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1. Introduction

Flavors and fragrances play an important role in many of our daily
product, finding applications in foods, cosmetics, perfumeries and
phytosanitary product. The size of the market is ever increasing, with
a sales revenue in US$8.6 billion to US 2000 to $23.9 billion in 2013
(http://www.leffingwell.com). Since 1923 (Omelianski, 1923), the mi-
crobial production of flavors has been extensively studied andmany re-
views on this field have been published (Abbas, 2006; Berger, 2009;
n, Laboratoire de Chimie des
NSA, EA 2212, 15 Avenue René
ce. Tel.: +262 262 96 28 50;

).
Buzzini and Vaughan-Martini, 2006; Cheon et al., 2014; Dastager,
2009; Feron et al., 1996; Kim et al., 2014; Krings and Berger, 1998;
Löser et al., 2014; Mdaini et al., 2006; Pires et al., 2014; Schrader,
2007; Styger et al., 2011). Yeasts and yeast-like fungi belonging to
the genera Saccharomyces, Yarrowia, Geotrichum, Saprochaete, Pichia,
Candida, Williopsis, and Kluyveromyces are recognized as reference
yeast species for flavor production (Schrader, 2007; Willaert et al.,
2005).

There are nowadays several biotechnological companies (Bell
Flavors & Fragrances, Safisis, Givaudan, Firmenich, Isobionics among
others) that can provide a large panel of flavor compounds elaborated
from microbial transformation. Yet, the identification of new yeast
species with high flavoring production potential remains a very attrac-
tive field of biotechnological interest. In this respect, Reunion Island
and Madagascar, both located in the South West Indian Ocean, are
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recognized to be hot spots of biodiversity and present a high level of en-
demism (Hanson et al., 2009). A tropical climate provides organisms
with ideal conditions for growth and proliferation. Furthermore, a rich
diversity of tropical plants and fruits also provide suitable habitats for
many microorganisms including yeasts (Barriga et al., 2014; Fleet,
2003; Nakase et al., 2006).

As part of a program aiming at the characterization of new yeasts
species with high potential for aroma production, we isolated yeasts
from a variety of different types of fruit collected in several locations
in the South West Indian Ocean area. Head Space Solid Phase Micro
Extraction coupled to Gas Chromatography and Mass Spectrometry
(HS–SPME–GC/MS) was used to screen for microbial production of Vol-
atile Organic Compounds (VOCs) of the isolated yeast species cultivated
under conditions of glucose and amino acid excess. The results for each
individual strain were compared as a whole using Principal Component
Analysis (PCA) in order to group volatile molecules with yeast strains
and to classify them as either low or high flavor producer.

2. Materials and methods

2.1. Yeast isolates from plants and culture media

Epiphytic yeasts were isolated at several locations in Madagascar
(Province of Antsirabe) and Reunion Island (Area of Saint-Paul) from
the skin of ripped fruits according to the method as described by
Chanchaichaovivat et al. (2007), with some minor modifications. Wild
tropical fruits, such as apple (Malus sp.), persimmon fruit (Diospyros
kaki and Diospyros sp.), avocado (Persea Americana), passion fruit
(Passifora edulis and Passiflora sp.), rose–apple (Eugenia jambos), pear
(Pyrus sp.), pineapple (Anana comosus), Cape gooseberry (Physalis
peruviana), dragon fruit (Hylocereus polyrhizus), peach (Prunus persica)
and cocoa (Theobroma cacao var. Criollo) were collected in triplicate in
natural environments where human activities are non-existent. Fruits
were harvested aseptically from the trees andwere stored at room tem-
perature for less than 24 h in sterile bags. 50 mL of peptone water was
added to each bag and the bags were shaken vigorously by hands for
at least 5 min. 0.1 mL of this cellular suspension was then plated onto
YEPD Chloramphenicol agar medium containing 20 g/L of glucose
(alpha-D-glucose, anhydrous, Sigma-Aldrich), 20 g/L of peptone
(Bacto™Peptone, Becton, Dickinson and company), 10 g/L of yeast ex-
tract (Biokar Diagnostics), 0.5 g/L Chloramphenicol (Calbiochem) and
15 g/L of agar (Agar-Agar for microbiology, Merck) and incubated at
28 °C for 48 h. Each extraction was carried out in three biological repli-
cates (1 fruit per bag in triplicate).

All yeast colonies were examined on agar plate (globalmorphology)
and under the microscope and individual colonies were selected on the
basis of their differing visual characteristics (e.g. color, size, shape of the
colony). The yeast isolates were re-streaked on YEPD to obtain pure cul-
tures andwere stored in YEGG broth (5 g/L yeast extract, 40 g/L glucose,
10 g/L glycerol) at−80 °C until analysis.

