N
N

N

HAL

open science

Experiments with Non-Termination Analysis for Java
Bytecode

Etienne Payet, Fausto Spoto

» To cite this version:

Etienne Payet, Fausto Spoto. Experiments with Non-Termination Analysis for Java Bytecode. Fourth
Workshop on Bytecode Semantics, Verification, Analysis and Transformation (BYTECODE 2009),

Mar 2009, York, United Kingdom. pp.83-96, 10.1016/j.entcs.2009.11.016 . hal-01188696v2

HAL Id: hal-01188696
https://hal.univ-reunion.fr /hal-01188696v2
Submitted on 15 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.univ-reunion.fr/hal-01188696v2
https://hal.archives-ouvertes.fr

Experiments with Non-Termination Analysis
for Java Bytecode

Etienne Payet!

IREMIA
Université de La Réunion
nee

Fausto Spoto?

Dipartimento di Informatica
Universita di Verona
Ttaly

Abstract

Non-termination analysis proves that programs, or parts of a program, do not
terminate. This is important since non-termination is often an unexpected behaviour of
computer programs and exposes a bug in their code. While research has found ways of
proving non-termination of logic programs and of term rewriting systems, this is hardly
the case for imperative programs. In this paper, we describe and experiment with a
technique for proving non-termination of imperative, bytecode programs by relating
their non-termination to that of a %constraint) logic program. Moreover, we show that
our non-termination test effectively helps a termination test, by avoiding expensive
search for termination proofs of those portions of the code where such proofs do not
exist.

1 Introduction

Java bytecode [8] is the result of the compilation of Java, as well as of other pro-
gramming languages. It is a low-level, object-oriented, type-safe language which is
distributed in a machine-independent format, hence executable on different archi-
tectures. It is the target of choice for the compilation of applications that must
be downloaded from the net into client computers or mobile phones. The recent
Android system by Google [1] uses the Java bytecode as the target of the compila-
tion of Android programs, before translating it into a machine-centered lower-level

bytecode.

! Email: epayet@univ-reunion.fr
2 Email: fausto.spoto@univr.it

mailto:epayet@univ-reunion.fr
mailto:fausto.spoto@univr.it

As a consequence of the wide use of Java bytecode, research is increasingly fo-
cused on checking, in an automatic way, that Java bytecode applications are not
harmful. This includes the proof that, for instance, they do not overuse the resources
of the system. One such resource is time. In particular, proofs of termination of
Java bytecode programs guarantee that they will actually terminate. Such proofs
are important for the software developer, since they support the quality standards of
his product. Nevertheless, termination of computer programs being an undecidable
property, the termination of many methods remains unproved and such methods
might hence be potentially non-terminating. A direct proof of their non-termination
becomes desirable, since it exhibits an actual, typically unexpected behaviour of the
program and often means that the non-terminating methods contain a bug. Cur-
rently, no system exists to prove the non-termination of Java bytecode methods,
since research has mainly been focused on proofs of non-termination for logic pro-
grams [4,11,10,2,16,15] and term rewriting systems [21,5,24,22,23,9]. In the recent
paper [7], the authors consider non-termination of C programs and [6,14] provide
some techniques for testing C programs that detect errors such as program crashes,
assertion violation and non-termination. In [20], an approach to automatically check
non-termination of imperative programs is introduced; it is based on the generation
of invariants that are used to prove that some potential loops are never exited; the
technique is experimented on a set of programs written in a fragment of Java and
does not consider heap data structures. In this paper, we provide an example where
our approach successfully proves the non-termination of a program where a data
structure is defined.

This paper provides a first experimentation with the automatic derivation of
non-termination proofs for Java bytecode programs. We start from our previous
work on a tool Julia+BinTerm for the termination analysis of Java bytecode [19].
There, we translated the original Java bytecode program P into a constraint logic
program Pgrp whose termination entails that of P. Here, we show how, in those
cases when the approximation of the bytecodes is exact, the non-termination of
Pcrp entails that of P. Hence, we use the same tool as in [19] to prove the non-
termination of Java bytecode programs by exploiting previous results from non-
termination analysis of logic programs [10]; namely, we prove the non-termination of
Pcr p and hence infer, when possible, that of P. Although these results are far from
being a definite solution to the problem of non-termination analysis of Java bytecode
programs, they represent a first step in that direction and highlight weaknesses of the
current approach, that must be solved if non-termination analysis must be applied
to real Java and Java bytecode software. Note that, while a notion of existential
non-termination for C is considered in [7], we instead consider a notion of universal
non-termination here for the CLP program derived from the Java bytecode program.

