveillance of this disease.
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Introduction

The genus Xanthomonas comprises plant pathogens that infect a

wide range of plants, including citrus, pepper, tomato, rice and

others [1,2]. In particular, Xanthomonas axonopodis pv. manihotis (Xam)

is the causative agent of cassava bacterial blight (CBB; [3]), the

main bacterial disease affecting cassava plants (Manihot esculenta).

This disease is widespread in all places where cassava is grown,

including Africa, Asia and South America [4,5], where crop losses

due to CBB have been reported to be between 12 and 100% [3].

Accordingly, the journal Molecular Plant Pathology recently listed

Xam among the top 10 plant pathogenic bacteria based on its

scientific and economic importance [6].

Xam is mainly a vascular pathogen and survives epiphytically

until favorable conditions for infection are reached. Open wounds

and stomata are major routes of pathogen infection in otherwise

healthy plants [4], and the disease is transmitted between crop

cycles through the use of infected cuttings [7]. Once inside the

plant, bacteria colonize the mesophyll, generating angular leaf

spots as one of the early symptoms. In subsequent stages in

susceptible plants, pathogen population increases and reaches

vascular tissues, blocking the flow of nutrients and generating a

wilting process that, in severe cases, ends with the death of the

plant [3]. Alternatively, when infection starts by the use of infected

propagative material, it spreads immediately in the vascular

tissues, leading to a rapid wilt of the plant (reviewed by [7]).

Control strategies to prevent CBB spread include the use of

resistant cassava varieties and pathogen-free plant cuttings [3].

Nonetheless, the molecular basis of resistance is not completely

understood and it is permanently challenged by the diversity of

Xam strains [8,9]. Also, knowledge on the early determinants of

disease development is limited. A better understanding of the

pathogenicity mechanisms of Xam at the molecular level is urgently

needed to efficiently control this disease.

Among the most important pathogenicity factors are the diverse

protein secretion systems and their substrates [10]. Of special

interest are type III-secreted effector proteins (T3E), which play an

important role in the plant-pathogen interaction and in shaping

the host range [11,12,13]. Moreover, conserved T3E in Xantho-

monas have been proposed as an ancestral characteristic for

pathogenicity and virulence inside the genus [14]. About twenty

potential T3Es per genome have been identified in different

Xanthomonas, with more than sixty different potential T3E found

among all the bacteria of this genus [13]. More recently, 22

effector gene families were reported to be present in several

genomic sequences of Xam [15]. Despite this wealth of informa-

tion, in Xam, only one T3E, belonging to the TAL effector family

has been reported as a virulence factor [16]. Several other

elements such as exopolysaccharides (EPS) and cell wall degrading

enzymes (CWDE), with attributed pathogenicity and virulence

roles in other xanthomonads, might be important for Xam [17,18].

In fact, for this particular pathogen, the synthesis of EPS has been

reported as a virulence factor [19]. However, in order to

comprehensively characterise the pathogenicity repertoire of plant

pathogens such as Xam it is necessary to move beyond single gene

approaches and to apply genomics tools. Further, genomics

approaches may reveal origins of pathogenicity and virulence

factors and thus contribute to our understanding of how microbial

pathogenesis evolves.

Virulence factors are microbial adaptations and can arise from

de novo mutations or through gene flow among populations or

species. In recent years, the importance of horizontal gene transfer

(HGT) events that lead to the acquisition of foreign DNA

sequences has been well documented in bacteria [20,21,22].

Efforts to define the impact of these events in the genomic

structure and variations between closely related species have been

made [23]. For example, a foreign origin of the type III secretion

system (T3SS) has been proposed in the genus Xanthomonas [24],

and contribution of HGT to the genome composition has been

measured in X. citri pv. citri str. 306 (Xac) (syn. X. citri subsp. citri)

and X. campestris pv. campestris str. ATCC 33913 (XccATCC) species

[23,25]. However, the determination of HGT events in Xam, as

well as their contribution to pathogenicity is still missing.

Efficient control of CBB will also critically depend on a

profound knowledge of the population structure of Xam in different

regions of the world. Traditionally, bacterial isolates have been

typed by various fingerprinting techniques [26,27,28,29,30,31].

Since then, multiple loci variable number of tandem repeat

(VNTR) analysis (MLVA) has become increasingly popular for

molecular typing of bacteria [32,33]. MLVA is a method for

molecular typing of bacterial strains that explores the natural

variation in the number of tandemly repeated DNA sequences.

MLVA has several advantages over other bacterial genotyping

methods, such as ease of performance and portability, high

reproducibility and discriminatory power, rapidity and low costs

[34]. Powerful MLVA schemes are available for most important

bacterial pathogens infecting humans, including Bacillus anthracis,

Escherichia coli, Mycobacterium tuberculosis, Pseudomonas aeruginosa and

Yersinia pestis [32,35]. With the advent of genomics, development of

powerful MLVA schemes became a straightforward procedure

[34]. Consequently, the first VNTR study of a bacterial plant

pathogen, Xylella fastidiosa, was published in 2001 [36], and VNTR

schemes are now available for Candidatus Liberibacter asiaticus,

Pseudomonas syringae and several pathovars of Xanthomonas

[37,38,39,40,41].

Here, we report the first manually annotated high-quality draft

genome sequence of Xam strain CIO151, obtained by 454

sequencing technology, and analysis of the impact of presumed

HGT events on the gene content of Xam. We defined a set of

potential pathogenicity determinants through a comparative

genomic approach and report sets of genes encoding for T3E

proteins, cell wall-degrading enzymes, secretion systems, among

others; thus obtaining a deeper insight into the gene repertoire of

Xam CIO151. This strain was selected for sequencing for several

reasons: (i) QTL mapping of resistance markers effective against

CIO151 has been carried out in a cassava mapping population

[42]. (ii) Aggressiveness of this strain against several cassava

cultivars has been measured [9]. (iii) Effects of CIO151 inoculation

on gene expression of cassava have been characterized [43,44].

This sequence provides an efficient approach to understand the

Genome of Xanthomonas axonopodis pv. Manihotis
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pathogenicity of this organism and to develop future studies

oriented at increasing the knowledge on the biology of Xam and

the cassava-Xam interaction. Finally, we took advantage of this

new genomic resource to develop an inexpensive and user-friendly

molecular typing tool based on VNTR loci.

Results

General features
The draft genome sequence of Xanthomonas axonopodis pv.

manihotis (Xam) strain CIO151 was produced with 454 sequencing

technology. This strain had recently been sequenced with Illumina

technology [15] for the identification of type III effectors and the

determination of phylogenetic relationships of Xam strains around

the world. Though adequate for these aims, the previously

reported draft genome assembly was not sufficient for a

comprehensive genome mining and comparative genomics. A

total of 305,637 clipped base-called reads with a median read

length of 359 bases and coverage of 21.96 were obtained. The

genome sequence is composed of 36 scaffolds with a total length of

5.15 Mb, a gene coding capacity of 82.8% and a N50 scaffold size

of 429.5 kb. The sequence has a high G+C content (65.1%), as

commonly reported for the genus Xanthomonas [45]. A total of 4340

putative coding sequences (CDS), two rRNA operons, and 55

tRNA genes for all amino acids were identified (Table 1). Upon

automatic annotation, an international consortium of scientists

with expertise on different aspects of the biology of Xanthomonas

manually annotated all predicted genes. This manual annotation

led to modifications of structural annotation (860 CDS) and

functional annotation (3818 CDS). In addition, 369 predicted

CDS were removed.

The gaps on the genome sequence did not preclude the

identification and analysis of conserved gene clusters and potential

pathogenicity factors. Xam CIO151 shares a number of genomic

features with other members of the genus. Yet, we could detect

differences that could be relevant for its biology, including

variations in some T3E, the xanthomonadin cluster and regions

putatively associated with HGT events.

Fifteen out of the 36 assembled scaffolds, accounting for

4.82 Mb, could be mapped to the chromosome of Xanthomonas

euvesicatoria and were classified as part of the chromosome (see

methods, Fig. 1). As usual, the dnaA gene was placed at the

beginning of the genome sequence and corresponds to the start of

the first scaffold. Scaffold mapping resulted in an asymmetric GC

skew pattern which is typical for bacterial genomes [46], thus

supporting the proposed order of scaffolds. Scaffolds that could not

be mapped were classified in two categories: (i) candidate plasmid

sequences of small length, which showed similarity to plasmids of

other xanthomonads, and (ii) sequences of unknown origin, which

did not show high similarity to chromosomal or plasmid sequences

of other xanthomonads. In total, 93.64% of the genome sequence

was classified as chromosomal, 1.72% was classified as candidate

plasmid sequences and 4.64% was classified as unknown. The

proportion of candidate plasmid and chromosomal sequences is in

agreement with values reported for other Xanthomonas strains, such

as Xac and Xeu [25,47].

Xam CIO151 shares a similar genome structure with Xac
and Xeu

In order to evaluate the genome structure of Xam CIO151 and

to compare it with the structure of other xanthomonads, global

genomic alignments (Fig. 1) and an analysis of collinear blocks at

the intrascaffold level were performed using MAUVE software

[48] (Fig. S1). Xam CIO151 structure is most similar to that of Xac

and Xeu, with three small inversions (Fig. 1A–B). A large

rearrangement was observed in the comparison between Xam

CIO151 and Xcc8004 (Fig. 1C). Numerous rearrangements are

evident between Xam CIO151 and X. oryzae pv. oryzae PXO99A

(XooPXO99A) [49] and between Xam CIO151 and X. albilineans

(Xal) [50] (Fig. 1D–E). MAUVE alignments showed an increase

in rearrangements of collinear regions in scaffolds that mapped

close to the replication terminus, which supports our genome

assembly. Only two scaffolds showed rearrangements in consec-

utive collinear regions in alignments of Xam CIO151 with Xeu and

Xac, while more evident rearrangements were observed in the

alignments with Xcc and Xoo (Fig. S1). Large duplications were

not detected in the set of scaffolds classified as chromosomal

regions. In addition, several genomic islands, not shared by both

species under comparison (white regions), were also identified

(Fig. S1).

Unique proteins of Xam CIO151
Differences in host range among taxa in this genus might be

associated with the presence or absence of specific pathogenicity

determinants in each taxon. Based on this hypothesis, we

compared the predicted proteome of Xam CIO151 with those of

other xanthomonads. In total, 126 proteins were identified as

unique to Xam (excluding proteins encoded by incompletely

sequenced genes) (Table S1). Among these 126 proteins, the most

frequent matches in BLAST searches against Genbank corre-

sponded to translated sequences from members of the Burkholderia

Table 1. General features of the genome of Xam CIO151.

Features of the genome assembly of Xam CIO151

Size (bp) 5,150,225

Number of scaffolds 36

G+C (%) 65.1

Insertion sequences and transposons 250

Regions with atypical composition 62

Predicted CDS 4340

RNA

tRNAs 55

rRNA operons 2

doi:10.1371/journal.pone.0079704.t001
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genus. In general, a high percentage of the Xam CIO151-specific

proteins (81%) were annotated as hypothetical or conserved

hypothetical proteins and only seven potentially secreted proteins

and four putative membrane proteins were identified (Table S1).

We also evaluated the potential presence of the 126 proteins in the

genome sequence of the 65 Xam strains reported by Bart and

collaborators [15] using a tblastn [51]. There were 58 proteins

with hits in all 65 Xam strains (covering at least 80% of the

sequence and with a similarity of at least 30%). This set of unique

proteins is an important starting point in the identification of

elements potentially involved in the specific cassava-Xam interac-

tion.