We acknowledge that the strains listed in Table 1 have been depos-
ited at National Collection of Yeast Cultures (www.ncyc.co.uk) as frozen
glycerol samples and are waiting to be formally characterized and
accessioned.

2.2. Yeast identification by rDNA sequence analysis

The 101 isolated strains were first identified using API 20C AUX
strips (bioMérieux). One representative of each species was then iden-
tified at molecular level by sequence analysis of the variable D1/D2 do-
mains of the large subunit (LSU) ribosomal RNA gene. The large-subunit
(LSU) D1/D2 domain was amplified and sequenced using primers NL1
(5′-GCATATCAATAAGCGGAGGAAAAG) and NL4 (5′-GGTCCGTGTTTC
AAGACGG) (Odonell, 1993). The amplified DNA was checked by
1.0% (w/v) agarose gel electrophoresis, purified and concentrated
using QIAquick® PCR purification spin columns (Qiagen®). DNA
concentration was measured using a spectrophotometer ND-1000
(Thermo Scientific) and the amplified products were sequenced by
EurofinsMWGOperon (Germany). Sequence traces were edited manu-
ally and consensus sequences generated using the program SEQMAN®,
version 7 (DNASTAR). Species identification was determined for each
strain by using the resulting LSU D1/D2 sequence to search the EMBL
database.

2.3. Qualitative analysis of volatile metabolites

For the qualitative study of flavors, a loop of freshly grown cells was
transferred onto a YEPD agar slope into a glass tube and incubated at
28 °C for 48 h. After 24 h, the tubes were sealed to keep the volatile
flavors inside and to characterize the profile by Solid Phase Micro
Extraction (SPME) followed by GC/MS analysis. Prior to analysis, 5 μL
of octanol (1 g/L in dichloromethane from SIGMA) was added as an in-
ternal standard into the sealed tubes. The head space of inclined cul-
tures on YEPD was subjected to SPME analysis using a 2 cm fiber
coated with 50/30 μm divinylbenzene/carboxen on polydimethylsilox-
ane (Buzzini et al., 2005) bonded to a flexible fused silica core (Supelco).
Fiber was exposed to headspace for 15 min at 30 °C in a waterbath and
inserted into the injection port of the GC/MS (Agilent technologies
6890N Network GC system) for thermal desorption at 270 °C for
15 min. Metabolites were separated by gas chromatography on a SPB5
column (60 m × 0.32 mm × 0.25 μm film thickness), coupled to a
mass spectrometer (Agilent technologies 5973 Network mass selective
detector). The carrier gas (He) was set at a flow rate of 0.8 mL/min.
The column temperature was maintained at 45 °C for 2 min, raised to
230 °C at 4 °C/min and finally kept for 20 min. Injector and detector
were set at 270 °C. The identification of volatile compounds was based
upon comparison of their spectra and relative abundances with the
NIST structure and Wiley database. The identity of the components was
also confirmed by comparison of the calculated Relative Retention
index with those of NIST database (http://webbook.nist.gov/chemistry).
All analyses were performed in duplicate.

2.4. Statistical analysis

Factor analysis (Principal Component Analysis method) and cluster
analysis (Ward's method) (Nurgel et al., 2002) were applied to check
for similarities between the yeasts species with respect to the nature
of the various volatile components produced by each yeast strains ac-
cording to Oliveira et al. (2005). The analyses were performed using
the PCA and hierarchical clustering programs developed in XLSTAT
(Addinsoft, Inc.). A Pearson correlation was also performed using
XLSTAT.

3. Results and discussion

3.1. Yeast identification and distribution

In this study, a total of 101 yeast strains, assigned to 26 different spe-
cies by biochemical tests and LSUD1/D2 sequencing, were isolated from
a triplicate experiment on 13 different types of tropical fruit collected in
Reunion Island and Madagascar (Table 1 and Supplementary data A).
The 26 species were classified into 15 genera and the most representa-
tiveswere Candida (6 species) and Pichia (4 species). These generawere
also found to be predominant in the screening carried out by Buzzini
et al. (2005) on tropical ascomycetous yeasts. Among the isolated
yeasts, Strain S6 (EB23) and S23 (EGPOC17) isolated from Cape goose-
berry and cocoa beans, respectively, displayed only 97.4% sequence
identity with Candida pararugosa for the former and 97.1% sequence
identity to Rhodotorula mucilaginosa for the latter. As typically strains
of the same species display less than 1% sequence divergence in the
D1/D2 region of the LSU ribosomal RNA gene (Kurtzman and Robnett,
1998), we concluded that strain EB23 and EGPOC17 may be new yeast
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Table 1
Epiphytic yeasts isolated from fruits in Madagascar and Reunion Island.