This paper also shows that our non-termination test effectively helps the termi-
nation test defined in [19]. Namely, we use our non-termination test to signal to the
termination prover in [19] that some clauses in Py p diverge, so that it is useless to
look for an (often expensive) termination proof for them. Note that this technique
is applicable and profitable for all Java bytecode programs, also when the approxi-
mation of their bytecodes is not exact or when all their methods actually terminate.
Qur termination test is applied, indeed, to the CLP program, whose clauses might

not terminate because of the approximations induced by the abstraction from P to
Perp.

2 Compilation of Java bytecode into constraint logic
programs

Java bytecode is a low-level object-oriented type-safe language. Its static analysis
is complicated by the fact that it has no explicit structure, differently from high-
level languages, and that it uses a stack of temporary variables. Hence the number
and type of the variables are different at different program points inside the same
method.

We have recently developed a static analysis of Java bytecode programs (and
hence of Java programs) that proves the termination of most methods of a pro-
gram [19]. The idea is that the Java bytecode program is first translated into its
basic blocks and then an abstract interpretation [3], based on a denotational seman-
tics over those blocks, is applied by using different abstract domains of analysis.
The latter provide a conservative approximation of the numerical and structural
constraints on the numbers or data structure used by the program: a first domain,
for sharing [13], determines when data structures bound to program variables might
share locations on the heap, so that an update of one variable might also affect the
others. This information is exploited in the second domain, for cyclicity [12], which
determines when the data structure bound to a program variable might contain
loops of locations, so that an iteration over that data structure might not necessarily
terminate. Both kinds of information are then used in a path-length domain [17,19],
that computes the relationship between the size of program variables before and
after the execution of each instruction in the bytecode: the size or path-length of
a variable bound to a data structure is the maximal length of pointers that one
can follow from that variable; the path-length of a variable bound to an array is
the length of the array; the path-length of a numerical variable is its value; the
path-length of a Boolean variable is 0 for false and 1 for true. The result of the
path-length is finally used to express the relationship between the size of the vari-
ables at the beginning and at the end of each basic block of the program. This is
written in terms of a constraint logic program Py p over linear constraints, whose
predicates b(vars) correspond to each basic block b of P and wars are the variables
at the beginning of the execution of b. These approximations build constraints that
are later used in order to derive bounds on the values of variables in programs,
which is crucial for termination and non-termination analyses to work. The main
result proved in [19], wrt. termination analysis, is the following:

Theorem 2.1 Let P be a Java bytecode program and b a basic block of P. If the
query b(vars) has only terminating computations in Popp, for all fized integer values
for vars, then all executions of a Java Virtual Machine started at b terminate. O

The converse, however, does not hold in general: we can find programs P and
a basic block b of P such that, in the translation Pcrp, predicate b(vars) does not
terminate for some fixed initial integer values for wars, although all executions of
P starting at b do terminate. This is due to the approximations done during the

translation of P into Pgrp: both sharing and cyclicity analyses are approximated,
so that, for instance, the analyser might not necessarily prove that a non-cyclical list
is actually non-cyclical. Moreover, some bytecodes have an inherently non-linear
behaviour, such as multiplications and divisions, and cannot hence be approximated
by using the linear constraints available for the path-length.

The translation from Java or Java bytecode to CLP makes it uniform the treat-
ment of any kind of loops: for, while loops, recursion, loops having exit conditions
depending on numerical, reference or Boolean variables, loops exiting become of the
break statement, all become a loop in the graph of blocks of P, p. The termination
of Pcrp can hence be established in a uniform way, also in the presence of Boolean
variable assigned inside an if statement and hence making a loop exit.