Horizontal gene transfer and pathogenicity islands
Identifying genomic regions potentially acquired by horizontal

gene transfer (HGT) events is a key step in understanding the

features that are unique to the members within a species, as well as

those which contribute to divergence in a given taxon [52,53].

Using the automatic annotation produced by iANT (integrated

ANnotation Tool) [54], a set of 250 putative insertion sequences

and transposable (IS/Tnp) elements (including full and fragment-

ed sequences) were identified in all scaffolds.

Sixty-two candidate regions with atypical nucleotide composi-

tion and potentially related to HGT events were identified in the

genome sequence of Xam using AlienHunter (Table 1; Fig. 2;
Table S2). The total length of predicted regions was 640 kb

(including regions in putative non-chromosomal scaffolds), which

corresponds to 12.4% of the total sequence of Xam CIO151. The

average length of the predicted regions is 10.3 kb and twenty two

regions are larger or equal to 10 kb.

Genomic islands resulting from HGT events generally share

some characteristics, such as the unusual G+C content, the vicinity

of tRNA genes and/or mobile genetic elements, among others

[55]. Indeed, 33 out of the 62 regions with atypical nucleotide

composition have elements similar to reported mobile sequences

(all 33 regions with plasmid sequence and seven with additional

prophage derived sequences); 19 are located close to predicted

tRNA genes and ten chromosomal elements have both. Addition-

ally, twelve regions cover 50.4% of scaffolds that were not

identified as part of the chromosome of Xam CIO151. This finding

supports the potential alien origin of those scaffolds.

Pathogenicity islands (PAIs) constitute a special class of HGT-

acquired regions. In addition to the previously described

characteristics of genomic islands, PAIs also contain genes

associated with virulence [55]. In order to identify potential PAIs

present in the genome of Xam CIO151, we scrutinized the

genomic islands for genes consistent with functions in virulence.

Four potential PAIs were identified (Table S3). The first two

contain genes that have been suggested in other xanthomonads to

constitute putative PAIs, including a type IV secretion system and

genes associated with type IV pili (pilY, pilX, pilW, pilV and fimT)

[23,47]. The third candidate PAI encodes a XopC2 effector and

two fragmented versions of the XopP effector. The fourth

candidate PAI contains two probable pseudogenes (due to early

stop codons) similar to the fhaB adhesin family.

Figure 1. Comparison of the genomic structure of Xam CIO151 with that of closely related members from the genus Xanthomonas.
Scaffolds of Xam CIO151 were ordered based on the alignment with the complete genome sequence of X. euvesicatoria, Xeu, and then genome
comparisons were performed using MUMmer (A). Alignment of ordered scaffolds of Xam CIO151 with the complete genome sequences of X.
axonopodis pv. citri str. 306, Xac (B); X. campestris pv. campestris str. 8004, Xcc (C); X. albilineans, Xal (D); and Xanthomonas oryzae pv. oryzae PXO99A,
Xoo (E) chromosomes. Scaffolds classified as parts of the chromosome of Xam CIO151 are shown in the y-axis. Red dots represent conserved
segments while blue dots represent inverted regions.
doi:10.1371/journal.pone.0079704.g001
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Mutations in the xanthomonadin cluster could explain
the white phenotype of Xam

Xanthomonadins are yellow pigments, which are diagnostic for

xanthomonads (Greek xanthós = yellow) [56]. A role for xantho-

monadins in epiphytic survival and protection against photobio-

logical damage has been proposed for Xcc strain B24 [57].

However, some xanthomonads lack this pigment, including Xam,

X. citri pv. mangiferaeindicae and some strains of Xcc [58]. In order to

detect changes that could potentially explain the white phenotype

of all Xam strains, the xanthomonadin cluster (also known as pig

cluster) was analyzed (Fig. 3A). This cluster consists of seven

transcriptional units in Xcc [58] and encodes fourteen open

reading frames (ORFs) in Xoo strains [59]. Four of them are

required for xanthomonadin biosynthesis, including two ORFs,

XanB1 (xanmn_chr15_0086) and XanB2 (xanmn_chr15_0087),

located in the pigB region [57]. Based on high sequence similarity

with homologs in other xanthomonads, most genes seem to be

functional in the genome of Xam CIO151. Interestingly however,

gene xanmn_chr15_0082, which encodes an acyl carrier protein

dehydratase, appears to be non-functional in Xam, due to a

frameshift at position 110 which results in a 50 amino acid protein

instead of the 95 residues reported for the Xeu predicted protein

(Fig. 3A). This gene has been reported as an important element

for xanthomonadin synthesis in Xoo strains [59] and a predicted

Figure 2. Circular representation of the genome sequence of Xam CIO151. From outside to inside: first circle in blue indicates CDS predicted
in the positive strands for the scaffolds classified as probable chromosomal regions. Second circle in red indicates the CDS predicted in the negative
strand. Red spots in the black third circle indicate the region identified with atypical nucleotide composition. The fourth circle indicates the deviation
pattern from the average G+C content. Inner circle shows GC skew values, positive values are shown in purple and negative values are shown in
orange. Numbers correspond to scaffold IDs.
doi:10.1371/journal.pone.0079704.g002
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loss of function in Xam could cause the white phenotype of this

bacterium. This hypothesis is supported by an analysis of 65 draft

genome sequences of Xam [15], which shows that the early stop

mutation is conserved among strains in the pathovar.

Several secretion systems, pathogenesis-associated
clusters and elements involved in cell-to-cell signaling
are conserved in Xam CIO151

Cell-to-cell signaling is a key bacterial mechanism for sensing

population density levels through diffusible signal molecules [60].

Figure 3. Organization of pathogenicity-related gene clusters in the Xam CIO151 genome. Open arrows with labels indicate genes with
assigned functions, black arrows indicate genes with early stop codons, open arrows without labels indicate conserved hypothetical proteins and
grey arrows indicate non-conserved hypothetical proteins. Graphs above clusters show the G+C content and deviations from the average value. A.
Xanthomonadin gene cluster; * indicates genes related to pigB genomic region and ** indicates genes reported as important for cluster functionality.
Abbreviations used are: H = halogenase (xanmn_chr15_0075), BP = xanthomonadin biosynthesis protein (xanmn_chr15_0079), E = xanthomonadin
exporter (xanmn_chr15_0373), PSP = putative secreted protein (xanmn_chr15_0080), BACPD = xanthomonadin biosynthesis acyl carrier protein
dehydratase (xanmn_chr15_0082), BA = putative xanthomonadin biosynthesis acyltransferase (xanmn_chr15_0081 and xanmn_chr15_0083),
BMP = putative xanthomonadin biosynthesis membrane protein (xanmn_chr15_0084), ACP = acyl carrier protein (xanmn_chr15_0085), XanB1 = -
putative reductase/halogenase (xanmn_chr15_0086), XanB2 = putative pteridine-dependent deoxygenase like protein (xanmn_chr15_0087), AMP-
l = AMP-ligase (xanmn_chr15_0088), DP = dipeptidyl peptidase (xanmn_chr15_0090). B. Cluster implicated in xanthan production (gum). C.
Regulation of pathogenicity factors (rpf) cluster. D. Type III secretion system (T3SS) cluster.
doi:10.1371/journal.pone.0079704.g003
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The genome of Xam CIO151 carries the rpf (for regulation of

pathogenicity factors) gene cluster that is found in all xanthomo-

nads and encodes components governing the synthesis and

perception of the diffusible signal factor DSF [61,62]. This cluster

is composed of rpfABCDEFGH genes (Fig. 3C; Table S4). The

Rpf/DSF system regulates the synthesis of virulence factors and

biofilm formation and is required for the full virulence of Xcc, Xac,

Xoc, and Xoo on their hosts [63,64,65,66,67]. RpfF is responsible

for the synthesis of DSF, whereas RpfC and RpfG comprise a two-

component system implicated in DSF perception and signal

transduction [61,68,69]. RpfC is a complex sensor kinase, while

RpfG is a response regulator with a HD-GYP domain that acts in

degradation of the second messenger cyclic di-GMP [70]. In

addition to genes encoding these products, Xam CIO151 encodes

for rpfH, a membrane protein related to the sensory input domain

RpfC with unknown function. RpfH is present in Xeu and Xcc but

absent in Xac and Xoo.

Bacteria use several secretion systems to secrete a diversity of

proteins. Xam CIO151 possesses all the protein secretion systems

that have been reported so far for other Gram-negative bacteria.

The corresponding gene clusters show a conserved synteny to

those of Xac and Xeu. The type II secretion system (T2SS) is

important for the secretion of cell wall-degrading enzymes in

different plant-pathogens [71,72,73]. Two copies of this cluster

were detected in the genome of Xam CIO151. The xps cluster

(xpsEFGHIJKLMND genes) was detected in a genomic region of

10.4 kb (Table 2 & Table S5). The xcs cluster, encoding a

second T2SS (xcsCDEFGHIJKLMN genes) was identified in

another genomic region of 10.8 kb (Table 2 & Table S5). This

second T2SS is present in other xanthomonads of the X. axonopodis

and X. campestris species [74].

The T3SS encoded by the hrp gene cluster is involved in the

secretion and translocation of effector proteins and is a key

pathogenicity factor in most xanthomonads [75]. In Xam CIO151,

it is composed of twenty-eight genes, including the hpaF effector

gene and a putative xopF pseudogene, in a genomic region of

27.3 kb (Fig. 3D; Table S6). Its G+C content is 62.8%, a value

slightly lower than the average for this genome and comparable to

that of other xanthomonads [74]. Xam CIO151 shares all

conserved genes of the hrp cluster and is predicted to possess two

non-conserved hypothetical proteins in this cluster. One of them is

located between the hpaB and xopF genes, and the other one is

located between hpa3 and hrpF. Whether or not these genes play a

role in pathogenicity awaits experimental confirmation.

The T4SS has been reported to mediate translocation of DNA

and effector proteins in bacterial interactions with other bacteria

and with their eukaryotic hosts [76,77]. Two different clusters

varying in their gene organization were identified in the sequence

of Xam CIO151 and they were classified according to Moreira and

collaborators [78]. The first one belongs to class I (T4SS[I]). It

consists of eleven genes in a genomic region of 12.5 kb and is

highly similar to the T4SS from Legionella pneumophila [79]. This is

reminiscent of the type IV secretion system identified in the

plasmid pXCV183 of Xeu [47]. Nonetheless, the cluster present in

Xam differs from that in L. pneumophila by the apparent absence of a

virB7 homolog and the presence of an additional incomplete

sequence similar to virB4. Interestingly, this cluster is located on a

probably non-chromosomal 35-kb scaffold with atypical nucleo-

tide composition. It has some mobile elements and is partially

similar to plasmid sequences of other xanthomonads and a

plasmid from Methylobacterium radiotolerans, suggesting that this

cluster is located on a plasmid. The second one is composed of

eleven genes in a genomic region of 12.8 kb and was classified as

belonging to class IV (Table 2), just as the chromosomal T4SS of

Xac and XccATCC [78]. These findings are not unique to Xam

CIO151, as one chromosomal and one plasmid copy of T4SS

have been reported in Xac and Xeu as well [25,47]. The difference

in their organizations and the potential plasmidic origin of one of

the two T4SS suggest that both secretion systems serve in distinct

functions in Xam CIO151.

The versatile bacterial type VI secretion system (T6SS) is

involved in interbacterial interactions, as well as symbiotic and

pathogenic interactions with eukaryotic cells [80,81] One copy of

the T6SS with fifteen genes was detected in Xam CIO151, while

two T6SS have been reported in Xeu and X. oryzae species [14].

