A. Elbein, Y. Pan, I. Pastuszak, and D. Carroll, New insights on trehalose: a multifunctional molecule, Glycobiology, vol.13, issue.4, pp.17-27, 2003.
DOI : 10.1093/glycob/cwg047

C. Gancedo and C. Flores, The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi, FEMS Yeast Research, vol.25, issue.4-5, pp.351-359, 2004.
DOI : 10.1111/j.1574-6976.2001.tb00570.x

E. Cabib and L. Leloir, The biosyntesis of trehalose phosphate, J Biol Chem, vol.231, pp.259-275, 1958.

W. Bell, P. Klaassen, M. Ohnacker, T. Boller, and M. Herweijer, Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation, European Journal of Biochemistry, vol.6, issue.3, pp.951-959, 1992.
DOI : 10.1016/0014-5793(91)81299-N

D. Virgilio, C. Burckert, N. Bell, W. Jeno, P. Boller et al., Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity, European Journal of Biochemistry, vol.171, issue.2, pp.315-323, 1993.
DOI : 10.1016/0014-5793(91)81299-N

A. Reinders, N. Burckert, S. Hohmann, J. Thevelein, and T. Boller, Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock, Molecular Microbiology, vol.24, issue.4, pp.687-695, 1997.
DOI : 10.1046/j.1365-2958.1997.3861749.x

Q. Chen and G. Haddad, Role of trehalose phosphate synthase and trehalose during hypoxia: from flies to mammals, Journal of Experimental Biology, vol.207, issue.18, pp.3125-3129, 2004.
DOI : 10.1242/jeb.01133

URL : http://jeb.biologists.org/content/jexbio/207/18/3125.full.pdf

J. Kormish and J. Mcghee, The C. elegans lethal gut-obstructed gob-1 gene is trehalose-6-phosphate phosphatase, Developmental Biology, vol.287, issue.1, pp.35-47, 2005.
DOI : 10.1016/j.ydbio.2005.08.027

M. Paul, L. Primavesi, D. Jhurreea, and Y. Zhang, Trehalose Metabolism and Signaling, Annual Review of Plant Biology, vol.59, issue.1, pp.417-441, 2008.
DOI : 10.1146/annurev.arplant.59.032607.092945

M. Gonzalez, R. Stucka, M. Blazquez, H. Feldmann, and C. Gancedo, Molecular cloning ofCIF1, a yeast gene necessary for growth on glucose, Yeast, vol.19, issue.3, pp.183-192, 1992.
DOI : 10.1128/MCB.6.11.3569

K. Luyten, W. De-koning, I. Tesseur, M. Ruiz, and J. Ramos, Disruption of the Kluyveromyces lactis GGS1 gene causes inability to grow on glucose and fructose and is suppressed by mutations that reduce sugar uptake, European Journal of Biochemistry, vol.212, issue.2, pp.701-713, 1993.
DOI : 10.1016/0092-8674(82)90211-2

M. Blazquez, R. Lagunas, C. Gancedo, and J. Gancedo, Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases, FEBS Letters, vol.23, issue.1-2, pp.51-54, 1993.
DOI : 10.1007/BF00310888

B. Teusink, M. Walsh, K. Van-dam, and H. Westerhoff, The danger of metabolic pathways with turbo design, Trends in Biochemical Sciences, vol.23, issue.5, pp.162-169, 1998.
DOI : 10.1016/S0968-0004(98)01205-5

A. Reinders, I. Romano, A. Wiemken, D. Virgilio, and C. , The thermophilic yeast Hansenula polymorpha does not require trehalose synthesis for growth at high temperatures but does for normal acquisition of thermotolerance, J Bacteriol, vol.181, pp.4665-4668, 1999.

T. Petit and C. Gancedo, Molecular cloning and characterization of the geneHXK1 encoding the hexokinase fromYarrowia lipolytica, Yeast, vol.14, issue.15, pp.1573-1584, 1999.
DOI : 10.1128/MCB.13.7.3882

URL : http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0061(199911)15:15<1573::AID-YEA478>3.0.CO;2-3/pdf

, Yeasts illustrate the molecular mechanisms of eukaryotic genome evolution, Dujon B Trends Genet, vol.22, pp.375-387, 2006.