An important point about the program Pgyp is that its termination is mean-
ingful for ground inputs only, where all variables have been bound to their integer
path-length (Theorem 2.1). Moreover, the clauses of Pcrp are binary, that is, they
have the form p(X) « c, q(l}), with only one predicate on the right.

The termination of Pgrp is proved by the BinTerm tool by F. Mesnard, that
finds decreasing measures across iterations of most loops in Pgrp. The computa-
tional cost of the tool decreases by reducing the number of clauses in Py p: namely,
only clauses in a loop are considered, since they correspond to loops or recursion
in the original program P and are those that determine the termination or non-
termination of the program. Moreover, its cost is reduced also by decreasing the
arity of the predicates, when it is clear that the removed arguments are irrelevant
for the termination of the predicates. These optimisations are defined and proved
correct in [18]. As a consequence, in all our examples, the CLP program will express
the path-length relationships for the loops of the program only.

Although the converse of Theorem 2.1 does not hold in general, there are many
cases when the approximation of the original program P into path-length is ezact,
in the sense that all denotations represented by the Pgpp program are actual deno-
tations that represent real, concrete executions of P. This is the case, for instance,
of the approximations of the instructions dealing with integer values, with the no-
table exception of multiplications and divisions; as well as of instructions dealing
with data structures that have been successfully proved to be non-cyclical by the
cyclicity analysis. In those frequent cases, a proof of non-termination for the CLP
program induces a proof of non-termination for the original Java bytecode program.
In the following, we discuss how proofs of non-termination for CLP programs can
be constructed and exemplify many cases when we can conclude (or not) that the
original Java bytecode program does not terminate either.

3 Proving non-termination of constraint logic programs

A non-termination criterion is provided in [10] for the standard operational seman-
tics of constraint logic programming, where free variables may occur in a call to a
predicate. The specialisation of this criterion to the semantics we consider in this
paper (free variables are not allowed in a call to a predicate) is briefly described in
this section.

We consider constraint logic programs over path-length polyhedra (CLP(PL)).

We let 7 denote a sequence of terms, X and Y denote sequences of distinct variables,
p and q denote predicate symbols and c denote a path-length constraint. An atom
has the form p(f) where the length of £ equals the arity of p. A query has the form
(p(X)|c). A clause has the form p(X) — c, q(Y) where X and Y are disjoint and the
variables occurring in ¢ necessarily occur in X UY. A CLP(PL) program is a finite
set of clauses. We use dgc as a shortcut for 3X; ... dXy,c where X1,..., Xy = X.
The projection of c onto the sequence X is denoted by d¢c and is the constraint
Ivar(c)\ X ¢ Where Var(c) is the set of variables occurring in ¢. The set described

by a query Q := (p(X)|c) is denoted by Set(Q); it consists of all the atoms of the
form p(v(X1),...,v(Xn)) where Xy,..., X, = X and v is a ground solution of c.
We say that Set(Q} is non- te’rmmatmg wrt. a CLP(PL) program P when for all
p(v(Xy),...,v(Xy,)) € Set(Q), the query

p(X1,...,Xn) | X1 =v(X1),...,Xn =v(Xn))

is non-terminating wrt. P by using the standard semantics of constraint logic pro-
grams. This means that an infinite computation can be built for that query in the
program P. Note that we do not consider any precedence between the clauses of P,
that is, we assume a non-deterministic resolution of a predicate with all the clauses
that define that predicate. The following results provide simple non-termination
conditions for constraint logic programs.

Theorem 3.1 ([10]) Let p(X) — (17} be a recursive clause in a CLP(PL) pro-
gram P. If Set({(p(Y)|3yc)) C Set(((X)|3gc)) then Set((p(X)|Igc)) is non-
terminating wrt. P. O

Theorem 3.1 means that if the set of values assigned to Y by all the solutions of ¢
is included in the set of values assigned to X by all the solutions of ¢, then any value
assigned to X by a solution of ¢ provides a non-terminating ground query. Indeed,
intuitively, the constraint Jgc is the guard of the clause and Set((p(Y) | 3yc)) C
Set((p(X)|dzc)) means that every output value of the clause satisfies this guard.
Hence, if a value satisfies the guard, then it enters the clause and the corresponding
output satisfies the guard, so this output can also enter the clause and the next
output satisfies the guard, and so on. Notice that the converse of the implication in
Theorem 3.1 does not always hold: consider for instance the recursive clause p(X) <
X > 3,p(Y); we have that Set({p(X)|IxX > 3)), i.e. Set((p(X)|X > 3)), is non-
terminating wrt. this clause although Set((p(Y) |y X > 3)), i.e. Set((p(Y) | true)),
is not included in Set({p(X)|X > 3)).