Strain number Species name and percent sequence identity* Fruit type and number of yeast species per fruit (into brackets) Origin

S1 Aureobasidium leucospermi
(100%)

Apple (4), avocado (5), pineapple (4) M

S2 Aureobasidium pullulans
(100%)

Persimmon fruit – sp. 2 (6) M

S3 Candida fermentati
(99.8%)

Apple (4), persimmon fruit – sp. 1 (4), persimmon fruit – sp. 2 (6) M

S4 Candida jaroonii
(99.8%)

Cacao beans (4) M

S5 Candida oleophila
(100%)

Rose-apple (4), passion fruit – sp. 1 (3) M

S6** Candida pararugosa
(97.4%)

Cacao beans (4) M

S7 Candida quercitrusa
(99.8%)

Cape gooseberry (6) M

S8 Candida railenensis
(99.7%)

Pear (4) M

S9 Cryptococcus flavescens
(100%)

Apple (4), persimmon fruit – sp. 1 (4), Persimmon fruit – sp. 2 (6),
avocado (5), Passion fruit – sp. 1 (3), pear (4), Cape gooseberry (6)

M

S10 Cryptococcus laurentii
(100%)

Pineapple (4) M

S11 Cyberlindnera rhodanensis
(99.8%)

Dragon fruit (2) M

S12 Debaryomyces hansenii
(100%)

Apple (4), persimmon fruit – sp. 1 (4), persimmon fruit – sp. 2 (6), Avocado (5),
passion fruit – sp. 2 (1), rose-apple (4), pear (4), Pineapple (4), Cape gooseberry (6)

M

S13 Debaryomyces nepalensis
(100%)

Persimmon fruit – sp. 1 (4), passion fruit – sp. 1 (3), avocado (5), Cape gooseberry (6) M

S14 Saprochaete suaveolens (syn: Geotrichum fragrans)
(99.9%)

Dragon fruit (2) R

S15 Hanseniaspora uvarum
(99.7%)

Rose-apple (4), pineapple (4) M

S16 Kwoniella mangroviensis
(99.7%)

Avocado (5) M

S17 Lachancea fermentati
(100%)

Peach (3) R

S18 Pichia guillermondii
(100%)

Persimmon fruit – sp. 2 (6), rose-apple (4) M

S19 Pichia kluyveri
(99.8%)

Pear (4) M

S20 Pichia kudriavzevii
(99.8%)

Cacao beans (4) M

S21 Pichia manshurica
(100%)

Peach (3) R

S22 Rhodotorula glutinis
(99.5%)

Cape gooseberry (6) M

S23** Rhodotorula mucilaginosa
(97.1%)

Cape gooseberry (6) M

S24 Saccharomyces cerevisiae
(99.5%)

Cacao beans (4) M

S25 Sporidiobolus pararoseus
(100%)

Persimmon fruit – sp. 2 (6) M

S26 Torulaspora delbrueckii
(100%)

Peach (3) R

*Percentage of sequence identity of the strains when compared to reference strains from databases (into brackets); R: strain isolated in Reunion Island; M: strain isolated in Madagascar
Island; **potentially new yeast species.
species but additional work will be required to resolve the taxonomic
status of these two strains. For all other yeast isolates, the LSU D1/D2
sequence identity values were 99.5% or higher when compared with
the type (reference) strains of known (i.e. described) yeast species
(Table 1).

The distribution of the different yeast species on the collected fruits
was highly variable and was likely dependent on the fruit composition
(i.e. nature and sugar content, pH, etc.). For instance, we found an
average of 4.5 different yeast species per fruit on Cape gooseberry, per-
simmon fruits, avocado, apple, rose-apple and pineapple; whereas
Saprochaete suaveolens (syn: Geotrichum fragrans) and C. jaroonii
were only found on one specific type of fruit, namely dragon fruit and
cacao bean, respectively (Table 1 and Supplementary data A). The at-
tractiveness of fruits to insects as a food source is well known and
well documented. Indeed insects act as vectors for many different mi-
croorganisms including yeasts (Trindade et al., 2002) and the attractive
effect of fruit could be linked to their overall palatability (flavor produc-
tion) and chemical composition.

A review of the literature showed that some yeast species such as
Aureobasidium pullulans, Cryptococcus laurentii, Debaryomyces hansenii
and R. mucilaginosa are regarded as bioindicators of the general level
of environmental pollution (Nagahama, 2006). For instance the (red)
pigmented yeast R. mucilaginosa and R. glutinis are often found in higher
numbers in the total yeast population of clean water whereas they are
not found in polluted water (Nagahama, 2006). Thus, the presence of
these yeast species may be a good indicator of a healthy environment.