The widely conserved gum cluster of xanthomonads [74], which

is involved in xanthan exopolysaccharide (EPS) production [82],

has been previously related to pathogenicity in Xam [19]. In Xam

CIO151, the gum cluster is composed of the gumABCDEF-

GHIJKLMNOP genes (Fig. 3B; Table S7). It shows an

organization comparable to that of other xanthomonads, including

a tRNA gene adjacent to the cluster [74]. The G+C content of this

region is 62.8%, two percentage points below the average value for

the genome.

Lipopolysaccharides (LPS) are a characteristic element of

bacterial outer membranes [83]. Interestingly, LPS molecules

and components thereof have been classified as PAMPs (Pathogen

Associated Molecular Patterns) in plant-pathogenic bacteria

[84,85]. Despite the fact that it is a conserved element in animal

and plant pathogens, variations in the LPS cluster have been

associated with virulence and host range [86]. The LPS gene

cluster in Xam CIO151 consists of fifteen genes located in two

consecutive scaffolds, with a total length of 17.2 kb. Ten of these

genes are located in a region with atypical nucleotide composition

(Fig. S2). The organization of the Xam CIO151 LPS locus is

Table 2. Putative pathogenicity elements identified in the
genome of Xam CIO151.

Functional category Number of related genes

Type I protein secretion system 5

Type II protein secretion system

xps cluster 11

xcs cluster 12

Type III protein secretion system (hrp
cluster)

28

Type III effector proteins 28

Type IV protein secretion system 22

Type VI protein secretion system 15

Type IV pili 24

Flagellum1 32

Regulation of pathogenicity factors (rpf
cluster)

8

Xanthomonadin 18

Xanthan (gum cluster) 16

Cell wall-degrading enzymes 30

Polyketide synthase (PKS)1 26

Siderophore biosynthesis1 3

Toxins1 6

Chemotaxis1 47

1Number indicates CDS identified by key word searches in iANT.
doi:10.1371/journal.pone.0079704.t002
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similar to that of Xoo strain BX08 and Xac strain 306 [87].

However, the LPS cluster of Xam CIO151 is distinct since it shares

a fragment of an IS1404 element with Xoo but is otherwise more

similar in the order and number of genes with Xac (Fig. S2).

Recently, very simlar LPS gene clusters have also been found in

the banana pathogen X. campestris pv. musacearum strain NCPPB

4381 and in the pomegranate pathogen X. axonopodis pv. punicae

strain LMG 859 [88,89].

The Xa21 gene in rice recognizes an avirulence determinant

present in Xoo, resulting in the elicitation of a strong defense

response and suppression of pathogen growth. The presence and

potential functionality of the genes required for avrxa21 activity

(rax) was assessed in the genome of Xam CIO151. RaxH and

RaxR, the two component regulatory system important for this

activity, seems to be functional in Xam CIO151

(xanmn_chr10_0493 and xanmn_chr10_0494, respectively).

RaxA and RaxC, a part of the Type I secretion system required

for this activity also appear to be functional in Xam CIO151

(xanmn_chr10_0509 and xanmn_chr11_0184, respectively). How-

ever, the raxB gene (xanmn_chr10_0508), encoding the ATP-

binding cassette transporter of the T1SS has a frameshift, resulting

in a fragment encoding only 40% of the predicted functional

protein, and suggesting a loss of function of this gene. This

observation was confirmed in the 65 available genomes of Xam,

demonstrating that it is a characteristic of the whole pathovar. In

addition, a lack of function in some of these strains was previously

suggested for the raxST genes encoding a tyrosine sulfotransferase

[90]. These observations suggest that the AvrXa21 function might

not be present in this pathovar.

The set of type III effectors of Xam CIO151 is comparable
in size with those of other xanthomonads

Effector proteins secreted by the T3SS play an important role in

pathogenicity and virulence in Gram-negative bacteria. A total of

twenty-eight CDS were identified as candidate effector genes

(Table S8), based on homology searches against a database that

includes type III effectors from different bacteria, including plant

and animal pathogens (Rodrı́guez-R & Koebnik, unpublished

data). Early stop codons were predicted for nine of these CDS,

belonging to families XopAD, XopAG, XopF and XopP. In order

to further confirm the pseudogenization of these fragments, we

tested their expression in transcriptomic data of strains overex-

pressing the hrpX regulator (data not shown) using Bowtie aligner

[91] followed by the Velvet assembler [92]. Analysis of

transcriptomic data did not show any expression for xopP or

xopAG, supporting their potential pseudogenization. In addition,

the fragmentation of xopAG into two consecutive ORFs and the

two adjacent copies of xopP were confirmed through comparisons

with the sequences reported by Bart and collaborators [15]. The

two copies of XopP are: one corresponding to the middle part of

xopP (xanmn_chr10_0524) and the other copy fragmented in

three consecutive ORFs (xanmn_chr10_0523, the N-terminal;

xanmn_chr10_0522, the middle part; and xanmn_chr10_0521,

the C-ter). We found expression of XopF in our transcriptome

(data not shown) and the stop codon identified in the genome was

confirmed. This suggests that the shorter version of xopF is still

expressed.

The remaining nineteen genes (including xopF) belong to

seventeen effector families (Table 3). Several fragmented

sequences were inferred as part of candidate TAL effectors

(AvrBs3/PthA family). Based on Southern blot analyses, strain

CIO151 has two TAL effectors [26]. However, assembly of the

genomic regions that encode TAL effectors is not accurate due to

the presence of quasi-identical repeats in the TAL effector genes.

Therefore, it is challenging to accurately determine the number

and sequences of candidate TAL effector encoding genes from

short read, draft genome assemblies [15].

Because T3Es might define the host range and tissue specificity

of xanthomonads, we compared the putative set of T3Es in Xam

CIO151 with that of other members in the genus Xanthomonas

(Table 3). This approach revealed a comparable number of

effector families between Xam CIO151 and Xeu, Xac, Xanthomonas

fuscans subsp. aurantifolii str. ICPB 11122 (Xfa1) [78] and Xcc

species, each species having a specific T3E repertoire. In addition,

the number of effector families, which appear to be non-functional

due to the presence of early stop codons or frameshifts, does not

significantly differ between Xam CIO151 and other sequenced

xanthomonads (data not shown).

Genomics studies of Xanthomonad species have revealed a core

set of conserved T3Es. This set includes AvrBs2, XopK, XopL,

XopN, XopQ, XopR, XopX and XopZ, and was confirmed in

Xam CIO151. In order to study the evolution of this set of proteins

inside the genus Xanthomonas, a phylogenetic reconstruction was

performed using these conserved effectors. XopZ and XopX were

excluded due to the presence of more than one copy in some of the

species. Hpa1 (XopA), which is a conserved type III-secreted

protein of Xanthomonas, was also included in this analysis (Fig. 4).

The phylogenetic tree suggests a common origin for the core

effectors in the X. axonopodis clade consisting of Xeu, Xac, Xfa1 and

Xam CIO151. Our results are consistent with a previously

published genomics scale phylogeny of the genus [93], suggesting

that the evolution of these genes resembles species relationships

within the genus and that they were probably present in the

common ancestor of these taxa. In addition, the degree of

conservation of this set of proteins within the genus Xanthomonas

and the lack of co-location with recent HGT events in Xam

CIO151 suggests that the acquisition of this set of effectors appears

to be an ancient event.

Two genes (xanmn_chr06_5019 and xanmn_chr07_0047)

showed high similarity, 95% and 81% at the amino acid level,

to the recently reported effector family XopAO [14]. BLASTN

and BLASTP searches in all available Xanthomonas genome

sequences revealed that the XopAO effector family appears to

be restricted to X. gardneri (Xg) and Xam CIO151, with Xam

CIO151 possessing two members of this family. The Xg xopAE

gene as well as one of the Xam xopAE genes are encoded in a region

with atypical nucleotide composition (Table 3), which supports

the possible acquisition of these genes through horizontal transfer

events.

Other determinants of interactions with plants in Xam
CIO151

We also mined the genome sequence of Xam CIO151 for other

pathogenicity-related determinants, such as chemotaxis, motility,

the synthesis of second messengers and selected metabolic

pathways, among others. This allowed us to generate a complete

record of possible pathogenicity determinants. These analyses

indicated the presence of genes related to chemotaxis, type IV pili

(with corresponding genes distributed along the sequence of Xam

CIO151), flagella (with a typical clustering of the corresponding

genes), siderophore biosynthesis involved in iron uptake, and

putative polyketide synthases (Table 2).

We also identified candidate adhesins in the genome sequence

of Xam CIO151. Twenty four genes which are highly similar

(identity $95% on more than 90% of the protein length) to Xeu or

Xac type IV pilus (T4p) genes were identified in Xam CIO151

genome. The other T4p genes identified in Xeu and Xac genomes

were not detected in Xam CIO151 or were too distantly related.
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Table 3. Comparison of putative effector proteins from Xam CIO151 and other members of the Xanthomonas genus.

Effector family XamCIO151 Xeua XooMAFFa Xaca Xfa1b XccATCCa

AvrBs1 - 1 - - - 1

AvrBs2 1 1 1 1 1 1

AvrBs3 2¤ - 17 4 2 -

XopB (HopD1) - 1 - - 2* -

XopC1 - 1 - - - -

XopC2 1+ 2* 1 2* - -

XopD - 1 - - - 1*

XopE1 1 1 - 1 1 -

XopE2 - 1 - 1 1 1

XopE3 - - - 1 1 -

XopE4 1 - - - 1 -

XopF1 1(F) 1 1 - - 1*

XopF2 - 1 - 1* 1* -

XopG - 1 1* - - 1

XopH - 1 - - - 1

XopI - 1 1* 1 1 -

XopJ - 2 - - 1 1

XopK 1 1 1 1 1 1

XopL 1 1 1 1 1 1

XopN 1 1 1 1 1 1

XopO (HopK) - 1 - - - -

XopP 4*+ 1 1 1 1 1

XopQ (HopQ1) 1 1 1 1 1 1

XopR 1 1 1 1 1 1

XopT - - 1 - - -

XopU - - 1 - - -

XopV 1 1 1 1 1 -

XopW - - 1 - - -

XopX 1 1 1 1 1 2

XopY - - 1 - - -

XopZ (HopAS1) 1 1 1 1 2* 1

XopAA - 1 1 - - -

XopAB - - 1 - - -

XopAC - - - - - 1

XopAD (SKWP) 3*+ 3* 1 1 1 -

XopAE (HpaF) 1+ 2* 1 1 1 -

XopAF (HopAF1) - - - - 1 -

XopAG (HopG1) 2* - - - 1* 1

XopAH - - - - - 1

XopAI - - - 1 1 -

XopAJ - 1 - - - -

XopAK (HopK1) 1 1 - 1 1 -

XopAL - - - - - 2

XopAM - - - - - 1

XopAOc 2(+1) - - - - -

Total& 19 27 37 22 22 21

Number in parentheses indicates number of genes in corresponding category.
aData from effector families summarized by White et al. [13] and www.xanthomonas.org.
bData reported by Moreira et al. [78].
cNew effector family described by Potnis et al. [14].
*Possible pseudogenes.
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Although no gene coding a pilin was identified among these genes,

the presence of the genes encoding the sensor protein PilS, the

ATPases PilB and PilT, may indicate that this T4p could be

functional in Xam CIO151. Concerning the non-fimbrial adhesins,

potential orthologs of autotransporters and filamentous hemag-

glutinins were identified in Xam CIO151 genome. One gene

(chr06_0342) identified as yapH2 and orthologous to XCV2103

harbors the specific domains of autotransporter adhesins. Two

putative xadA genes were detected in Xam CIO151 genome

(corresponding to locus tags chr_12_0029 and chr_12_0030 for

the first one and to locus tags chr12_0032 and chr_12__0096 for

the other). These putative xadA genes are split into two fragments

in the genomic sequence. Regarding the fhaB family, Xam CIO151

has a gene similar to the filamentous hemagglutinin XAC4114,

and two consecutive pseudogenes similar to the hemolysin

activator protein XAC1815, which supports the duplication and

decay observations from Mhedbi-Hajri and collaborators [94]. On

the other hand, the fhaC gene, which is proposed as a helper in the

translocation of FhaB adhesins, was not identified in Xam CIO151.