Theorem 3.2 ([10]) Let ¢(X) — ¢,p(Y) be a clause in a CLP(PL) program P and
Q be a query such that Set(Q) is non-terminating wrt. P. If Set((p(Y) |3yc)) C
Set(Q) then Set((g(X)|3gc)) is non-terminating wrt. P. a

The intuition of Theorem 3.2 is that any value ¢(%) in Set({g(X)|3 xc)) satisfies
Jge, th:a gEa:rd of the clause,m a:ng the corresponding output p(7) is included in
Set((p(Y)|3yc)). As Set((p(Y)|dyc)) C Set(Q) and Set(Q) is non-terminating
wrt. P, then p(7) does not terminate wrt. P, so ¢(Z) does not terminate also.

These theorems provide a simple mechanism to infer ground non-terminating
queries: first, use Theorem 3.1 to infer a set of non-terminating queries from the

recursive clauses of the program and then complete this set with the help of Theo-
rem 3.2.

4 Proving non-termination of Java bytecode programs

In this section, we give several examples of situations where we can conclude the
non-termination of the original program from that of the CLP program, as well as
examples where instead this is not possible.

4.1 Exact approrimations with iterations

When the approximation into a path-length constraint of the Java bytecode program
P under analysis is exact, a proof of non-termination of Pcy,p is also a proof of non-
termination of P. The formal definition of exact requires the bytecodes to have a
concrete behaviour which is exactly matched by their numerical abstraction, that
is, every pair of states satisfying the input/output abstraction of the bytecode must
correspond to an actual, concrete behaviour of the bytecode. Note that the converse
must always hold by the correctness of the abstraction.

Definition 4.1 [Exact Abstraction| Let ins be a bytecode instruction, formalised
as an input/output map on concrete JVM states, as in [19], and let ins' be a
correct approximation of its behaviour, i.e., a constraint over input variables © and
output variables ©. This approximation is eract if and only if, for all input states
& and output variable ¢ satisfying the static information at ins (number and type
of local variables and stack elements), whenever {0 +— pathlength((v))} U {0 —

pathlength(6(v))} = ins™™ then o(5) = 6. O

Consider for instance the program Add1:

public class Add1l {
public static void main(String args[]) {
int k = 3;
for(int i = 2; 1 < 2 + k; i++);

}
The approximation of the bytecode program corresponding to Addi is exact: the

loop guard involves the add bytecode instruction whose approximation, as provided
in [19], is
addEL = Unchanged,(#1,#s — 2) U {§#3—2 yoghsl 6#3_2}

where #[and #s are the number of local variables and stack elements at program
point g where the instruction occurs; we distinguish between variables v at the
beginning of the execution of the bytecode, written as ©, and variables at its end,
written as ©. The formula above means that add does not modify any local variable
nor any stack element not involved in the addition; moreover, the new top of the
stack (§7°72) holds a value which is equal the addition of the former two topmost
stack elements (5772 and §571). This approximation is exact since, for every
couple of input state & and output state & satisfying the static information at this

bytecode and the approximation above, we must have that the local variables have
the same values in & and & and the top of the stack of ¢ is the sum of the topmost
two values on top of the stack of &, so that those states are such that addy(¢) = 5.
The corresponding CLP(PPL) program Addl cpp is:

entry(IL2) « {IL2 — OL2 = —1, —IL2 > —4, IL2 > 2}, entry(OL2)