M. Morin, L. Monteoliva, M. Insenser, C. Gil, and A. Dominguez, Proteomic analysis reveals metabolic changes during yeast to hypha transition inYarrowia lipolytica, Journal of Mass Spectrometry, vol.787, issue.11, pp.1453-1462, 2007.
DOI : 10.1099/00221287-148-11-3705

M. Holz, A. Forster, S. Mauersberger, and G. Barth, Aconitase overexpression changes the product ratio of citric acid production by Yarrowia lipolytica, Applied Microbiology and Biotechnology, vol.14, issue.6, pp.1087-1096, 2009.
DOI : 10.1271/bbb1961.51.2111

S. Kamzolova, N. Shishkanova, I. Morgunov, and T. Finogenova, Oxygen requirements for growth and citric acid production of, FEMS Yeast Research, vol.67, issue.2, pp.217-222, 2003.
DOI : 10.1002/(SICI)1097-0290(20000320)67:6<748::AID-BIT13>3.0.CO;2-W

C. Madzak, C. Gaillardin, and J. Beckerich, Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review, Journal of Biotechnology, vol.109, issue.1-2, pp.63-81, 2004.
DOI : 10.1016/j.jbiotec.2003.10.027

A. Beopoulos, J. Cescut, R. Haddouche, J. Uribelarrea, and C. Molina-jouve, Yarrowia lipolytica as a model for bio-oil production, Progress in Lipid Research, vol.48, issue.6, pp.375-387, 2009.
DOI : 10.1016/j.plipres.2009.08.005

Y. Sakai, M. Oku, I. Van-der-klei, and J. Kiel, Pexophagy: Autophagic degradation of peroxisomes, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1763, issue.12, pp.1767-1775, 2006.
DOI : 10.1016/j.bbamcr.2006.08.023

URL : https://doi.org/10.1016/j.bbamcr.2006.08.023

C. Flores, O. Martinez-costa, V. Sanchez, C. Gancedo, and J. Aragon, The dimorphic yeast Yarrowia lipolytica possesses an atypical phosphofructokinase: characterization of the enzyme and its encoding gene, Microbiology, vol.151, issue.5, pp.1465-1474, 2005.
DOI : 10.1099/mic.0.27856-0

URL : http://mic.microbiologyresearch.org/deliver/fulltext/micro/151/5/1465.pdf?itemId=/content/journal/micro/10.1099/mic.0.27856-0&mimeType=pdf&isFastTrackArticle=

M. Hirai, A. Tanaka, and S. Fukui, Difference in pyruvate kinase regulation among three groups of yeasts, Biochimica et Biophysica Acta (BBA) - Enzymology, vol.391, issue.2, pp.282-291, 1975.
DOI : 10.1016/0005-2744(75)90252-1

L. Dall, M. Nicaud, J. Treton, B. Gaillardin, and C. , The 3-phosphoglycerate kinase gene of the yeastYarrowia lipolytica de-represses on gluconeogenic substrates, Current Genetics, vol.28, issue.5, pp.446-456, 1996.
DOI : 10.1128/MCB.10.9.4795

C. Flores and C. Gancedo, Yarrowia lipolytica Mutants Devoid of Pyruvate Carboxylase Activity Show an Unusual Growth Phenotype, Eukaryotic Cell, vol.4, issue.2, pp.356-364, 2005.
DOI : 10.1128/EC.4.2.356-364.2005

URL : http://ec.asm.org/content/4/2/356.full.pdf

R. Jardon, C. Gancedo, and C. Flores, The Gluconeogenic Enzyme Fructose-1,6-Bisphosphatase Is Dispensable for Growth of the Yeast Yarrowia lipolytica in Gluconeogenic Substrates, Eukaryotic Cell, vol.7, issue.10, pp.1742-1749, 2008.
DOI : 10.1128/EC.00169-08

I. Arisan-atac, M. Wolschek, and C. Kubicek, under conditions of high glycolytic flux, FEMS Microbiology Letters, vol.44, issue.1, pp.77-83, 1996.
DOI : 10.1128/jb.176.13.3895-3902.1994

M. Wolschek and C. Kubicek, Biochemistry of citric acid accumulation by Aspergillus niger, Citric acid biotechnology, pp.11-33, 1998.