3.2. Exploration of the flavor profile of the isolated strains

The volatile compounds produced by each representative of the 26
species isolated in Reunion Island andMadagascar were identified dur-
ing growth on YEPD using GC/MS. A total of 52 different volatile



Table 2
VOCs produced by the isolated yeasts during growth on YEPD and identified by SPME–GC/MS.

Volatile compounds Odor typea Odor thresholda,b RI expc RRI litd Yeast producing strains

ACIDS
2-methylpropanoic acid Sweaty, cheesy 32 751 744 P. guillermondii; P. kluyveri
Butanoic acid Sweaty 240 771 769 C. laurentii; D. hansenii; K. mangroviensis; P. guillermondii;

P. kluyveri
2-methylbutanoic acid Fruity, sweaty 32–1580 849 843 P. kluyveri; S. pararoseus
3-methylbutanoic acid Sweaty 120–700 839 828 P. guillermondii; P. kluyveri; S. pararoseus

ALCOHOLS
Ethanol Alcohol 100,000 nd 443 A. pullulans; C. jaroonii; C. oleophila; C. pararugosa;

C. railenensis; C. laurentii; D. hansenii; K. mangroviensis;
L. fermentati; P. kudriavzevii; S. cerevisiae; T. delbrueckii

3-methylthiopropanol Cooked potato, cabbage 250 969 962 T. delbrueckii
Butan-1-ol Malted, solvent 500 661 662 A. pullulans; G. fragrans; L. fermentati
2-methylbutanol Malted, solvent 1200 770 739 A. leucospermi; A. pullulans; C. fermentati; C. oleophila;

C. quercitrusa; C. laurentii; D. hansenii; D. nepalensis;
G. fragrans; K. mangroviensis; L. fermentati; P. guillermondii;
P. kluyveri; P. manshurica; R. glutinis; R. mucilaginosa

3-methylbutanol Malted, alcohol, fruity 250–300 731 734 A. leucospermi; A. pullulans; C. fermentati; C. jaroonii;
C. oleophila; C. pararugosa; C. quercitrusa; C. railenensis;
C. flavescens; C. laurentii; C. rhodanensis; D. hansenii;
D. nepalensis; G. fragrans; H. uvarum; K. mangroviensis;
L. fermentati;
P. guillermondii; P. kluyveri; P. kudriavzevii; P. manshurica;
R. mucilaginosa; S. cerevisiae; S. pararoseus; T. delbrueckii

2-ethylhexanol 270,000 1021 1030 A. leucospermi; A. pullulans; C. jaroonii; C. oleophila;
C. quercitrusa; C. laurentii; D. hansenii; D. nepalensis;
K. mangroviensis; L. fermentati; P. guillermondii; P. kluyveri;
P. manshurica; R. glutinis; R. mucilaginosa; S. cerevisiae

Volatile compounds Odor typea Odor thresholda,b RRI expc RRI litd Yeast Producer

2-phenylethanol Flowers, honey, rose 750–1100 1105 1114 A. leucospermi; A. pullulans; C. fermentati; C. jaroonii;
C. oleophila; C. pararugosa; C. quercitrusa; C. railenensis;
C. flavescens; C. laurentii; C. rhodanensis; D. hansenii;
D. nepalensis; G. fragrans; H. uvarum; K. mangroviensis;
L. fermentati; P. guillermondii; P. kluyveri; P. kudriavzevii;
P. manshurica; R. glutinis; R. mucilaginosa; S. cerevisiae;
S. pararoseus; T. delbrueckii

ALDEHYDES
2-phenylethanal 4 1035 1041 C. quercitrusa; P. kluyveri

KETONES
3-hydroxybutanone 800 703 703 C. laurentii; D. hansenii; K. mangroviensis
Heptan-2-one 140–3000 882 889 C. quercitrusa
Nonan-2-one 5–200 1079 1092 C. fermentati; C. oleophila; C. quercitrusa