The predicate entry denotes the entry point of the loop of the program; local variable
2 implements i while variable k has been removed since it is irrelevant for the
termination of the program. This CLP program has been derived by using the
abstract interpretations cited in the introduction. Namely, we have used the path-
length abstract analysis, which has derived the constraint IL2 — OL2 = —1 (that is,
local variable 2, which is i, decreases along iterations of the loop) and the constraints
—IL2 > —4, IL2 > 2, which provide bounds on the possible values of that variable
inside the loop. That CLP program terminates. By Theorem 2.1 we conclude that
Add1 terminates also. If we turn Add! into the non-terminating program:

public class Add2 {
public static void main(String args[]) {
int k = 3;
for(int i = 2; 1 < 2 + k; i--);

}
we get the CLP(PL) program Add2 cyp,p:
entry(IL2) « {IL2 — OL2 =1, —IL2 > —2}, entry(OL2)
which by Theorem 3.1 does not terminate because the projection of the constraint

of its unique clause onto IL2 (resp. OL2) is —IL2 > —2 (resp. —OL2 > —1) and
we have

Set({entry(OL2) | —OL2 > —1)) C Set({entry(IL2) | —IL2 > —2)) .

Here, we can safely conclude the non-termination of Add2 from that of Add2rp.

Our technique is also able to handle more complicated situations. For instance,
if we nest the non-terminating loop of program Add2 into a terminating loop, we
get:

public class Add3 {
public static void main(String args[]) {
int k = 3;
for(int j = 0; j < 10; j++)
for (int i = 2; i < 2 + k; i--);

}
The corresponding CLP(PL) program Add3 ¢y p:
entry(IL3) «+ {OL3 = 2}, block(OL3)
block(IL3) «— {IL3 — OL3 =1, —IL3 > —2}, block(OL3)

does not terminate. Note that the outer loop does not appear in the CLP program,
since the exit condition i > 2 + k of the inner loop is found to be false during

the path-length analysis and no clause is generated with a false constraint. Indeed,
such clause would not influence the termination or non-termination behaviour of the
program, since it would just stop the CLP resolution process. Indeed, by applying
Theorem 3.1 to the recursive clause we get that Set(Q) is non-terminating wrt.
Add3 crp where

Q = (block(IL3) | —ILS > —2) .

Notice that we have to infer a non-terminating query of the form (entry(---)|---)
to conclude the non-termination of Add3 crp because the entry point of the loops
of the program is the predicate entry. The projection of the constraint of the first
clause onto OL3 is OL3 = 2 and we have

Set((block(OL3)| OL3 = 2)) C Set(Q) .

Hence, by Theorem 3.2 applied to the first clause of Add3orp and to @, we have
that Set((entry(IL3)|true)) is non-terminating wrt. Add3 crp (where true denotes
the always satisfiable constraint). Therefore, Add3cpp does not terminate so we
conclude that Add3 does not terminate either.

If we nest the non-terminating loop of program Add2 into a separated method,
such as in:

public class Add4 {
public static void loop(int k) {
for(int i = 2; i < 2 + k; i--);

}

public static void main(String args[]) {
loop(3);

}

}
we get the CLP(PL) program Add4 qyp:
entry(IL1) < {IL1 — OL1 =1, —IL1 > —2}, entry(OL1)

which does not terminate (by Theorem 3.1). Hence we conclude that Add{ does
not terminate either.

4.2 FExact approrimations with recursion

The following terminating Java program involves a recursive method:

public class Recl {
public static int sum(int n) {
if (n <= 0) return O;
else return n + sum(n-1);

}

public static void main(String args[]) {
sum(2) ;

}

The CLP(PL) program Recl crp:
entry(IL0) «— {ILO — OL0 =1, IL0 > 1, —IL0 > —2}, entry(OLO)

terminates, hence by Theorem 2.1 we conclude that Rec! terminates. If we turn
Rec1 into the following non-terminating program (where the programmer forgot the
base case in the recursive method):

public class Rec2 {
public static int sum(int n) {
return n + sum(n-1);

}

public static void main(String args[]) {
sum(2) ;

}

}
we get the CLP(PPL) program Rec?2cr,p:
entry(IL0) < {IL0O — OL0O =1, —IL0 > —2}, entry(OL0)

By Theorem 3.1, Rec2rp does not terminate. As the approximation of the byte-
code program corresponding to Rec2 is exact, we can safely conclude that Rec2
does not terminate either.