The absence of this gene has also been reported in Xeu [94]. Due

to this fact, the functionality of genes in the fhaB family is not clear

in this Xam strain.

The role of cell wall degrading enzymes (CWDEs) Xam CIO151

pathogenicity has not been documented yet. However, they could

be responsible for the ability of Xam to colonize xylem vessels, as it

has recently been suggested for eukaryotic plant pathogens [95].

Based on homology analyses and manual genome annotation, we

defined an inventory of 30 putative CWDEs and three related

pseudogenes in Xam CIO151, including eight cellulases, two

pectate lyases, five xylanases, two rhamnogalacturonases, one

polygalacturonase, two endoglucanases, five beta-glucosidases and

five alpha-glucuronidases (Table S9). All 30 candidate CWDEs

have orthologous genes in other xanthomonads. Interestingly, the

xylanase-encoding gene xynB seems to be absent, as observed for

Xv, Xg and Xcc species [14]. Three consecutive cellullase genes

were identified in a region with atypical composition. A gene

encoding an alpha-glucuronidase of the GH67 family (agu67),

which is present in all sequenced xanthomonads and which is

clustered with xylanase genes in some xanthomonads, could be

non-functional in Xam CIO151 due to a stop codon present in the

middle of the coding sequence. This glucuronidase plays a joint

role with xylanases during degradation of xylooligosaccharides in

Pseudomonas cellulosa [96], and it has been proposed as a favorable

element during the xylan degradation due to the limited ability of

xylanases for cleaving uronic acid bones [97]. Hence, the absence

of xynB suggests that xylan degradation is not highly efficient in

Xam CIO151.

Figure 4. Phylogeny of conserved effectors in the genus Xanthomonas. Phylogenetic tree of concatenated conserved effector protein
sequences of AvrBs2, XopK, XopL, XopN, XopQ XopR families and the Hpa1 protein, obtained with a Bayesian approach. Numbers on branches
indicate Bayesian support values. Length of branches indicates the number of amino acid substitutions per site.
doi:10.1371/journal.pone.0079704.g004

Table 3. Cont.

+Located in predicted genomic island.
(+1)One copy located in predicted genomic island.
FWith a premature stop codon but may be still functional.
¤Incomplete sequence due to repeats.
&Total number of potentially functional genes.
doi:10.1371/journal.pone.0079704.t003

Genome of Xanthomonas axonopodis pv. Manihotis

PLOS ONE | www.plosone.org 10 November 2013 | Volume 8 | Issue 11 | e79704



Using the genome of Xam CIO151 as a source for easily
accessible genotyping tools

Genomic resources offer the unique opportunity to develop

genome-based molecular typing tools, such as MLVA schemes

[34]. We used the genome sequence of Xam strain CIO151 to

predict and evaluate VNTR loci. To develop a robust typing

scheme, candidate loci were predicted for Xam strain CIO151 and

three additional, phylogenetically close Xanthomonas strains, X.

axonopodis pv. citri strain 306, X. campestris pv. vesicatoria strain 85-10,

and X. axonopodis pv. citrumelo strain F1, using a web-based pipeline.

Predicted loci for Xam that were also present and apparently

polymorphic among these strains were targeted for primer design

based on conserved sequence stretches within the flanking regions.

A total of 14 primer pairs were generated and tested by PCR on

14 strains representative of the worldwide diversity of Xam

(Tables S10 and S11). High-resolution agarose gel electropho-

resis and/or DNA sequencing revealed that all 14 loci are

polymorphic among this set of strains (Fig. 5, and data not

shown).

To increase the number of loci, we also developed PCR primers

for eight additional VNTR loci that appeared to be specific to Xam

(Table S10). Since 65 draft genome sequences became available

to us, we tested all 22 predicted loci on this valuable set of strains

representing over 11 countries of origin belonging to three

continents, and 70 years of collection [15]. We could detect and

extract corresponding VNTR loci from 39 (XaG1_70) to 65

strains (average: 59 strains) (Table S12). Multiple alignments

allowed us to estimate the exact number of repeats for each locus

and the number of different patterns (haplotypes) per VNTR locus

(Tables 4 and S12).

Discriminatory indices (HGDI) were calculated for all VNTR

loci (Table 4). HGDI scores varied significantly from 0.031 for

XaG2_117 to 0.903 for XaG1_73. As described previously [98],

VNTR loci were classified into highly (.0.6), moderately (0.3 to

0.6), and poorly (,0.3) discriminating based on the HGDI scores.

Of the 22 loci, 14 loci showed high discriminatory power. Four

loci, XaG1_108, XaG1_110, XaG2_37 and XaG2_109, were

found to be moderately discriminatory, and four loci, XaG2_55,

XaG2_106, XaG2_116 and XaG2_117, had only poor discrim-

ination. Four loci, XaG1_12, XaG1_70, XaG1_71 and

XaG1_101, contained incomplete stuttered repeats which would

pose problems in high-throughput analyses using multiplex PCR

and amplicon analyses via capillary electrophoresis, resulting in

uncertain calls of repeat numbers. These less useful loci, as well as

the two loci with extremely poor discrimination (XaG2_116 and

XaG2_117), were not considered for a broadly applicable MLVA

scheme. Strikingly, combining the remaining 16 VNTR loci into

an MLVA-16 scheme allowed resolution of almost all strains.

Altogether, at least 57 haplotypes were observed among 65 strains,

corresponding to 49 singletons and 8 doublets. Seven of the eight

doublets include up to four VNTR loci for which the number of

repeats could not be estimated for at least one strain due to the

draft status of the genome sequence. In these cases, any number of

repeats was taken into account when grouping strains into

haplotypes. Hence, it is possible that these seven doublets could

be experimentally resolved by the MLVA-16 scheme. Three

doublets (IBSBF2345/IBSBF2346, IBSBF2672/IBSBF2673,

UG24/UG27) originated from the same country and have been

isolated in the same year (Brazil 2006, Brazil 2009, Uganda 2011).

Two doublets (Xam669/IBSBF320, IBSBF2666/IBSBF2820)

originated from the same country and have been isolated in two

successive years (Brazil 1973/1974, Brazil 2009/2010). Another

doublet (CFBP1851/CIO151) corresponds to two isolates from

Colombia from years 1974 and 1995. The seventh doublet

(UA556/IBSBF2818) was isolated in Colombia in 2009 and in

Brazil in 2010. For the last doublet (ORST4/NCPPB1159), the

origin of one strain, NCPPB1159, is unknown [15]. These results

indicate that most if not all doublets likely correspond to truly

related strains and do not result from homoplasy at certain VNTR

loci. The MLVA-16 scheme translates into an excellent HGDI

score of 0.996, thus demonstrating its suitability for typing of Xam

strains.

Discussion

This first expert-annotated high-quality draft genome sequence

of Xam offers new insights into the genome structure of a bacterial

plant pathogen affecting cassava crops and its candidate patho-

genicity determinants. The comparison of the Xam CIO151

genome with other sequenced xanthomonads allowed us to

Figure 5. Molecular analysis of selected VNTR loci of Xam. PCR
amplicons of VNTR loci of Xam were separated by agarose gel
electrophoresis. A, XaG1_02 (362 bp); B, XaG1_29 (251 bp); C,
XaG1_58 (192 bp); D, XaG2_50 (119 bp); E, XaG1_12 (111 bp). For
comparison, expected sizes for Xam strain CIO151 are given in brackets.
doi:10.1371/journal.pone.0079704.g005
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propose a putative repertoire of 126 genes unique to Xam CIO151

that could play an important role in the cassava-Xam CIO151

interaction, possibly shaping properties such as host range and

pathogenesis. Notably, among these genes, we identified both

putative secreted proteins and membrane proteins, molecules

widely recognized as bacterial pathogenicity determinants.

Therefore, this group of genes constitutes an excellent candidate

set for further research in order to understand the molecular basis

underlying CBB and development of comprehensive control

strategies for this disease.

The similarity of the Xam CIO151 genome sequence with those

of Xeu and Xac, as well as the identification of clusters previously

described as conserved in other xanthomonads, support the

correct assembly of the genome sequence. Interestingly, in this and

previous studies, phylogenomic relationships inferred from coding

sequences (clusters of orthologous groups and conserved effectors)

have placed Xam CIO151 within a monophyletic clade with Xac

and Xeu, sister to the Xoo containing clade, and more distantly

related to Xcc (Figure 3; [94]). Nonetheless, the similarity in the

global genomic structure between Xam and that of other

xanthomonads does not perfectly match such phylogenomic

clustering. While the genomic structure of Xam CIO151 is more

similar to that of Xcc and not to that of Xoo thus conflicting with the

phylogenetic expectation This can be explained by the high

number of recombination events reported in Xoo and the high

number of insertion sequences [49], [99] Similar findings has been

reported in the comparison between Xac and Xoo MAFF in global

genome analysis [99]. These findings suggest that evolutionary

processes leading to changes in genome organization are not

entirely reflected in the conservation of genes.

Special features of Xam CIO151 such as a particular set of

candidate T3Es and related pseudogenes were also identified.

There were several T3Es present in Xam CIO151, which are not

part of the conserved group among xanthomonads and which

could be important determinants for its ability to colonize cassava.

TAL effectors represent a challenge for second generation

sequencing technologies at the stage of assembly of the central

repeat region, and this was the case for Xam strain CIO151 as well.

However, a member of this family has been demonstrated to be

important for the ability of Xam to infect cassava [16]. The genome

of Xam CIO151 encodes two TAL effectors and ongoing studies

seek to determine their importance in the virulence of this strain.

As in other pathogenic bacteria, HGT events probably have

contributed to the repertoire of T3Es in Xam. For instance, we

detected XopAO in Xam CIO151, an effector that had only been

identified in one more strain of xanthomonads, namely X. gardneri,

where its functionality was confirmed and its origin from

Pseudomonas via HGT was proposed [14]. Consistent with this

Table 4. Characteristics of VNTR loci for 65 Xam draft genome sequences.