C. Gaillardin, V. Charoy, and H. Heslot, A study of copulation, sporulation and meiotic segregation in Candida lipolytica, Archiv f???r Mikrobiologie, vol.167, issue.1, pp.69-83, 1973.
DOI : 10.1007/BF00409513

D. Yarrow, Methods for the isolation maintenance and identification of yeasts The yeasts: A taxonomic study, pp.77-100, 1998.

M. Lopez, J. Nicaud, H. Skinner, C. Vergnolle, and J. Kader, A phosphatidylinositol/phosphatidylcholine transfer protein is required for differentiation of the dimorphic yeast Yarrowia lipolytica from the yeast to the mycelial form, The Journal of Cell Biology, vol.125, issue.1, pp.113-127, 1994.
DOI : 10.1083/jcb.125.1.113

W. Nuttley, A. Brade, G. Eitzen, J. Glover, and J. Aitchison, Rapid identification and characterization of peroxisomal assembly mutants inYarrowia lipolytica, Yeast, vol.14, issue.5, pp.507-517, 1993.
DOI : 10.1128/MCB.9.1.83

G. Barth and C. Gaillardin, Yarrowia lipolytica Nonconventional yeasts in biotechnology, pp.313-388, 1996.

H. Ito, Y. Fukuda, K. Murata, and A. Kimura, Transformation of intact yeast cells treated with alkali cations, J Bacteriol, vol.153, pp.163-168, 1983.
DOI : 10.1080/00021369.1984.10866161

URL : http://www.tandfonline.com/doi/pdf/10.1080/00021369.1984.10866161?needAccess=true

M. Navas, S. Cerdan, and J. Gancedo, Futile cycles in Saccharomyces cerevisiae strains expressing the gluconeogenic enzymes during growth on glucose., Proceedings of the National Academy of Sciences, vol.90, issue.4, pp.1290-1294, 1993.
DOI : 10.1073/pnas.90.4.1290

URL : http://www.pnas.org/content/90/4/1290.full.pdf

R. Sikorski and P. Hieter, A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae, Genetics, vol.122, pp.19-27, 1989.

D. Becker, J. Fikes, and L. Guarente, A cDNA encoding a human CCAAT-binding protein cloned by functional complementation in yeast., Proceedings of the National Academy of Sciences, vol.88, issue.5, pp.1968-1972, 1991.
DOI : 10.1073/pnas.88.5.1968

URL : http://www.pnas.org/content/88/5/1968.full.pdf

S. Blanchin-roland, C. Otero, R. Gaillardin, and C. , Two upstream activation sequences control the expression of the XPR2 gene in the yeast Yarrowia lipolytica., Molecular and Cellular Biology, vol.14, issue.1, pp.327-338, 1994.
DOI : 10.1128/MCB.14.1.327

H. Wang, L. Clainche, A. , L. Dall, M. Wache et al., Cloning and characterization of the peroxisomal acyl CoA oxidaseACO3 gene from the alkane-utilizing yeastYarrowia lipolytica, Yeast, vol.28, issue.15, pp.1373-1386, 1998.
DOI : 10.1128/MCB.11.2.699

URL : http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0061(199811)14:15<1373::AID-YEA332>3.0.CO;2-1/pdf

C. Gaillardin and A. Ribet, LEU2 directed expression of ?-galactosidase activity and phleomycin resistance in Yarrowia lipolytica, Current Genetics, vol.76, issue.5, pp.369-375, 1987.
DOI : 10.1007/BF00378179

D. Sherman, T. Martin, M. Nikolski, C. Cayla, and J. Souciet, G??nolevures: protein families and synteny among complete hemiascomycetous yeast proteomes and genomes, Nucleic Acids Research, vol.12, issue.546, pp.550-554, 2009.
DOI : 10.1101/gr.403602

URL : https://academic.oup.com/nar/article-pdf/37/suppl_1/D550/16758890/gkn859.pdf

M. Belinchon, C. Flores, and J. Gancedo, Sampling cells by rapid filtration improves the yield of mRNAs, FEMS Yeast Research, vol.300, issue.7, pp.751-756, 2004.
DOI : 10.1126/science.1082320