4.3 FExact approrimations with data structures

All examples above deal with integer values only. Let us consider the following
program now, where a list data structure is defined and recursively scanned:

public class List {

private int head;

private List tail;

public List(int head, List tail) {
this.head = head;
this.tail = tail;

}

private void iter() {
if (tail != null) iter();

}

public static void main(String args[]) {
List 1 = new List(0, new List(1, null));
l.iter();

}

The method iter (intended to perform an iteration over a list) contains a bug since
it recurs on the same list rather than on its tail (iter() instead of tail.iter()).
The bytecode version of this program has an exact approximation as our cyclicity
analysis correctly infers that the list [in the method main is not cyclical. The
corresponding CLP(PL) program Listcrp:

entry < true, eniry

(true denotes the always satisfiable constraint) does not terminate, hence we safely
conclude that the program List does not terminate either.

4.4 Non-exact approxrimations

Consider the mul bytecode instruction that removes the two top operand stack
elements and replaces them with the result of their multiplication. As there is no
linear way of expressing a constraint on the result of the multiplication, we just set

mulgmﬂ‘ = Unchanged (#1,#s — 2)

(#! and #s are the number of local variables and stack elements at program point ¢
where the instruction occurs) meaning that the instruction does not modify any local
variables nor any stack element which are not its operands; however, no constraint
on the new top of the stack (the result of the multiplication) is generated. The Java
program:

public class Mul {
public static void main(String args[]) {
int k = 3;
for(int i = 2; i < 2 * k; i++);

}

terminates. Notice that the guard of the loop involves a multiplication. The corre-
sponding CLP(PL) program Mul oy, p:

entry(IL2) « {IL2 — OL2 = —1, IL2 > 2}, entry(OL2)

does not terminate. Indeed, the projection of the constraint of the unique clause of
Mul ¢1,p onto IL2 (resp. OL2) is IL2 > 2 (resp. OL2 > 3) and we have

Set((entry(OL2) | OL2 > 3)) C Set((entry(IL2)|IL2 > 2)) .

Therefore, by Theorem 3.1, the non-empty set Set((entry(IL2)|IL2 > 2)) is non-
terminating wrt. Mulor,p. However, the non-termination of Mul does not follow
from this result, since we are using approximated constraints.

We are facing a similar situation when dealing with numeric fields. The getfield f

instruction takes the reference to an object o located on top of the stack and replaces
it with the value of o.f. In [19] we defined

getﬁeldgl‘ f = Unchanged ,(#1,#s — 1)

whenever the field f has integer type (#l and #s are the number of local variables
and stack elements at program point ¢ where the instruction occurs). No constraint
is generated for the new top of the operand stack (the value of the field) since its
path-length is unknown. The Java program:

public class Field {
private int n = 6;
public static void main(String args[]) {
Field f = new Field();
for(int i = 2; i < f.n; i++);

}
terminates. The corresponding CLP(PL) program Field o, p:
entry(IL2) «+ {OL2 — IL2 = 1}, entry(OL2)

does not terminate as the projection of the constraint of its clause onto IL2 or onto
OLZ2 is the always satisfiable constraint true and we have

Set((entry(OL2) | true)) C Set({entry(IL2) | true)) .

5 Using non-termination proofs to support termination
analysis of Java bytecode

A completely different use of our non-termination tests consists in proving the non-
termination of clauses of the Pcrp program generated during the termination anal-
ysis of a Java bytecode program P. By removing such clauses, which cannot have
any termination proof, we help the termination checker by simplifying its task.
Since our non-termination tests are extremely efficient, while a thorough quest for
a termination proof is in general expensive, the trade-off is positive and we get a
more efficient termination analysis still keeping the same precision.

In particular, we have implemented the non-termination tests of Section 3 to
help the termination prover BinTerm used in the tool Julia+BinTerm [19]. Given
a Java bytecode program P, our approach consists in a preliminary analysis which
considers the strongly connected components (SCCs) of Pgopp; any SCC where a
non-terminating ground query is found is removed from Pgrp and the resulting
CLP program Py, p is analysed by BinTerm.