VNTR locus Repeat unit size1 Number of repeats Haplotypes Samples with incomplete

Min.2 Max.3
Number of
samples4

Number of
haplotypes5 HGDI score6 stuttered repeats

XaG1_73 6 3 16 60 12 0.903

XaG1_67 6 9 22 51 12 0.900

XaG1_02 7 8 20 48 12 0.894

XaG1_29 7 10 22 48 10 0.854

XaG1_71 6 3 12 57 9 0.778 23%

XaG2_50 6 5 12 61 7 0.774

XaG1_70 7 10 15 39 6 0.773 8%

XaG1_72 6 4 11 59 8 0.710

XaG1_65 6 7 12 65 6 0.670

XaG1_58 6 3 9 65 7 0.658

XaG1_12 7 4 9 63 5 0.635 35%

XaG2_52 13 4 10 52 7 0.839

XaG2_37 24 1 2 64 2 0.476

XaG2_55 12 2 5 65 3 0.146

XaG1_105 8 3 11 64 8 0.694

XaG1_101 7 4 6 63 3 0.618 24%

XaG1_108 6 3 4 65 2 0.306

XaG1_110 21 2 4 59 3 0.523

XaG2_109 26 2 3 56 2 0.486

XaG2_106 22 2 3 65 2 0.170

XaG2_116 22 1 2 65 2 0.089

XaG2_117 25 1 2 64 2 0.031

1: Repeat unit sizes are given in bp.
2 and 3: Minimal and maximal numbers of repeats (only those in integer numbers) are given.
4Number of samples with a complete VNTR locus in the draft genome sequence is given.
5Number of different VNTR patterns (haplotypes) is given.
6Hunter-Gaston discriminatory index (HGDI) scores are given.
doi:10.1371/journal.pone.0079704.t004
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speculation, our analyses support the hypothesis that Xam CIO151

acquired this effector via a recent HGT event. Additionally, we

observed that the xopP pseudogenes and xopC2 gene were located

in a putative PAI (regions with atypical composition, mobile

sequences and next to tRNA genes), whereas putative members of

the XopAD and XopAE effector families were encoded by regions

with atypical nucleotide composition. Altogether these observa-

tions suggest an important role for HGT events in recruiting a

specific pathogenicity arsenal with probable consequences for

microbial adaptations.

Four families of effectors may be pseudogenes in the genome

sequence of Xam CIO151 (XopAD, XopAG, XopF and XopP).

These effectors also seem inactive or absent in some but not all

strains of Xam sequenced to-date [15] suggesting that their

presence may be dispensable when infecting cassava plants.

Consequently, when these T3Es were screened in a larger sample

of Xam genomes, there was no correlation between the presence of

a full-length version of these effectors and the levels of virulence

[15]. It is possible that full-length functional versions of these

proteins would induce an Effector-Triggered Immunity (ETI) in

certain cultivars of cassava. No gene-for-gene interaction has been

reported for this pathosystem. However, the quantitative resis-

tance observed in certain cultivars might be the result of one or

several of such interactions [7].

A Quantitative Trait Locus (QTL) for resistance to CBB in

cassava co-segregates with a gene encoding a receptor-like kinase

homologous to Xa21 from rice, a transmembrane protein

containing an intracellular kinase domain [7,8]. In the rice-Xoo

system, rice immunity to Xoo is probably triggered after the

recognition by the host Xa21 receptor of a bacterial secreted

molecule [100]. The rax (required for AvrXa21 activity) genes in

Xoo encode for a sulfotransferase, a two-component system and a

transmembrane transport system. Comparisons with the Xoo

sequence revealed frameshifts in the genes for the sulfotransferase

[15] and the ABC transporter, which are both required for the

AvrXa21 function. This finding suggests that Xam does not

produce and secrete the molecule recognized by the rice Xa21

protein. Interestingly, a homolog of Xa21 co-segregates with a

QTL for resistance to certain strains of Xam [7]. It is possible that

this protein recognizes a molecule analogous to that expressed and

secreted by Xoo. However, our findings indicate that secretion of

this molecule is probably functionally different from that

performed by Xoo in the Xa21 system.

There are known variations in T2SS substrates among

xanthomonads, even for conserved CWDEs in different species.

For example, conserved substrates among several xanthomonads

are apparently not secreted by the T2SSs in Xeu [101]. In addition,

one of the T2SS clusters (xcs) is absent in Xoo [74] and, hence, the

importance of this system for plant colonization is questionable.

Taking this into account, future studies that evaluate the role of xps

and xcs systems in Xam and their substrates are necessary to define

their specific function, as well as to establish a curated set of

CWDEs that are secreted via one or the other T2SS in Xam. In

general, in terms of xylan degradation, the absence of the alpha-

glucuronidase genes agu67 and xynB is suprising, since a xylan is a

prominent cell wall component in cassava (14.3%; [102]) and one

would expect cassava pathogens to express a range of enzymes for

its degradation. On the other hand, it is possible that xynC, a

validated substrate of xps in Xeu [101], is sufficient for xylan

degradation during infection in cassava, since it appears to be

functional. These findings motivate further studies to determine

the sufficiency of xynC in xylan degradation by Xam and its

implications in pathogenicity and virulence of Xam.

The closer examination of the xanthomonadin cluster in Xam

CIO151 sought to understand the atypical white coloration of this

organism. Strikingly, in Xam CIO151 most xanthomonadin

biosynthesis genes seem to be functional and only one gene

encoding an acyl carrier protein dehydratase, which is necessary

for xanthomonadin synthesis in Xoo strains [59], appears to be

disrupted. This observation suggests that this gene may be

responsible for the phenotypic shift in colouration observed in

Xam. Interestingly, a BLAST search of this gene against the

genome of X. citri pv. mangiferaindicae gave negative results (data not

shown), suggesting that this might also cause the white phenotype

of this bacterium. As xanthomonadin pigments have been

implicated in epiphytic survival in other xanthomonads [57], their

absence in Xam would imply the evolution of additional or novel

characteristics involved in the survival of this pathogen during the

epiphytic and early colonization phases [57,103].

We found unique patterns in the LPS cluster of Xam CIO151.

The organization of the lipopolysaccharide (LPS) biosynthesis

cluster is highly variable within the genus Xanthomonas [87]. Our

findings show that the organization of Xam CIO151 LPS cluster is

similar to that of Xac and XooBX08 suggesting that they may share

a common ancestral LPS cluster. Simultaneously, the partial

presence of LPS cluster in a region related to HGT is congruent

with the hypothetical role of HGT as a source of diversity for this

cluster, as has been proposed by Patil and Sonti [104].

Available genome sequences allowed us to develop and test a

new molecular typing scheme. Sixteen out of twenty two tested

VNTR loci were conserved in strains from three continents, Asia,

Africa and South America and allowed to distinguish most of the

Xam strains. Some of these loci might also be useful to type other,

phylogenetically close pathovars of the same DNA-DNA hybrid-

ization group (group 9, [105]), including important pathogens of

bean (X. axonopodis pv. phaseoli; group 9.4), alfalfae (X. axonopodis pv.

alfalfae; group 9.2), soybean (X. axonopodis pv. glycines; group 9.5),

lettuce (X. axonopodis pv. vitians; group 9.5), cotton (X. axonopodis pv.

malvacearum; group 9.5), and cowpea (X. axonopodis pv. vignicola;

group 9.6). The tremendous increase in whole genome sequencing

will soon answer this question and lead to new, powerful typing

tools for all economically important xanthomonads [6].

In conclusion, data mining based on the first annotated draft

genome sequence of Xam CIO151 allowed, for the first time, the

systematic cataloging of genes which might play a role in the

interaction between Xam CIO151 and its host plant cassava, thus

significantly increasing the sparse knowledge about molecular

pathogenicity determinants of Xam. This new insight will pave the

way for new approaches in the generation of durable resistant

cassava varieties, thus leading to more efficient cassava disease

management. New typing tools based on VNTR loci will allow an

efficient and robust evaluation of population structures of Xam in

different regions of the world and to implement comprehensive

epidemiological surveillance, thus enabling better control of

cassava bacterial blight.

Materials and Methods

Xanthomonas species abbreviation
Xanthomonas albilineans GPE PC7 (Xal)

Xanthomonas citri pv. citri str. 306 (Xac)

Xanthomonas campestris pv. campestris str. 8004 (Xcc8004)

Xanthomonas campestris pv. campestris str. ATCC 33913 (XccATCC)

Xanthomonas campestris pv. campestris str. B100 (XccB100)

Xanthomonas campestris pv. vesicatoria str. 85-10 (Xeu)

Xanthomonas fuscans subsp. aurantifolii str. ICPB 11122 (Xfa1)

Xanthomonas oryzae pv. oryzae KACC10331 (XooKACC)
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Xanthomonas oryzae pv. oryzae PXO99A (XooPXO99A)

Xanthomonas oryzae pv. oryzae MAFF 311018 (XooMAFF)

Xanthomonas oryzae pv. oryzicola BLS256 (XocBLS256)

Xanthomonas perforans 91–118 (Xp)

Bacterial strain and DNA sequencing
The partial genome sequence was obtained with 454 technology

(shotgun and paired-end tags) at Eurofins MWG Operon in USA

(http://www.eurofins.com). The sequencing process was per-

formed on total DNA (including plasmidic material) from X.

axonopodis pv. manihotis strain CIO151 [9] extracted and purified as

previously reported [27]. This strain was deposited as CFBP7661

in the French Collection of Plant-Associated Bacteria (CFBP).

Genome assembly and structural and functional
annotation

The genomic sequence of Xam CIO151 was assembled using

Celera assembler [106]. A total of 40 scaffolds were produced. A

manual inspection step allowed us to reduce the number of

scaffolds to 36 by joining consecutive sequences, according to

comparisons with Xeu, that have overlapping ends, or consecutive

parts of conserved regions flanking rRNA operons. Total DNA

that included possible extrachromosomal DNA was used in the

sequencing process. For this reason, partial ordering of scaffolds

was performed by alignments with the closely related genome

sequence of X. euvesicatoria (Xeu) 85-10 (syn X. campestris pv.

vesicatoria) [47]. This species was selected based on higher average

nucleotide identity values [107] with Xam CIO151 [93]. Scaffolds

that mapped to the Xeu genome were classified as the main

chromosomal sequences (named xanmn_chr), scaffolds that

mapped to plasmids in the genus Xanthomonas were classified

as plasmidic (named xanmn_pla) and scaffolds that did not map

against either of these two categories were classified as having an

undertermined origin (named xanmn_unk). The circular repre-

sentation of Xam CIO151 sequence was constructed using the

Circos tool [108]. tRNAs search was performed using the

tRNAscan-SE software [109]. Candidate rRNA operons were

identified through a similarity analysis using sequences previously

reported in other xanthomonads. The validation of the assembly

was performed through an analysis of the GC content, genome

length, search of genes already identified in Xam and comparisons

to other Xanthomonas species using MUMmer 3 tool [110] and

MAUVE [48].

The FrameD tool [111] was used for gene prediction because it

increases the probability of identifying genes in sequences that

might have problems with misread polynucleotides in some of the

NGS technologies, including 454. It was trained with 100

conserved genes predicted with Glimmer3.02 [112]. Automatic

and manual annotation was performed using iANT (integrated

ANnotation Tool), as previously described [50]. The manual

annotation was carried out by experts in subcategories of the

Clusters of Orthologous Groups (COG) assigned by the automatic

annotation. International experts on T3Es, adhesins, Two

Component Systems, Mobile Elements, etc, collaborated in the

manual annotation process. The manual annotation included

addition and deletion of genes that were erroneously predicted by

the automatic annotation system, labeling of genes that were

splitted within scaffolds constructed with the Paired End data,

correction of start codons taking into account homologous

sequences and Ribosomal Binding Sites, specific assignation of

names of genes where orthology had been positively tested.

