
HAL Id: hal-01188026
https://hal.univ-reunion.fr/hal-01188026v1

Submitted on 22 Jun 2018 (v1), last revised 7 Jul 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Collaborative Ontology Modelling
Philippe Martin

To cite this version:
Philippe Martin. Collaborative Ontology Modelling: Collaboratively Built, Evaluated and Distributed
Ontologies . IEEE International Conference on Intelligent Computer Communication and Process-
ing (ICCP 2010), Aug 2010, Cluj-Napoca, Romania. pp.59-66, �10.1109/ICCP.2010.5606462�. �hal-
01188026v1�

https://hal.univ-reunion.fr/hal-01188026v1
https://hal.archives-ouvertes.fr

Collaborative Ontology Modelling
Collaboratively Built, Evaluated and Distributed Ontologies

Philippe A. Martin
ESIROI STIM, University of La Réunion

(+ adjunct researcher of Griffith Uni., Australia)
Sainte Clotilde, La Réunion, France

Abstract—This article first summarizes problems of the classic
Semantic Web approaches to knowledge sharing and, to solve
this problems, presents i) a protocol permitting people to
collaboratively build a well-organized KB without having to
discuss or agree, and ii) a protocol for a global virtual KB well-
organized to be based on individual well-organized KBs via a
partially mirroring between them. This article also presents some
applications and a way to allow a precise collaborative evaluation
of information providers and pieces of information.

Knowledge sharing/integration/retrieval/evaluation/distribution;
collaboration; Semantic Web

I. INTRODUCTION

The more organized information are in a repository, that is,
the more explicitly related by semantic relations the stored
objects (i.e., the pieces of information) are, the easier it is to
retrieve, compare, interpret and manage them, manually and
automatically. In this viewpoint, the ideal repository is a logic-
based formal (and yet easy-to-read) “semantic network” whose
objects are maximally-connected at least according to the most
important and well known kinds of semantic relations, such as
those about equivalence, generalization (logical deduction,
super-type, instance-of, more-general-term, ...), part-hood (e.g.,
subprocess, substance, physical-part, …), theme/case (agent,
object, recipient, instrument, …), argumentation, time
(duration, date, before, …), space, source (author, …) and
other “context description” relations.

Current repositories of ontologies – or, more generally, of
knowledge bases (KBs) - and the current Semantic Web, are
extremely far from such an ideal. First, within most ontologies,
objects are hardly systematically organized. Second, most
ontologies are small, designed according to different and
implicit principles, and very poorly interconnected, hence with
partial/total redundancies or inconsistencies between that are
not made explicit via semantic relations and that often cannot
be detected automatically in a logic-grounded way. Indeed, this
is how the Semantic Web is nowadays generally expected to
be [3] [21] [22]: based on rather independently developed static
formal files. The implicit (i.e., not explicitly represented)
relations between the objects of different files are difficult to
guess/discover by people, let alone machines: often, only the
object authors know what their objects really mean and hence
only these authors can often correctly relate them to other
objects. Most current semi-automatic Semantic Web tools are
intended to alleviate the difficulty of retrieving, comparing and
merging semi-independently developed ontologies. Such tools

are useful but , in a sense, contribute to the problem they are
partially alleviating since their outputs are new (additional)
formal files whose objects are not related via explicit semantic
relations to the objects of most other existing formal files. Most
current Semantic Web tools that are not semi automatic are
private KB editors or shared KB servers/editors (e.g.,
Ontolingua, OntoWeb, Ontosaurus, Freebase, and semantic
wiki servers) which either i) let every authorized user modify
what other ones have entered in the shared KB (this discourages
information entering or leads to edit wars), or ii) require
all/some users to approve or not changes made in the KB,
possibly via a workflow system (this is bothersome for the
evaluators, may force them to make arbitrary selections, and
this is a bottleneck in information sharing that often discourages
information providers).