ESTERS
Ethyl ethanoate Fruity 5 620 612 C. rhodanensis; G. fragrans
Ethyl propanoate Banana, apple 10 709 709 G. fragrans; H. uvarum
Ethyl 2-methylpropanoate Sweet, fruity, banana, apple 0,1 755 756 G. fragrans
Ethyl butanoate Fruity, pear, pineapple 0.1–450,000 797 800 G. fragrans
Ethyl but-2-enoate 841 833 G. fragrans
Ethyl 2-methylbutanoate Fruity, green, apple, floral 0,1–0,3 847 846 G. fragrans
Ethyl 2-methylbut-2-enoate Fruity 65 935 936 G. fragrans
Ethyl 3-methylbutanoate Fruity, blueberry 0023 850 849 G. fragrans
Butyl 3-methylbutanoate 1039 1040 C. rhodanensis; G. fragrans
2-methylbutyl ethanoate 1 903 874 G. fragrans
2-methylbutyl 2-methylpropanoate 1009 1001 G. fragrans; R. mucilaginosa
2-methylbutyl butanoate 1052 1052 G. fragrans
3-methylbutyl ethanoate Pear, banana 2 873 871 C. jaroonii; C. pararugosa; C. railenensis; C. flavescens;

C. rhodanensis; G. fragrans; H. uvarum; K. mangroviensis;
L. fermentati; P. kluyveri; P. kudriavzevii; P. manshurica;
S. cerevisiae; S. pararoseus; T. delbrueckii

3-methylbutyl propanoate Apricot, pineapple 964 964 C. rhodanensis; H. uvarum; S. pararoseus; T. delbrueckii
3-methylbutyl butanoate Apricot, pineapple 1049 1050 G. fragrans; P. manshurica
3-methylbutyl 2-methylbutanoate 1091 1101 G. fragrans
3-methylbutyl 2-methylbut-2-enoate 1185 1253 G. fragrans
3-methylbutyl 3-methylbutanoate 1096 1101 G. fragrans
Pentyl propanoate 964 964 G. fragrans; P. kluyveri; P. manshurica
Pentyl 3-methylbutanoate Fruity 1098 1103 G. fragrans
2-ethylhexyl ethanoate 1194 1159 C. railenensis; C. rhodanensis; H. uvarum; K. mangroviensis;

P. kudriavzevii; R. mucilaginosa; S. cerevisiae; S. pararoseus
2-phenylethyl ethanoate Rose, honey, fruity 20 1249 1224 C. rhodanensis; H. uvarum; P. kluyveri; P. kudriavzevii;

P. manshurica; S. cerevisiae; S. pararoseus; T. delbrueckii
Octyl ethanoate 1199 1211 C. jaroonii



Table 2 (continued)

Volatile compounds Odor typea Odor thresholda,b RI expc RRI litd Yeast producing strains

ESTERS
2-phenylethyl propanoate Floral, fruity 1337 1350 C. rhodanensis; P. kluyveri; T. delbrueckii
2-phenylethyl butanoate Floral, rose, honey 1380 1405 T. delbrueckii
2-phenylethyl 3-methylbutanoate 1461 1495 T. delbrueckii

a Data from Chen et al. (2006), Czerny et al. (2008), Kirchhoff and Schieberle (2002), Leffingwell and Leffingwell (1991), Molimard and Spinnler (1996), and Takeoka et al. (1998).
b Odor threshold expressed in ng/mL of water.
c Relative Retention index on non-polar column experimentally determined.
d Relative Retention index on non-polar column (http://webbook.nist.gov/chemistry/).

Yeast Producer
moleculeswere detected andwere classified into five categories namely
acids, alcohols, ketones, aldehydes and esters (Table 2). According to the
literature and the KEGG Pathway Database (http://www.genome.jp/
kegg/pathway.html, see also Supplementary data B), these compounds
are most likely derived from the metabolism of carbohydrate, amino
acid, lipid, butanoate and propanoate. For instance, compounds like 2-
methylbutanol, 3-methylbutanol and 2-methylpropanol were probably
originated from isoleucine, leucine and valine catabolism using the Ehr-
lich pathway and ethyl hexanoate was likely obtained from fatty acids
β-oxidation. We also identified 6 uncommon alpha unsaturated com-
pounds with interesting chemical properties, which were but-2-
enoate, ethyl 2-methylbut-2-enoate (ethyl tiglate), ethyl 3-methylbut-
2-enoate, 2-methylpropyl 2-methylbut-2-enoate, butyl 2-methylbut-
2-enoate and 3-methylbutyl 2-methylbut-2-enoate. We suggest that
most of these unsaturated compounds are likely derived from incom-
plete β-oxidation of the branched chain amino acids present in excess
in the growth medium, such as ethyl tiglate which originated from the
β-oxidation of isoleucine (Grondin et al., 2015). Finally, ethyl butanoate
and ethyl propanoate that were specifically identified in the
S. suaveolens (G. fragrans) species could arise from either butanoate
and propanoate metabolism, respectively, that have not been so far rec-
ognized in yeast species (see KEGG database and Supplementary data
B) or from an incomplete function of the fatty acids β-oxidation.