Identification of orthologous genes in other xanthomonads,

protein domain descriptions, alignments and other characteristics

were taken into account by annotators during the manual

annotation process. The resulting information from assembly

and annotation of the genome was deposited in Genbank as

Bioproject number PRJNA202245 and in iANT at the website

https://iant.toulouse.inra.fr/X.manihotis

Identification of unique elements of Xam CIO151
Proteins in Xam CIO151 that do not have homologs in other

xanthomonads were identified by OrthoMCL using the default

parameters [113] as reported previously [50]. Based on the

assumption that fragmented sequences could be classified as

unique elements due to length differences, we repeated a BLAST

[51] search of the previously identified proteins in the set proteins

of sequenced xanthomonads using an e-value threshold of 1e210.

Additionally, genes with indeterminate nucleotide positions or

genes that codified proteins with length lower than 50 aminoacids

were dismissed. A BLAST search in the GENBANK database was

conducted for the remaining sequences.

Identification of putative horizontal transfer events
In order to identify regions with unusual composition,

AlienHunter tool [114] was used. The predictions were evaluated

though a search of tRNAs (including 5000 upstream and

downstream), and mobile elements sequences available in the

ACLAME database [115] (with an e-value threshold of 1e250), on

the putative regions predicted by AlienHunter. Identification of

genes in Xam CIO151 that are shared with other xanthomonads

was performed using OrthoMCL. Insertion sequences in Xam

CIO151 were defined using data derived from the annotation

process.

Phylogenetic analysis
The phylogenetic reconstruction was performed using a

concatenated sequence of conserved effector proteins: AvrBs2,

XopK, XopL, XopN, XopQ, XopR and the Hpa1 regulon. Even

though XopX and XopZ genes are conserved, they were excluded

from this analysis because some species have multiple copies.

Xanthomonads species included in the phylogenetic tree were:

Xam CIO151, XccATCC, Xcc8004, XccB100, XocBLS256, XooKACC,

XooPXO99A, XooMAFF, Xeu, Xac, Xp and Xfa1. A Bayesian

approach using MrBayes software [116] with ten millions Markov

Chain Monte Carlo, twenty percent of burnin, two runs and four

chains, and a maximum likelihood approach using RaxML [117]

with one thousand bootstrap replicates and an individual

evolutionary model for each partition was used for the phyloge-

netic reconstruction. Protein alignments were produced with

MUSCLE alignment tool [118]. Models of evolution were

determined using the software Prottest [119], AIC criterion was

used to determine the best-fitting model.

Identification of clusters and pathogenicity determinants
Identification of hrp, gum, rpf, xanthomonadin and secretion

systems clusters was performed through a manual annotation

using available information for these clusters in other xanthomo-

nads. The G+C content was computed for some of these clusters

using the window-acgt tool from the glimmer3.02 package [112].

Elements related to effector proteins, toxins, cell wall degrading

enzymes, chemotaxis and motility were identified using annotation

data. The list of candidate effectors in sequenced xanthomonads

was obtained from the website described in [13].

Prediction of VNTR loci and design of PCR primers
The chromosomal sequences of Xam CIO151 and three

phylogenetically close pathovars of Xanthomonas (X. axonopodis pv.

Genome of Xanthomonas axonopodis pv. Manihotis

PLOS ONE | www.plosone.org 14 November 2013 | Volume 8 | Issue 11 | e79704



citri strain 306 (GenBank accession number AE008923), X.

campestris pv. vesicatoria strain 85-10 (GenBank accession number

AM039952), and X. axonopodis pv. citrumelo strain F1 (GenBank

accession number CP002914)) were scrutinized for the presence of

the candidate VNTR loci using a web-based prediction pipeline

(http://www.biopred.net/VNTR/; [25,47,120]. The Tandem

Repeat Finder algorithm [121] was used and two sets of

parameters were employed: (i) region length of 30 to 1000 bp,

unit length of 5 to 9 bp, at least 6 copies and an identity of a least

80% between adjacent repeats, and (ii) region length of 20 to

1000 bp, unit length of 10 to 26 bp, at least 2 copies and an

identity of a least 80% between adjacent repeats. Predicted VNTR

loci were grouped according to their shared 500-bp flanking

regions. Loci that were predicted for Xam and present in at least

two other strains were further evaluated.

Homologous 500-bp regions next to the predicted VNTR loci

were extracted from the chromosomal sequences and aligned

using MUSCLE (http://www.ebi.ac.uk/Tools/msa/muscle/)

[118]. PCR primers matching to conserved segments were

designed using the Finnzymes website (http://www.finnzymes.fi/

tm_determination.html; Table S10). Designed primer sequences

were queried against the chromosomal sequences using the

MFEprimer website (http://biocompute.bmi.ac.cn/MFEprimer/;

[122]) to confirm that the primer pairs will only amplify one locus

per genome.

PCR amplification, agarose gel electrophoresis and DNA
sequencing

Candidate polymorphic loci were tested on a set of at least 14

strains of Xam representing worldwide diversity (Table S11). PCR

amplifications were performed using genomic DNA of Xam strains

as template DNA. Each PCR reaction was carried out in a final

volume of 25 ml and contained 10–50 ng genomic DNA, 2.5 mM

MgCl2, 40 nM PCR primers, 2 mM dNTP and 1 unit of Taq

DNA polymerase (Promega, USA). All reactions were run for 35

cycles, each consisting of 20 sec at 95uC, 30 sec at 52–58uC
(depending on the primer pair), and 30–60 sec at 72uC, with an

initial denaturation step of 3 min at 95uC and a final extension

step of 10 min at 72uC. PCR products were separated on agarose

gels and, if required, sent for custom DNA sequencing (Beckman

Coulter Genomics, UK).

Computational analysis of VNTR loci among 65 Xam draft
genome sequences

All VNTR primer pairs (Table S10) were also tested on 65

recently released draft genome sequences of Xam [15] using in-

house developed scripts. Numbers of complete repeats were

determined from multiple alignments of all draft genome

sequences. The allelic profile of a given strain was defined as the

repeat numbers at each VNTR locus. The discriminatory power

of all VNTR loci were calculated using the Hunter-Gaston

discriminatory index (HGDI), using the following formula:

D~1{
1

N(N{1)

XS

j~1

xj(xj{1)

�����

�����

where D is the numerical index of discriminatory power, N is the

total number of strains in the typing scheme, s is the total number

of different strain types, and xj is the number of strains belonging

to the jth type [123].

Supporting Information

Figure S1 Alignment of putative chromosomal scaffolds of Xam

CIO151 and Xeu, Xac, Xcc8004 and XooPXO99A chromosomes

using MAUVE software. A. Alignment between Xam CIO151 and

Xeu, B. Alignment between Xam and Xac, C. Alignment between

Xcc8004 and Xam CIO151, D. Alignment between XooPXO99A

and Xam CIO151. Vertical red lines in Xam CIO151 indicate the

scaffolds.

(TIFF)

Figure S2 Comparison of lipopolysaccharide gene clusters of

Xam, XooBX08 and Xac. Homologous genes are represented by the

same color. Dotted lines in Xam indicates the distribution of the

cluster on two consecutives scaffolds.

(TIFF)

Table S1 Predicted proteins unique to Xam.

(DOC)

Table S2 Characteristics of chromosomal regions predicted with

atypical nucleotide composition.

(DOC)

Table S3 Potential pathogenicity associated islands (PAIs) in

Xam.

(DOC)

Table S4 rpf gene cluster of Xam CIO151.

(DOCX)

Table S5 Type II secretion systems in Xam CIO151.

(DOC)

Table S6 Type III secretion system (hrp cluster) in Xam CIO151.

(DOCX)

Table S7 Xanthan gum gene cluster in Xam CIO151.

(DOC)

Table S8 CDS of putative effector proteins detected in the

genome of Xam CIO151.

(DOCX)

Table S9 Putative set of cell wall-degrading enzymes present in

Xam CIO151.

(DOCX)

Table S10 Oligonucleotide primers, PCR conditions, and

characteristics of VNTRs analyzed in this study.

(DOCX)

Table S11 List of Xam strains used to evaluate VNTR primers.

(DOCX)

Table S12 Presence and characteristics of VNTR markers in 65

genome sequences of Xam worldwide.

(PDF)

Acknowledgments

We would like to thank David Botero for his help with submission of the

genome to the Genbank database. We also thank the Faculty of Sciences at

Universidad de los Andes for support with publication.

Author Contributions

Conceived and designed the experiments: MLAO LMRR. Performed the

experiments: MLAO ALPQ ACD RK. Analyzed the data: MLAO LMRR

LP NAR RB JB TB AD PD TDdB PF LG FG MAJ EL PL CM EM NM

AMB LDN JFOQ DO CP PP SP OP MRB IRS RPR JT CT OGUM CV

SC VV BS SR CL RK AB. Contributed reagents/materials/analysis tools:

Genome of Xanthomonas axonopodis pv. Manihotis

PLOS ONE | www.plosone.org 15 November 2013 | Volume 8 | Issue 11 | e79704



MLAO LMRR SC RK AB. Wrote the paper: MLAO JB MAJ CM LDN

DO RPR VV BS CL RK AB.

References

1. Leyns F, Cleene M, Swings JG, Ley J (1984) The host range of the genus

Xanthomonas. Bot Rev 50: 308–356.

2. Hayward A, Swings J, Civerolo E (1993) The hosts of Xanthomonas. In: Swings J,

Civerolo E, editors. Xanthomonas. London, United Kingdom: Chapman & Hall.

pp. 1–119.

3. Lozano JC (1986) Cassava bacterial blight: a manageable disease. Plant Dis 70:

1089–1093.

4. Lozano J, Sequeira L (1973) Bacterial blight of cassava in Colombia:

epidemiology and control. Phytopathology 64: 83–88.

5. Boher B, Verdier V (1994) Cassava bacterial blight in Africa: the state of

knowledge and implications for designing control strategies. Afr Crop Sci J 2:

505–509.

6. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, et al. (2012) Top

10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol

13: 614–629.

7. Lopez C, Bernal A (2012) Cassava Bacterial Blight: Using Genomics for the

Elucidation and Management of an Old Problem. Tropical Plant Biology 5:

117–126.

8. Jorge V, Fregene MA, Duque MC, Bonierbale MW, Tohme J, et al. (2000)

Genetic mapping of resistance to bacterial blight disease in cassava (Manihot

esculenta Crantz). Theor Appl Genet 101: 865–872.

9. Restrepo S, Duque MC, Verdier V (2000) Characterization of pathotypes

among isolates of Xanthomonas axonopodis pv. manihotis in Colombia. Plant Pathol

49: 680–687.

10. Buttner D, Bonas U (2010) Regulation and secretion of Xanthomonas virulence

factors. FEMS Microbiol Rev 34: 107–133.

11. Hajri A, Brin C, Hunault G, Lardeux F, Lemaire C, et al. (2009) A «repertoire

for repertoire» hypothesis: Repertoires of type three effectors are candidate

determinants of host specificity in Xanthomonas. PLoS One 4: e6632.

12. Koebnik R, Lindeberg M (2011) Comparative Genomics and Evolution of

Bacterial Type III Effectors. In: Martin F, Kamoun S, editors. Effectors in

Plant–Microbe Interactions: Wiley-Blackwell. pp. 53–76.

13. White FF, Potnis N, Jones JB, Koebnik R (2009) The type III effectors of

Xanthomonas. Mol Plant Pathol 10: 749–766.

14. Potnis N, Krasileva K, Chow V, Almeida NF, Patil PB, et al. (2011)

Comparative genomics reveals diversity among xanthomonads infecting

tomato and pepper. BMC Genomics 12: 146.

15. Bart R, Cohn M, Kassen A, McCallum EJ, Shybut M, et al. (2012) High-

throughput genomic sequencing of cassava bacterial blight strains identifies

conserved effectors to target for durable resistance. Proc Natl Acad Sci U S A

109: E1972–1979.