We have run Julia+BinTerm on the following Java bytecode programs using a
Linux machine based on a 2.33GHz Intel Core 2 Duo with 2 gigabytes of RAM.

P number of methods in P | number of clauses in Porp
JavaCup 270 170
JLex 137 356
Kitten 2149 1224

The next table summarizes the results. For each program P, it reports: the number
of clauses removed from Pcrp by the non-termination analysis; the non-termination
analysis time; the BinTerm running time on P(y; p; the BinTerm running time on
Porp. All the times are in seconds.

p clauses | non-termination | BinTerm | BinTerm
removed analysis on Py p | on Porp
JavaCup 113 0.09s 3.90s 5.66s
JLex 204 0.20s 21.20s 55.30s
Kitten 288 0.68s 99.52s 100.99s

In these experiments on large programs, the computational overhead of the non-

termination analysis is not important and the running time of BinTerm is smaller
on P/, than on Pepp. For JLex, BinTerm is more than twice faster on Py p
than on Pgrp, as the non-termination analysis removes 204 clauses from Pgorp out
of 356; among the removed clauses, there is a huge SCC containing 122 clauses
where the arity of the involved predicate symbols is 8, which explains the gain in
efficiency. On the contrary, the clauses removed for Kitten are several but include
relatively small components and have small arity, so that the gain in efficiency is
not significant there. This is because the cost of the termination analysis increases
significantly with the arity of the predicates and, by removing clauses with small
arity, we do not affect very much the efficiency of the termination analysis.

6 Conclusion

In this paper, we have presented some experiments with the automatic derivation
of non-termination proofs for Java bytecode programs. When the approximation
of the bytecodes into a path-length constraint is exact, the non-termination of the
original program can be deduced from that of its CLP translation. When the
approximation is not exact, it may happen that the bytecode program terminates
while its CLP version does not terminate (Section 4.4 illustrates this situation). As
a future work, we plan to replace some non-exact approximations (such as that of
the getfield instruction or of the non-linear arithmetic operations) with exact ones
that are suitable for deriving non-termination proofs of Java bytecode programs.
To that purpose, a possibility is that of finding specific executions that make the
program diverge, instead of proving a universal non-termination. In that direction,
we might make some program variables ground, hence linearising some operations.
This would be similar to the technique used in [6].

We have also implemented the non-termination tests of Section 3 in order to help
the termination prover BinTerm used in the tool Julia+BinTerm. The results we
have presented in Section 5 are encouraging; even for some large Java bytecode pro-
grams, the computational overhead of the non-termination analysis is unimportant;
moreover, the termination prover BinTerm runs much faster when the components
detected as non-terminating are removed from the CLP translation of the original
bytecode program.

References

[1] Android - An Open Handset Alliance Project. http://code.google.com/android/.

[2] R. N. Bol, K. R. Apt, and J. W. Klop. An Analysis of Loop Checking Mechanisms for Logic Programs.
Theoretical Computer Science, 86:35-79, 1991.

[3] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Pr(()_,grams by Construction or Approximation of Fizipoints. In Proc. of the 4th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’77), pages 238-252, 1977.

[4] D. De Schreye, K. Verschaetse, and M. Bruynooghe. A Practical Technique for Detecting non-
Terminating Queries for a Restricted Class of Horn Clauses, using Directed, Weighted Graphs. In
Proc. of ICLP’90, pages 649-663. The MIT Press, 1990.

[5] J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and Disproving Termination of Higher-order
Functions. In Bernhard Gramlich, editor, Proc. of the 5th International Workshop on Frontiers of
Combining Systems (FroCoS’05), volume 3717 of Lecture Notes in Artificial Intelligence, pages 216—
231. Springer-Verlag, 2005.

(6] P. Godefrm Klarlund, and K. Sen. DART: Directed Automated Random Testing. In V. Sarkar
and M I:f[all editors, Proc. of the ACM SIGPLAN 2005 Conference on Programming Language
Deszgn a.nd Implemematwn (PLDI’05), pages 213-223. ACM, 2005.