With respect to their distribution, 5 alcohols (ethanol, 2-
methylbutanol, 3-methylbutanol, 2-ethylhexanol and 2-phenylethanol)
and 3 esters (3-methylbutyl ethanoate, 2-ethylhexyl ethanoate and
2-phenylethyl ethanoate) were the most frequently encountered
molecules among the 26 isolated yeast species. Among them, 2-
phenylethanol was produced by all 26 species (Table 2). Conversely,
25 of the 52 compounds (namely 3-methylthiopropanol, heptan-2-
one and 23 esters) were produced by only one species as exempli-
fied by S. suaveolens (syn: G. fragrans) which was found to be the
unique producer of 20 of the 37 detected esters. Similarly, some
acids (2-methylpropanoic acid and 2-methylbutanoic acid), aldehydes
(2-phenylethanal), and esters (ethyl ethanoate, ethyl propanoate,
butyl 3-methylbutanoate, 2-methylbutyl 2-methylpropanoate and 3-
methylbutyl butanoate) were produced by only two yeast isolates
(Table 2).

Yeasts arewell known for their alcohol production (e.g. Saccharomy-
ces cerevisiae) andour results are in accordancewith previous published
studies (Buzzini et al., 2003; Buzzini and Vaughan-Martini, 2006;
Etschmann et al., 2003; Hazelwood et al., 2008). The literature also de-
scribed strains which accumulate aldehydes, acids or esters but these
molecules are less representative than alcohols (Buzzini et al., 2003;
Suomalainen and Lehtonen, 1979). The production by S. suaveolens
(syn: G. fragrans) and Geotrichum candidum of unsaturated compounds
such as ethyl 2-methylbut-2-enoate (ethyl tiglate) was also described
(Damasceno et al., 2003; Grondin et al., 2015; Pinotti et al., 2006). The
production of these uncommon compounds is most likely linked to in-
dividual species and is potentially a characteristic of certain species or
genera. Therefore, theymay possibly be considered as potential chemo-
taxonomic markers for these species/genera. Results from Larsen and
Frisvad (1995a,b), who demonstrated for the first time that fungal vol-
atile metabolites can be used for classification of fungi at the species
level are pointing in the same direction of this hypothesis.
From an economic perspective, some of these molecules such as
2-phenylethanol (rose-like odor), ethyl 2-methylbutanoate (apple-
like odor), ethyl 3-methylbutanoate (blueberry-like odor), ethyl 2-
methylpropanoate (banana-like odor), ethyl 2-methylbut-2-enoate
(fruity odor), 3-methylbutyl propanoate (apricot-like odor) and 2-
phenylethyl ethanoate (rose-like odor) harbored a pleasant odor and
a high olfactory impact that may find applications in food and perfum-
ery (Table 2). Also, ethyl tiglate (ethyl 2-methylbut-2-enoate) is a FEMA
GRAS compound with a fruity odor which can be used in perfumery in
the creation of unusual top-notes, particularly for the non-floral fra-
grance types (Arctander, 1969). This compound can also be used by
the food industry in the production of alcoholic beverages like rum
(http://www.perfumerflavorist.com). Similarly, 2-phenylethanol is a
highly valuable compound. In 2010, the annual global production of
2-phenylethanol was estimated at ca. 10,000 t (Hua and Xu, 2011).

3.3. Comparison of the VOC profile of the strains by cluster andmultivariate
analysis

In order to visualize the grouping of the yeast species based on their
flavoring characteristics and to investigate whether we can link in some
way these molecules by groups of strains, a cluster and a multivariate
analyses were performed using the VOC data that were classified ac-
cording to their chemical classes and metabolic origins (Table 3). Each
strain was associated with a number of variables including the concen-
tration of VOCs (μg/L), the number of VOCs per chemical classes and the
number of VOCs per hypothetical metabolic pathway (Table 3). Figs. 1
and 2 show the results of cluster analysis using the Ward's method
and PCA analysis using the Pearson method (the Pearson correlation
matrix used to construct Fig. 2 is presented in Supplementary data C).
The first two principle components chosen for PCA analysis accounted
for 51.35% and 16.15% of the variance and finally explained 67.5% of
the total variance (Fig. 2; see also Supplementary data D and E). The
dendrogram (Fig. 1) and the plot score (Fig. 2) both suggested the oc-
currence of four groups of yeasts.