16. Castiblanco LF, Gil J, Rojas A, Osorio D, Gutierrez S, et al. (2013) TALE1

from Xanthomonas axonopodis pv. manihotis acts as a transcriptional activator in

plant cells and is important for pathogenicity in cassava plants. Mol Plant

Pathol 14: 84–95.

17. Boher B, Kpemoua K, Nicole M, Luisetti J, Geiger JP (1995) Ultrastructure of

interactions between cassava and Xanthomonas campestris pv. manihotis: Cyto-

chemistry of cellulose and pectin degradation in a susceptible cultivar.

Phytopathology 85: 777–788.

18. Boher B, Nicole M, Potin M, Geiger JP (1997) Extracellular polysaccharides

from Xanthomonas axonopodis pv. manihotis interact with cassava cell walls during

pathogenesis. Mol Plant Microbe Interact 10: 803–811.

19. Kemp BP, Horne J, Bryant A, Cooper RM (2004) Xanthomonas axonopodis pv.

manihotis gumD gene is essential for EPS production and pathogenicity and

enhances epiphytic survival on cassava (Manihot esculenta). Physiol Mol Plant

Pathol 64: 209–218.

20. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the

nature of bacterial innovation. Nature 405: 299–304.

21. Hentschel U, Hacker J (2001) Pathogenicity islands: the tip of the iceberg.

Microbes Infect 3: 545–548.

22. Vernikos GS, Thomson NR, Parkhill J (2007) Genetic flux over time in the

Salmonella lineage. Genome Biol 8: R100.

23. Lima WC, Paquola AC, Varani AM, Van Sluys MA, Menck CF (2008)

Laterally transferred genomic islands in Xanthomonadales related to pathogenicity

and primary metabolism. FEMS Microbiol Lett 281: 87–97.

24. Noel L, Thieme F, Nennstiel D, Bonas U (2002) Two novel type III-secreted

proteins of Xanthomonas campestris pv. vesicatoria are encoded within the hrp

pathogenicity island. J Bacteriol 184: 1340–1348.

25. da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, et al. (2002)

Comparison of the genomes of two Xanthomonas pathogens with differing host

specificities. Nature 417: 459–463.

26. Verdier V, Boher B, Maraite H, Geiger JP (1994) Pathological and Molecular

Characterization of Xanthomonas campestris Strains Causing Diseases of Cassava

(Manihot esculenta). Appl Environ Microbiol 60: 4478–4486.

27. Restrepo S, Verdier V (1997) Geographical Differentiation of the Population of

Xanthomonas axonopodis pv. manihotis in Colombia. Appl Environ Microbiol 63:

4427–4434.

28. Restrepo S, Duque M, Tohme J, Verdier V (1999) AFLP fingerprinting: an

efficient technique for detecting genetic variation of Xanthomonas axonopodis pv.
manihotis. Microbiology 145 (Pt 1): 107–114.

29. Restrepo S, Velez CM, Verdier V (2000) Measuring the Genetic Diversity of
Xanthomonas axonopodis pv. manihotis Within Different Fields in Colombia.

Phytopathology 90: 683–690.

30. Gonzalez C, Restrepo S, Tohme J, Verdier V (2002) Characterization of
pathogenic and nonpathogenic strains of Xanthomonas axonopodis pv. manihotis by

PCR-based DNA fingerprinting techniques. FEMS Microbiol Lett 215: 23–31.

31. Restrepo S, Velez CM, Duque MC, Verdier V (2004) Genetic structure and

population dynamics of Xanthomonas axonopodis pv. manihotis in Colombia from

1995 to 1999. Appl Environ Microbiol 70: 255–261.

32. van Belkum A (2007) Tracing isolates of bacterial species by multilocus variable

number of tandem repeat analysis (MLVA). FEMS Immunol Med Microbiol
49: 22–27.

33. Vergnaud G, Pourcel C (2009) Multiple locus variable number of tandem
repeats analysis. Methods Mol Biol 551: 141–158.

34. Li W, Raoult D, Fournier PE (2009) Bacterial strain typing in the genomic era.

FEMS Microbiol Rev 33: 892–916.

35. Lindstedt BA (2005) Multiple-locus variable number tandem repeats analysis

for genetic fingerprinting of pathogenic bacteria. Electrophoresis 26: 2567–
2582.

36. Coletta-Filho HD, Takita MA, de Souza AA, Aguilar-Vildoso CI, Machado
MA (2001) Differentiation of strains of Xylella fastidiosa by a variable number of

tandem repeat analysis. Appl Environ Microbiol 67: 4091–4095.

37. Ngoc LB, Verniere C, Vital K, Guerin F, Gagnevin L, et al. (2009)
Development of 14 minisatellite markers for the citrus canker bacterium,

Xanthomonas citri pv. citri. Mol Ecol Resour 9: 125–127.

38. Gironde S, Manceau C (2012) Housekeeping gene sequencing and multilocus

variable-number tandem-repeat analysis to identify subpopulations within
Pseudomonas syringae pv. maculicola and Pseudomonas syringae pv. tomato that correlate

with host specificity. Appl Environ Microbiol 78: 3266–3279.

39. Katoh H, Subandiyah S, Tomimura K, Okuda M, Su HJ, et al. (2011)
Differentiation of ‘‘Candidatus Liberibacter asiaticus’’ isolates by variable-

number tandem-repeat analysis. Appl Environ Microbiol 77: 1910–1917.

40. Pruvost O, Verniere C, Vital K, Guerin F, Jouen E, et al. (2011) Insertion

sequence- and tandem repeat-based genotyping techniques for Xanthomonas citri

pv. mangiferaeindicae. Phytopathology 101: 887–893.

41. Zhao S, Poulin L, Rodriguez RL, Serna NF, Liu SY, et al. (2012) Development

of a variable number of tandem repeats typing scheme for the bacterial rice
pathogen Xanthomonas oryzae pv. oryzicola. Phytopathology 102: 948–956.

42. Lopez CE, Quesada-Ocampo LM, Bohorquez A, Duque MC, Vargas J, et al.
(2007) Mapping EST-derived SSRs and ESTs involved in resistance to

bacterial blight in Manihot esculenta. Genome 50: 1078–1088.

43. Lopez C, Soto M, Restrepo S, Piegu B, Cooke R, et al. (2005) Gene expression

profile in response to Xanthomonas axonopodis pv. manihotis infection in cassava

using a cDNA microarray. Plant Mol Biol 57: 393–410.

44. Santaella M, Suarez E, Lopez C, Gonzalez C, Mosquera G, et al. (2004)

Identification of genes in cassava that are differentially expressed during
infection with Xanthomonas axonopodis pv. manihotis. Mol Plant Pathol 5: 549–558.

45. Ryan RP, Vorholter FJ, Potnis N, Jones JB, Van Sluys MA, et al. (2011)
Pathogenomics of Xanthomonas: understanding bacterium-plant interactions.

Nat Rev Microbiol 9: 344–355.

46. Lobry JR (1996) Asymmetric substitution patterns in the two DNA strands of
bacteria. Mol Biol Evol 13: 660–665.

47. Thieme F, Koebnik R, Bekel T, Berger C, Boch J, et al. (2005) Insights into
genome plasticity and pathogenicity of the plant pathogenic bacterium

Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence.

J Bacteriol 187: 7254–7266.

48. Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome

alignment with gene gain, loss and rearrangement. PLoS One 5: e11147.

49. Salzberg SL, Sommer DD, Schatz MC, Phillippy AM, Rabinowicz PD, et al.

(2008) Genome sequence and rapid evolution of the rice pathogen Xanthomonas

oryzae pv. oryzae PXO99A. BMC Genomics 9: 204.

50. Pieretti I, Royer M, Barbe V, Carrere S, Koebnik R, et al. (2009) The complete

genome sequence of Xanthomonas albilineans provides new insights into the
reductive genome evolution of the xylem-limited Xanthomonadaceae. BMC

Genomics 10: 616.

51. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped

BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Res 25: 3389–3402.

52. Lawrence JG, Hendrickson H (2003) Lateral gene transfer: when will

adolescence end? Mol Microbiol 50: 739–749.

53. Lerat E, Daubin V, Ochman H, Moran NA (2005) Evolutionary origins of

genomic repertoires in bacteria. PLoS Biol 3: e130.

54. Thebault P, Servant F, Schiex D, Kahn D, Gouzy J. L’environnement iANT:

integrated annotation tool. In: Sagot OGaMF, editor; 2000; Montpellier,
France. Springer-Verlag. pp. 361–365.

Genome of Xanthomonas axonopodis pv. Manihotis

PLOS ONE | www.plosone.org 16 November 2013 | Volume 8 | Issue 11 | e79704



55. Hacker J, Blum-Oehler G, Muhldorfer I, Tschape H (1997) Pathogenicity
islands of virulent bacteria: structure, function and impact on microbial

evolution. Mol Microbiol 23: 1089–1097.

56. Starr MP (1981) The prokaryotes. In: Starr MP, Stolp H, Truper HG, Balows
A, Schlegel HG, editors. The prokaryotes. Berlin: Springer-Verlag. pp. 742–

763.

57. Poplawsky AR, Urban SC, Chun W (2000) Biological role of xanthomonadin
pigments in Xanthomonas campestris pv. campestris. Appl Environ Microbiol 66:

5123–5127.

58. Poplawsky AR, Chun W (1997) pigB determines a diffusible factor needed for
extracellular polysaccharide slime and xanthomonadin production in Xantho-

monas campestris pv. campestris. J Bacteriol 179: 439–444.

59. Goel AK, Rajagopal L, Nagesh N, Sonti RV (2002) Genetic locus encoding
functions involved in biosynthesis and outer membrane localization of

xanthomonadin in Xanthomonas oryzae pv. oryzae. J Bacteriol 184: 3539–3548.

60. Von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-
pathogenic bacteria. Annu Rev Phytopathol 41: 455–482.

61. Dow M (2008) Diversification of the function of cell-to-cell signaling in

regulation of virulence within plant pathogenic xanthomonads. Sci Signal 1:
pe23.

62. He YW, Zhang LH (2008) Quorum sensing and virulence regulation in
Xanthomonas campestris. FEMS Microbiol Rev 32: 842–857.

63. Wang L, Makino S, Subedee A, Bogdanove AJ (2007) Novel candidate

virulence factors in rice pathogen Xanthomonas oryzae pv. oryzicola as revealed by
mutational analysis. Appl Environ Microbiol 73: 8023–8027.

64. Barber CE, Tang JL, Feng JX, Pan MQ, Wilson TJ, et al. (1997) A novel

regulatory system required for pathogenicity of Xanthomonas campestris is
mediated by a small diffusible signal molecule. Mol Microbiol 24: 555–566.

65. Chatterjee S, Sonti RV (2002) rpfF mutants of Xanthomonas oryzae pv. oryzae are

deficient for virulence and growth under low iron conditions. Mol Plant
Microbe Interact 15: 463–471.

66. Dow JM, Crossman L, Findlay K, He YQ, Feng JX, et al. (2003) Biofilm

dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is
required for full virulence to plants. Proc Natl Acad Sci U S A 100: 10995–

11000.

67. Siciliano F, Torres P, Sendı́-n L, Bermejo C, Filippone P, et al. (2006) Analysis
of the molecular basis of Xanthomonas axonopodis pv. citri pathogenesis in Citrus

limon. Electron J Biotechn 9: 0–0.