K. Wallenfels, Methods in Enzymology Academic Press, pp.212-219, 1962.

I. Kienle, M. Burgert, and H. Holzer, Assay of trehalose with acid trehalase purified fromSaccharomyces cerevisiae, Yeast, vol.1036, issue.6, pp.607-611, 1993.
DOI : 10.1016/0304-4165(90)90211-E

F. Gamo, F. Portillo, and C. Gancedo, FEMS Microbiology Letters, vol.228, issue.3, pp.233-237, 1993.
DOI : 10.1016/S0926-6593(66)80094-2

H. Bergmeyer, J. Bergmeyer, and M. Grassi, Methods of enzymatic analysis, 1987.

E. Conway and M. Downey, An outer metabolic region of the yeast cell, Biochemical Journal, vol.47, issue.3, pp.347-355, 1950.
DOI : 10.1042/bj0470347

J. Thevelein and S. Hohmann, Trehalose synthase: guard to the gate of glycolysis in yeast?, Trends in Biochemical Sciences, vol.20, issue.1, pp.3-10, 1995.
DOI : 10.1016/S0968-0004(00)88938-0

N. Kobayashi and K. Mcentee, Identification of cis and trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae., Molecular and Cellular Biology, vol.13, issue.1, pp.248-256, 1993.
DOI : 10.1128/MCB.13.1.248

A. Bulman, S. Hubl, and H. Nelson, The DNA-binding Domain of Yeast Heat Shock Transcription Factor Independently Regulates Both the N- and C-terminal Activation Domains, Journal of Biological Chemistry, vol.185, issue.43, pp.40254-40262, 2001.
DOI : 10.1006/jmbi.2000.4096

L. Conlin and H. Nelson, The Natural Osmolyte Trehalose Is a Positive Regulator of the Heat-Induced Activity of Yeast Heat Shock Transcription Factor, Molecular and Cellular Biology, vol.27, issue.4, pp.1505-1515, 2007.
DOI : 10.1128/MCB.01158-06

G. Marchler, C. Schuller, G. Adam, and H. Ruis, A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions, EMBO J, vol.12, pp.1997-2003, 1993.

P. Moradas-ferreira, V. Costa, P. Piper, and W. Mager, The molecular defences against reactive oxygen species in yeast, Molecular Microbiology, vol.19, issue.4, pp.651-658, 1996.
DOI : 10.1046/j.1365-2958.1996.403940.x

J. Gancedo, D. Clifton, and D. Fraenkel, Yeast hexokinase mutants, J Biol Chem, vol.252, pp.4443-4444, 1977.

P. Herrero, J. Galindez, N. Ruiz, C. Martinez-campa, and F. Moreno, Transcriptional regulation of theSaccharomyces cerevisiae HXK1,HXK2 andGLK1 genes, Yeast, vol.199, issue.2, pp.137-144, 1995.
DOI : 10.1128/MCB.9.2.442

R. Swanson, C. Conesa, O. Lefebvre, C. Carles, and A. Ruet, Isolation of TFC1, a gene encoding one of two DNA-binding subunits of yeast transcription factor tau (TFIIIC)., Proceedings of the National Academy of Sciences, vol.88, issue.11, pp.4887-4891, 1991.
DOI : 10.1073/pnas.88.11.4887

Y. Huang, M. Hamada, and R. Maraia, Isolation and Cloning of Four Subunits of a Fission Yeast TFIIIC Complex That Includes an Ortholog of the Human Regulatory Protein TFIIIC??, Journal of Biological Chemistry, vol.8, issue.40, pp.31480-31487, 2000.
DOI : 10.1093/emboj/18.18.5042

O. Goddijn, T. Verwoerd, E. Voogd, R. Krutwagen, and P. De-graaf, Inhibition of Trehalase Activity Enhances Trehalose Accumulation in Transgenic Plants, Plant Physiology, vol.113, issue.1, pp.181-190, 1997.
DOI : 10.1104/pp.113.1.181

J. Müller, R. Aeschbacher, A. Wingler, T. Boller, and A. Wiemken, Trehalose and Trehalase in Arabidopsis, PLANT PHYSIOLOGY, vol.125, issue.2, pp.1086-1093, 2001.
DOI : 10.1104/pp.125.2.1086

J. Müller, T. Boller, and A. Wiemken, Effects of validamycin A, a potent trehalase inhibitor, and phytohormones on trehalose metabolism in roots and root nodules of soybean and cowpea, Planta, vol.197, pp.362-368, 1995.