According to PCA analysis, we found that group 1 included strains
which produced mainly alcohols and esters whereas group 2 was con-
stituted by strains which produced essential alcohols. Candida
quercitrusa (Strain S7) and Debaryomyces nepalensis (Strain S13) only
slightly diverged from group 2 and were included in this group
(Figs. 1 and 2). The main difference of these two strains with the
other strains of group 2 was the production of carbonyl compounds
(aldehydes and ketones) for C. quercitrusa and a better ability to pro-
duce alcohol (985 μg/L) for D. nepalensis. The latter strain is further de-
scribed for alcohol production. Kumar and Gummadi (2011) presented
a production of 35.8 g/L for this species with an initial glucose concen-
tration of 200 g/L. We also observed that Sporidiobolus pararoseus
(Strain S25) diverged slightly from the other strains of group 1, proba-
bly due to its accumulation of acid compounds.

Pichia kluyveri (Strain S19) was better described in PC2 where prin-
ciple component are definedmainly by an effect of aldehydes and acids'
production. This strain alone was accounted for the group 3 and di-
verged significantly from group 1 because it accumulated acid and alde-
hyde compounds in addition to alcohols and esters also produced
by strains of group 1. The accumulation of acids together with alcohol



Table 3
Classification of the VOCs produced by the isolated yeasts.

Concentration of VOCs
per chemical class (μg/L)

Number of VOCs
per chemical class

Number of VOCs per type of hypothetical pathway

Name of species [Ac]* [Al]* [Ald]* [Ke]* [Es]* [CTotal]* Ac Al Ald Ke Es Total GP* PP* BP* PeP* B1P* B2P* EP*

A. leucospermi 0 282 0 0 0 282 0 4 0 0 0 4 0 0 0 0 1 0 3
A. pullulans 0 26 0 0 0 26 0 6 0 0 0 6 1 0 1 0 1 0 3
C. fermentati 0 187 0 8 0 194 0 3 0 1 0 4 0 0 0 0 1 0 3
C. jaroonii 0 16 0 0 3 19 0 4 0 0 3 7 4 0 0 0 3 0 3
C. oleophila 0 119 0 2 0 121 0 5 0 1 0 6 1 0 0 0 2 0 3
C. pararugosa 0 28 0 0 3 31 0 3 0 0 2 5 3 0 0 0 1 0 3
C. quercitrusa 0 122 3 14 0 138 0 4 1 2 0 7 0 0 0 0 3 0 4
C. railenensis 0 51 0 0 14 65 0 3 0 0 2 5 3 0 0 0 1 0 3
C. flavescens 0 36 0 0 12 48 0 2 0 0 1 3 1 0 0 0 0 0 3
C. laurentii 2 33 0 8 0 43 1 5 0 1 0 7 1 0 2 0 1 0 3
C. rhodanensis 0 100 0 0 1952 2052 0 2 0 0 9 11 7 2 2 0 1 0 8
D. hansenii 2 36 0 4 0 43 1 5 0 1 0 7 1 0 2 0 1 0 3
D. nepalensis 0 985 0 0 0 985 0 4 0 0 0 4 0 0 0 0 1 0 3
G. fragrans 0 268 0 0 3464 3732 0 4 0 0 28 32 13 2 9 2 0 5 34
H. uvarum 0 66 0 0 184 250 0 2 0 0 6 8 5 2 1 0 1 0 5
K. mangroviensis 3 30 0 18 5 55 1 5 0 1 2 9 3 0 2 0 2 0 4
L. fermentati 0 159 0 0 11 170 0 6 0 0 2 8 3 0 1 0 2 0 4
P. guillermondii 13 200 0 0 0 214 3 4 0 0 0 7 0 0 1 0 1 0 5
P. kluyveri 105 442 3 0 880 1430 4 4 1 0 5 14 3 2 1 1 2 0 10
P. kudriavzevii 0 33 0 0 87 120 0 3 0 0 4 7 5 0 0 0 1 0 5
P. manshurica 0 145 0 0 768 913 0 4 0 0 6 10 4 1 2 1 1 0 7
R. glutinis 0 38 0 0 0 38 0 3 0 0 0 3 0 0 0 0 1 0 2
R. mucilaginosa 0 46 0 0 8 53 0 4 0 0 2 6 1 0 0 0 2 0 5
S. cerevisiae 0 25 0 0 1 26 0 4 0 0 3 7 4 0 0 0 2 0 4
S. pararoseus 76 293 0 0 698 1067 2 2 0 0 4 8 3 1 0 0 1 0 7
T. delbrueckii 0 181 0 0 58 240 0 4 0 0 6 10 3 2 1 0 0 0 10