68. Slater H, Alvarez-Morales A, Barber CE, Daniels MJ, Dow JM (2000) A two-
component system involving an HD-GYP domain protein links cell-cell

signalling to pathogenicity gene expression in Xanthomonas campestris. Mol
Microbiol 38: 986–1003.

69. Ryan RP, McCarthy Y, Andrade M, Farah CS, Armitage JP, et al. (2010) Cell-

cell signal-dependent dynamic interactions between HD-GYP and GGDEF
domain proteins mediate virulence in Xanthomonas campestris. Proc Natl Acad

Sci U S A 107: 5989–5994.

70. Ryan RP, Fouhy Y, Lucey JF, Crossman LC, Spiro S, et al. (2006) Cell-cell
signaling in Xanthomonas campestris involves an HD-GYP domain protein that

functions in cyclic di-GMP turnover. Proc Natl Acad Sci U S A 103: 6712–
6717.

71. Dow JM, Scofield G, Trafford K, Turner PC, Daniels MJ (1987) A gene cluster

in Xanthomonas campestris pv. campestris required for pathogenicity controls the
excretion of polygalacturonate lyase and other enzymes. Physiol Mol Plant Path

31: 261–271.

72. Barras F, van Gijsegem F, Chatterjee AK (1994) Extracellular enzymes and
pathogenesis of soft-rot Erwinia. Annu Rev Phytopathol 32: 201–234.

73. Kang Y, Huang J, Mao G, He LY, Schell MA (1994) Dramatically reduced

virulence of mutants of Pseudomonas solanacearum defective in export of
extracellular proteins across the outer membrane. MPMI 7: 370–377.

74. Lu H, Patil P, Van Sluys MA, White FF, Ryan RP, et al. (2008) Acquisition and

evolution of plant pathogenesis–associated gene clusters and candidate
determinants of tissue-specificity in Xanthomonas. PLoS One 3: e3828.

75. Cornelis GR, Van Gijsegem F (2000) Assembly and function of type III
secretory systems. Annu Rev Microbiol 54: 735–774.

76. Cascales E, Christie PJ (2003) The versatile bacterial type IV secretion systems.

Nat Rev Microbiol 1: 137–149.

77. Hubber A, Vergunst AC, Sullivan JT, Hooykaas PJ, Ronson CW (2004)
Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti

strain R7A VirB/D4 type IV secretion system. Mol Microbiol 54: 561–574.

78. Moreira LM, Almeida NF, Jr., Potnis N, Digiampietri LA, Adi SS, et al. (2010)
Novel insights into the genomic basis of citrus canker based on the genome

sequences of two strains of Xanthomonas fuscans subsp. aurantifolii. BMC
Genomics 11: 238.

79. Segal G, Russo JJ, Shuman HA (1999) Relationships between a new type IV

secretion system and the icm/dot virulence system of Legionella pneumophila. Mol
Microbiol 34: 799–809.

80. Records AR (2011) The type VI secretion system: a multipurpose delivery

system with a phage-like machinery. Mol Plant Microbe Interact 24: 751–757.

81. Russell AB, LeRoux M, Hathazi K, Agnello DM, Ishikawa T, et al. (2013)

Diverse type VI secretion phospholipases are functionally plastic antibacterial

effectors. Nature 496: 508–512.

82. Katzen F, Ferreiro DU, Oddo CG, Ielmini MV, Becker A, et al. (1998)

Xanthomonas campestris pv. campestris gum mutants: effects on xanthan

biosynthesis and plant virulence. J Bacteriol 180: 1607–1617.

83. Osborn MJ, Rosen SM, Rothfield L, Zeleznick LD, Horecker BL (1964)
Lipopolysaccharide of the gram-negative cell wall. Science 145: 783.

84. Medzhitov R, Janeway Jr CA (1997) Innate Immunity: Minireview The Virtues
of a Nonclonal System of Recognition. Cell 91: 295–298.

85. Casabuono A, Petrocelli S, Ottado J, Orellano EG, Couto AS (2011) Structural

analysis and involvement in plant innate immunity of Xanthomonas axonopodis pv.
citri lipopolysaccharide. J Biol Chem 286: 25628–25643.

86. Mooi FR, Bik EM (1997) The evolution of epidemic Vibrio cholerae strains.
Trends Microbiol 5: 161–165.

87. Patil PB, Bogdanove AJ, Sonti RV (2007) The role of horizontal transfer in the
evolution of a highly variable lipopolysaccharide biosynthesis locus in

xanthomonads that infect rice, citrus and crucifers. BMC Evol Biol 7: 243.

88. Studholme DJ, Kemen E, MacLean D, Schornack S, Aritua V, et al. (2010)
Genome-wide sequencing data reveals virulence factors implicated in banana

Xanthomonas wilt. FEMS Microbiol Lett 310: 182–192.

89. Sharma V, Midha S, Ranjan M, Pinnaka AK, Patil PB (2012) Genome

sequence of Xanthomonas axonopodis pv. punicae strain LMG 859. J Bacteriol 194:
2395.

90. Han SW, Lee SW, Bahar O, Schwessinger B, Robinson MR, et al. (2012)

Tyrosine sulfation in a Gram-negative bacterium. Nat Commun 3: 1153.

91. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome
Biol 10: R25.

92. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read

assembly using de Bruijn graphs. Genome research 18: 821–829.

93. Rodriguez RL, Grajales A, Arrieta-Ortiz ML, Salazar C, Restrepo S, et al.

(2012) Genomes-based phylogeny of the genus Xanthomonas. BMC Microbiol
12: 43.

94. Mhedbi-Hajri N, Jacques MA, Koebnik R (2011) Adhesion mechanisms of
plant-pathogenic Xanthomonadaceae. Adv Exp Med Biol 715: 71–89.

95. Klosterman SJ, Subbarao KV, Kang S, Veronese P, Gold SE, et al. (2011)

Comparative genomics yields insights into niche adaptation of plant vascular
wilt pathogens. PLoS Pathog 7: e1002137.

96. Nagy T, Emami K, Fontes CM, Ferreira LM, Humphry DR, et al. (2002) The
membrane-bound alpha-glucuronidase from Pseudomonas cellulosa hydrolyzes 4-

O-methyl-D-glucuronoxylooligosaccharides but not 4-O-methyl-D-glucuro-
noxylan. J Bacteriol 184: 4925–4929.

97. Biely P, Vrsanska M, Tenkanen M, Kluepfel D (1997) Endo-beta-1,4-xylanase

families: differences in catalytic properties. J Biotechnol 57: 151–166.

98. Sola C, Ferdinand S, Mammina C, Nastasi A, Rastogi N (2001) Genetic

diversity of Mycobacterium tuberculosis in Sicily based on spoligotyping and
variable number of tandem DNA repeats and comparison with a spoligotyping

database for population-based analysis. J Clin Microbiol 39: 1559–1565.

99. Ochiai H, Inoue Y, Takeya M, Sasaki A, Kaku H (2005) Genome sequence of

Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector

genes and insertion sequences to its race diversity. Jpn Agric Res Q 39.

100. da Silva FG, Shen Y, Dardick C, Burdman S, Yadav RC, et al. (2004) Bacterial

genes involved in type I secretion and sulfation are required to elicit the rice
Xa21-mediated innate immune response. Mol Plant Microbe Interact 17: 593–

601.

101. Szczesny R, Jordan M, Schramm C, Schulz S, Cogez V, et al. (2010)

Functional characterization of the Xcs and Xps type II secretion systems from

the plant pathogenic bacterium Xanthomonas campestris pv vesicatoria. New Phytol
187: 983–1002.

102. Han M, Kim Y, Kim Y, Chung B, Choi G-W (2011) Bioethanol production
from optimized pretreatment of cassava stem. Korean J Chem Eng 28: 119–

125.

103. He YW, Wu J, Zhou L, Yang F, He YQ, et al. (2011) Xanthomonas campestris

diffusible factor is 3-hydroxybenzoic acid and is associated with xanthomona-

din biosynthesis, cell viability, antioxidant activity, and systemic invasion. Mol
Plant Microbe Interact 24: 948–957.

104. Patil PB, Sonti RV (2004) Variation suggestive of horizontal gene transfer at a
lipopolysaccharide (lps) biosynthetic locus in Xanthomonas oryzae pv. oryzae, the

bacterial leaf blight pathogen of rice. BMC Microbiol 4: 40.

105. Rademaker JL, Louws FJ, Schultz MH, Rossbach U, Vauterin L, et al. (2005)
A comprehensive species to strain taxonomic framework for Xanthomonas.

Phytopathology 95: 1098–1111.

106. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, et al. (2000) A

whole-genome assembly of Drosophila. Science 287: 2196.

107. Konstantinidis KT, Tiedje JM (2005) Genomic insights that advance the

species definition for prokaryotes. Proc Natl Acad Sci U S A 102: 2567–2572.

108. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, et al. (2009) Circos:
an information aesthetic for comparative genomics. Genome Res 19: 1639–

1645.

109. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection

of transfer RNA genes in genomic sequence. Nucleic Acids Res 25: 955–964.

110. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, et al. (2004)

Versatile and open software for comparing large genomes. Genome Biol 5:

R12.

111. Schiex T, Gouzy J, Moisan A, de Oliveira Y (2003) FrameD: A flexible

program for quality check and gene prediction in prokaryotic genomes and
noisy matured eukaryotic sequences. Nucleic Acids Res 31: 3738–3741.

112. Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial
genes and endosymbiont DNA with Glimmer. Bioinformatics 23: 673–679.

Genome of Xanthomonas axonopodis pv. Manihotis

PLOS ONE | www.plosone.org 17 November 2013 | Volume 8 | Issue 11 | e79704



113. Li L, Stoeckert CJ, Jr., Roos DS (2003) OrthoMCL: identification of ortholog

groups for eukaryotic genomes. Genome Res 13: 2178–2189.
114. Vernikos GS, Parkhill J (2006) Interpolated variable order motifs for

identification of horizontally acquired DNA: revisiting the Salmonella pathoge-

nicity islands. Bioinformatics 22: 2196.
115. Leplae R, Hebrant A, Wodak SJ, Toussaint A (2004) ACLAME: a

CLAssification of Mobile genetic Elements. Nucleic Acids Res 32: D45–49.
116. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic

inference under mixed models. Bioinformatics 19: 1572–1574.

117. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phyloge-
netic analyses with thousands of taxa and mixed models. Bioinformatics 22:

2688.
118. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy

and high throughput. Nucleic Acids Res 32: 1792–1797.

119. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of

protein evolution. Bioinformatics 21: 2104–2105.

120. Jalan N, Aritua V, Kumar D, Yu F, Jones JB, et al. (2011) Comparative

genomic analysis of Xanthomonas axonopodis pv. citrumelo F1, which causes citrus

bacterial spot disease, and related strains provides insights into virulence and

host specificity. J Bacteriol 193: 6342–6357.

121. Benson G (1999) Tandem repeats finder: a program to analyze DNA

sequences. Nucleic Acids Res 27: 573–580.

122. Qu W, Shen Z, Zhao D, Yang Y, Zhang C (2009) MFEprimer: multiple factor

evaluation of the specificity of PCR primers. Bioinformatics 25: 276–278.

123. Hunter PR, Gaston MA (1988) Numerical index of the discriminatory ability of

typing systems: an application of Simpson’s index of diversity. J Clin Microbiol

26: 2465–2466.

Genome of Xanthomonas axonopodis pv. Manihotis

PLOS ONE | www.plosone.org 18 November 2013 | Volume 8 | Issue 11 | e79704