J. Arguelles, Thermotolerance and trehalose accumulation induced by heat shock in yeast cells of Candida albicans, FEMS Microbiology Letters, vol.1245, issue.1, pp.65-71, 1997.
DOI : 10.1042/bj2880859

O. Kandror, N. Bretschneider, E. Kreydin, D. Cavalieri, and A. Goldberg, Yeast Adapt to Near-Freezing Temperatures by STRE/Msn2,4-Dependent Induction of Trehalose Synthesis and Certain Molecular Chaperones, Molecular Cell, vol.13, issue.6, pp.771-781, 2004.
DOI : 10.1016/S1097-2765(04)00148-0

URL : https://doi.org/10.1016/s1097-2765(04)00148-0

M. Martinez-pastor, G. Marchler, C. Schuller, A. Marchler-bauer, and H. Ruis, The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE), EMBO J, vol.15, pp.2227-2235, 1996.

Y. Ye, Y. Zhu, L. Pan, L. Li, and X. Wang, Gaining insight into the response logic of Saccharomyces cerevisiae to heat shock by combining expression profiles with metabolic pathways, Biochemical and Biophysical Research Communications, vol.385, issue.3, pp.357-362, 2009.
DOI : 10.1016/j.bbrc.2009.05.071

C. Hurtado and R. Rachubinski, MHY1 encodes a C2H2-type zinc finger protein that promotes dimorphic transition in the yeast Yarrowia lipolytica, J Bacteriol, vol.181, pp.3051-3057, 1999.
DOI : 10.1099/00221287-148-11-3725

URL : http://mic.microbiologyresearch.org/deliver/fulltext/micro/148/11/1483725a.pdf?itemId=/content/journal/micro/10.1099/00221287-148-11-3725&mimeType=pdf&isFastTrackArticle=

M. Neves, S. Hohmann, W. Bell, F. Dumortier, and K. Luyten, Control of glucose influx into glycolysis and pleiotropic effects studied in different isogenic sets of Saccharomyces cerevisiae mutants in trehalose biosynthesis, Current Genetics, vol.3, issue.2, pp.110-122, 1995.
DOI : 10.1128/MCB.11.7.3804

D. Silva-udawatta, M. Cannon, and J. , Roles of trehalose phosphate synthase in yeast glycogen metabolism and sporulation, Molecular Microbiology, vol.4, issue.6, pp.1345-1356, 2001.
DOI : 10.1074/jbc.M000918200

M. Wolschek and C. Kubicek, Journal of Biological Chemistry, vol.13, issue.5, pp.2729-2735, 1997.
DOI : 10.1111/j.1365-2958.1996.tb02647.x

N. Al-bader, G. Vanier, H. Liu, F. Gravelat, and M. Urb, Role of Trehalose Biosynthesis in Aspergillus fumigatus Development, Stress Response, and Virulence, Infection and Immunity, vol.78, issue.7, pp.3007-3018, 2010.
DOI : 10.1128/IAI.00813-09

N. Adachi and M. Lieber, Bidirectional Gene Organization, Cell, vol.109, issue.7, pp.807-809, 2002.
DOI : 10.1016/S0092-8674(02)00758-4

URL : https://doi.org/10.1016/s0092-8674(02)00758-4

D. Lopez, M. , M. Guerra, J. Samuelsson, and T. , Analysis of Gene Order Conservation in Eukaryotes Identifies Transcriptionally and Functionally Linked Genes, PLoS ONE, vol.281, issue.5, p.10654, 2010.
DOI : 10.1371/journal.pone.0010654.s007

M. Tzvetkov, C. Klopprogge, O. Zelder, and W. Liebl, Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall lipid composition, Microbiology, vol.149, issue.7, pp.1659-1673, 2003.
DOI : 10.1099/mic.0.26205-0

P. Eastmond, A. Van-dijken, M. Spielman, A. Kerr, and A. Tissier, embryo maturation, The Plant Journal, vol.148, issue.2, pp.225-235, 2002.
DOI : 10.1007/BF00929496

T. Petit, M. Blazquez, and C. Gancedo, possesses an unusual and a conventional hexokinase: biochemical and molecular characterization of both hexokinases, FEBS Letters, vol.5, issue.2, pp.185-189, 1996.
DOI : 10.1006/abbi.1995.1024