[7] A. Gupta, T.A. Henzinger, R. Majumdar, A. Rybalchenko, and R.G. Xu. Proving non-Termination.
In G.C. Necula and P. Wadler, editors, Proc. of the 35th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’08), pages 147-158. ACM, 2008.

[8] T. Lindholm and F. Yellin. The Java™ Virtual Machine Specification. Addison-Wesley, second
edltlcm 1999.

[9] E. Payet. Loop Detection in Term Rewriting Using the Eliminating Unfoldings. Theoretical Computer
Science, 403:307-327, 2008.

[10] E. Payet and F. Mesnard. A non-Termination Criterion for Binary Constraint Logic
Programs. Technical report, IREMIA, Université de La Réunion, 2008. Available at
http://arxiv.org/abs/0807.3451.

[11] E. Payet and F. Mesnard. Non-Termination Inference of Logic Programs. ACM Transactions on
Programming Languages and Systems, 28, Issue 2:256—289, March 2006.

[12] S Rossignoli and F. Spoto. Detecting Non-Cyclicity by Abstract Compilation into Boolean Functions.

n E. A. Emerson and K. S. Namjoshi, editors, Proc. of the 7th International Conference on Verification,

Model Chec:kmg and Abstract Interpretation (VMCAI'06), volume 3855 of Lecture Notes in Computer
Science, pages 95-110, Charleston, SC, USA, January 2006. Springer-Verlag.

[13] S. Secci and F. Spoto. Pair-Sharing Analysis of Object-Oriented Programs. In C. Hankin and

I. Siveroni, editors, Proc. of Static Analysis Symposium (SAS’05), volume 3672 of Lecture Notes in
Computer Science, pages 320-335, London, UK, 2005.

[14] K. Sen, D. Marinov, and G. Agha. CUTE: a Concolic Unit Testing Engine for C. In M. Wermelinger

and H. Ga.]l edltors Proc. of the 10th European Software Engineering Conference held jointly with 13th

ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages 263—272.
ACM, 2005.

[15] Y-D. Shen, J-H. You, L-Y. Yuan, S. Shen, and Q. Yang. A Dynamic Approach to Characterizing
Termination of General Logic Programs. ACM Transactions on Computational Logic, 4(4):417-434,
2003.

[16] Y-D. Shen, L-Y. Yuan, and J-H. You. Loops Checks for Logic Programs with Functions. Theoretical
Computer Science, 266(1-2):441-461, 2001.

[17] F. Spoto, P. M. Hill, and E. Payet. Path-Length Analysis for Object-Oriented Programs. In First

International Workshop on Emerging Applications of Abstract Interpretation (EAAI’06), Vienna,
Austria, March 2006. Available at the web address http://profs.sci.univr.it/~spoto/papers.html.

[18] F. Spoto, L. Lu, and F. Mesnard. Using CLP Simplifications to Improve Java Bytecode Termination
Analysis. Submitted for publication to Bytecode’09.

[19] F. Spoto, F. Mesnard, and E. Payet. A Termination Analyser for Java Bytecode Based on Path-Length.
Submitted for publication in August 2007.

[20] H. Velroyen and P. Riimmer. Non-Termination Checking for Imperative Programs. In B. Beckert and

R. Hihnle, editors, Proc. of the 2nd International Conference on Tests and Proofs (TAP’08), volume
4966 of Lecture Notes in Computer Science, pages 154-170, Prato, Italy, April 2008. Springer.

[21] J. Waldmann. Matchbox: A Tool for Match-bounded String Rewriting. In Vincent van QOostrom,

editor, Proc. of the 15th International Conference on Rewriting Techniques and Applications (RTA 04),
volume 3091 of Lecture Notes in Computer Science, pages 85-94. Springer-Verlag, 2004.

[22] J. Waldmann. Compressed Loops (draft). Available at
http://dfa.imn.htwk-leipzig.de/matchbox/methods/, 2007.

[23] H. Zank]l and A. Middeldorp. Nontermination of String Rewriting using SAT. In Proc. of the 9th
International Workshop on Termination (WST'07), pages 52-55, 2007.

[24] H. Zantema. Termination of String Rewriting Proved Automatically. Journal of Automated Reasoning,
34(2):105-139, 2005.