VOCswere classified in three categories (Concentration of VOCs per chemical class, Number of VOCs per chemical class and Number of VOCs per type of hypothetical pathway) for cluster
and PCA analysis. *Variables used for PCA analysis. [Ac]: concentration of acids; [Al]: concentration of alcohols; [Ald]: concentration of aldehydes; [Ke]: concentration of ketones; [Es]: con-
centration of esters; [CTotal]: Concentration of VOCsproduced; Ac: Number of acids; Al: number of alcohols; Ald: number of aldehydes; Es: number of ester; To: number of VOcsproduced;
Number of molecules derived from GP: Glycolysis pathway; PP: Propanoate pathway; BP: Butanoate pathway; Pep: Pentanoate pathway; B1P: β-oxidation pathway; B2P: unsaturated
compounds from β-oxidation pathway; EP: Ehrlich pathway.
production in cultures of this strain indicated a good activity of the re-
ductive and oxidative shunts of the Ehrlich pathway, whereas for the
other yeasts, the reductive pathway was predominant. P. kluyveri was
further described for its production of flavor compounds such as alco-
hols and esters (Amaya-Delgado et al., 2013). For the production of
some compounds, namely ethyl lactate (not detected in our analysis)
and alcohols, P. kluyveriwasmore efficient than S. cerevisiae. In addition,
this species was also described for its accumulation of higher alcohols
Fig. 1. Cluster analysis of the isolated yeast species. Strains S1 to S26 (Fig. 1)were grouped
on the basis of their flavor production usingWard's method and performed using XLSTAT
(Addinsoft). Automatic truncation based on entropy (dotted line) allowed identifying
four consistent groups of yeasts. Most of the strains were classified into groups 1 and 2
as indicated by the dotted line (truncation). The dendrogram is more flattened for group
2 suggesting that this group of strains is more homogeneous than the first group. Species
S19 and S14 were clearly out of groups 1 and 2 and were assigned to groups 3 and 4
respectively.
and aldehydes which correlated quite well with our results (Amaya-
Delgado et al., 2013).

S. suaveolens (Strain S14), also known as Geotrichum fragrans (de
Hoog and Smith, 2004) diverged significantly from groups 1, 2 and 3
andwas therefore assimilated to group 4 due to its greater ability to pro-
duce VOCs. With a production of 32 VOCs, this yeast was by far the best
Fig. 2. Score plot of PC2 versus PC1 for yeast flavor analyzed by HS–SPME–GC/MS. Princi-
pal Component Analysis was performed using XLSTAT (Addinsoft). S1 to S26 are the ana-
lyzed strains. Group 1, including strains S11, S15, S21, S21 and S26were strains producing
mainly alcohols and esters. Group 2, including strains S1, S2, S3, S4, S5, S6, S7, S8, S9, S10,
S12, S13, S16, S17, S18, S20, S22, S23 and S24were strains producingmainly alcohols. The
remaining strains (S19 and S14) constituted two other separated groups (groups 3 and 4
respectively).



producer of VOCs among all isolated strains (Table 3) and especially for
ester compounds (28 of the 32 molecules were esters). This yeast was
also the only strain which produced unsaturated compounds (Grondin
et al., 2015). Damasceno et al. (2003) also described this yeast for pro-
duction of alcohol and esters compounds in Cassava wastewater and
Farbood et al. (1992) described a fermentation process for the produc-
tion of unsaturated esters like ethyl tiglate using this yeast species.

To summarize, this work was a first approach to study yeasts isolat-
ed fromMadagascar and Reunion Island and to investigate the relation-
ship between microbial and chemical diversity. Statistical analysis
allowed us to classify the yeasts according to their flavor productivity
and four groups of yeasts were defined by this approach. Some yeasts
preferentially produced alcohols whereas others produced aldehydes,
ketones, acids or esters. Species such as C. quercitrusa, D. nepalensis,
P. kluyveri, S. pararoseus and S. suaveolens showed a specific capacity to
produce interesting flavors with potential interest for applications in
food industry. Among them, S. suaveolens, with a production of 32 dif-
ferent flavors, could be considered the best flavor producer. This yeast
was also the best producer of unsaturated compounds like ethyl tiglate.
Further work was carried out on this strain and its related metabolism,
with the aim of providing a more in-depth knowledge about the meta-
bolic pathway of these unsaturated compounds (Grondin et al., 2015).
The fact that these compounds were only produced by S. suaveolens
would indicate a specific relationship between yeast and flavors.
‘Yeast species-flavor’ relationships clearly exist between strains and
some specific flavor compounds could be used as potential chemotaxo-
nomic markers. A study on flavor compounds produced by species of
the genus Saprochaete and close relatives is currently underway and
should provide a better description of this specific relationship between
this taxonomic group of yeasts and their flavoring compounds.
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