M. Blazquez, R. Stucka, H. Feldmann, and C. Gancedo, Trehalose-6-P synthase is dispensable for growth on glucose but not for spore germination in Schizosaccharomyces pombe., Journal of Bacteriology, vol.176, issue.13, pp.3895-3902, 1994.
DOI : 10.1128/jb.176.13.3895-3902.1994

T. Kramarenko, H. Karp, A. Jarviste, and T. Alamae, Sugar repression in the methylotrophic yeastHansenula polymorpha studied by using hexokinase-negative, glucokinase-negative and double kinase-negative mutants, Folia Microbiologica, vol.154, issue.6, pp.521-529, 2000.
DOI : 10.1016/0378-1097(96)00145-0

S. Fillinger, M. Chaveroche, P. Van-dijck, R. De-vries, and G. Ruijter, Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans, Microbiology, vol.17, issue.7, pp.1851-1862, 2001.
DOI : 10.1093/nar/17.9.3469

J. Wilson, Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function, Journal of Experimental Biology, vol.206, issue.12, pp.2049-2057, 2003.
DOI : 10.1242/jeb.00241

L. Van-aelst, S. Hohmann, B. Bulaya, W. De-koning, and L. Sierkstra, Molecular cloning of a gene involved in glucose sensing in the yeast Saccharomyces cerevisiae, Molecular Microbiology, vol.239, issue.5, pp.927-943, 1993.
DOI : 10.1007/BF00446918

X. Lin and J. Heitman, Chlamydospore Formation during Hyphal Growth in Cryptococcus neoformans, Eukaryotic Cell, vol.4, issue.10, pp.1746-1754, 2005.
DOI : 10.1128/EC.4.10.1746-1754.2005

R. Lowe, M. Lord, K. Rybak, R. Trengove, and R. Oliver, Trehalose biosynthesis is involved in sporulation of Stagonospora nodorum, Fungal Genetics and Biology, vol.46, issue.5, pp.381-389, 2009.
DOI : 10.1016/j.fgb.2009.02.002

A. Kretschmer and F. Wagner, Characterization of biosynthetic intermediates of trehalose dicorynomycolates from Rhodococcus erythropolis grown on n-alkanes, Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, vol.753, issue.3, pp.306-313, 1983.
DOI : 10.1016/0005-2760(83)90053-X

I. Vergne and M. Daffe, Interaction of mycobacterial glycolipids with host cells, Front Biosci, vol.3, pp.865-876, 1998.

P. Amaral, M. Lehocky, A. Barros-timmons, M. Rocha-leao, and M. Coelho, Cell surface characterization ofYarrowia lipolytica IMUFRJ 50682, Yeast, vol.5, issue.223, pp.867-877, 2006.
DOI : 10.1590/S0104-66322005000100002

URL : http://onlinelibrary.wiley.com/doi/10.1002/yea.1405/pdf

L. Castells-roca, J. Garcia-martinez, J. Moreno, E. Herrero, and G. Belli, Heat Shock Response in Yeast Involves Changes in Both Transcription Rates and mRNA Stabilities, PLoS ONE, vol.19, issue.2, p.17272, 2011.
DOI : 10.1371/journal.pone.0017272.s006

J. Francois and J. Parrou, Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae, FEMS Microbiology Reviews, vol.25, issue.1, pp.125-145, 2001.
DOI : 10.1016/S0168-6445(00)00059-0

G. Barth and C. Gaillardin, FEMS Microbiology Reviews, vol.19, issue.4, pp.219-237, 1997.
DOI : 10.1099/13500872-142-10-2913

P. Ngamskulrungroj, U. Himmelreich, J. Breger, C. Wilson, and M. Chayakulkeeree, The Trehalose Synthesis Pathway Is an Integral Part of the Virulence Composite for Cryptococcus gattii, Infection and Immunity, vol.77, issue.10, pp.4584-4596, 2009.
DOI : 10.1128/IAI.00565-09

J. Cherry, C. Ball, S. Weng, G. Juvik, and R. Schmidt, Genetic and physical maps of Saccharomyces cerevisiae, Nature, vol.387, pp.67-73, 1997.