This article presents ways to support a complementary
approach that relies less on semi-automatic tools but more
directly tends to the above cited ideal repository. These are
supports for a “collaboratively-built at-least-minimally-well-
organized large KB” (cbwoKB) where – to allow incremental
collaborative construction – the objects (statements and
concept/relations terms for statements) may be formal (i.e.,
with a unique meaning), informal or – for statements – semi-
formal, i.e., with a formal grammar but with formal or informal
terms. In this article, at-least-minimally-well-organized means
manually or automatically detected partial redundancies or
inconsistencies are prevented or made explicit via relations of
i) specialization and part-hood, and/or ii) identity or correction.
This implies that every object of the KB has a unique place in
the global specialization hierarchy and global part-hood
hierarchy (which, in other words, are unique, i.e., fully
connected, and are not “trees” but, to ease knowledge
comparison, may have the classic added constraint of being
“lattices”; this option is not explored in this article). This
“unique place”, i.e., the absence of implicit redundancies, is a
minimal requirement for knowledge insertion and retrieval to be
done in a scalable way in the hierarchies and hence in the
semantic network of which they are the backbones [6].
Furthermore, for scalability purposes and for the reasons given
at the end of the previous paragraph, information integration in
a (general-purpose) cbwoKB has to be “loss-less”: i) no choice
between conflicting knowledge should be made by people other
than by end-users themselves to suit their own preferences or
the requirements of their application, ii) people should not be
forced to meet, discuss or agree on terminology or beliefs.
Finally, for decentralization purposes, it should be possible to
inter-relate physical cbwoKBs (i.e., those managed by a unique
Web server, e.g., the servers of communities or the servers on

machines of a peer-to-peer network) to create a global virtual
cbwoKB (gv-cbwoKB).

Section II quickly compares different approaches to
knowledge sharing. Section III presents rules that support and
enforces the collaborative edition of a cbwoKB. Section IV
introduces a framework for the collaborative evaluation of
knowledge representations. These supports have been fully or
partially implemented in a shared KB server named WebKB-2
[16] (webkb.org) along with other supports which are necessary
for a general cbwoKB but which are not represented here
because of space restrictions: i) a set of “best practices” for
knowledge organization and normalization [18], iii) a large
general ontology for English that also integrates many current
top-level ontologies [15], and iii) several complementary
expressive-but-intuitive knowledge representation notations
[14] [18]. Section V presents some applications of WebKB-2 for
(e-)learning. Section VI shows a way to support a gv-cbwoKB.
Section VII concludes.

II. QUICK OVERVIEW OF KNOWLEDGE SHARING APPROACHES

Current knowledge sharing approaches are generally based
on i) the independent creation of formal documents (e.g., in
RDF/XML and OWL) or documents including some
knowledge representations (e.g., in RDFa), ii) the shared use of
database servers the schema of which are represented in formal
files, iii) the shared use of KB/ontology servers which, as seen
in the introduction, have no loss-less knowledge-integration
protocol, and iv) the shared creation of mostly informal
documents, as in semantic wikis. Within one fully/partially
formal document/KB, knowledge retrieval can lead to an exact
answer (e.g., when the query is of the kind “what are the
resources/tools/methods to do ...”, a sub-network of the KB
composed of subtask/specialization/argumentation relations).
When several files (documents or KBs) are involved, due to the
lack of a unique semantic network (or, at least, a common
ontology), information retrieval (IR) leads to a list of possibly
relevant documents or statements where original/precise ones
are often hidden among/behind those that are more general,
mainstream or from big organizations. More generally, IR
quality decreases when the size and number of the files
increases, but not when the number of objects increases in a
well-organized KB.

The more objects two files contain, the more difficult it is
to link these files via semantic relations and hence to
semantically compare, organize and evaluate them. Instead,
similarity/distance (statistical) measures have to be used. In a
cbwoKB, when needed, semantic queries can be used to filter
objects or generate files, according to arbitrary complex
combinations of criteria, e.g., about the creators of the objects.
Ontology libraries, from early ones such as the Ontolingua
library to imagined ones such as “The Lattice of Theories”
[23], are often organized into “minimal and internally
consistent theories” to maximize their re-use. However, this
also leads to few relations between objects of different
ontologies, as well as implicit redundancies or inconsistencies
between them, and hence more difficulties to compare, merge
or relate them. On the other hand, as acknowledged by the
author of [23], if the objects are organized into a cbwoKB,
such (lattices of) theories can be generated via queries.

With formal files as inputs and outputs, knowledge re-use
or integration leads to the creation of even more files and

requires people to select, compare, relate, merge, adapt and
combine (parts of) files. Except for simple applications where
fully automatic tools can deliver good-enough results, these
are complex tasks that have to be done by trained people who
know the domain. Most works in collaborative knowledge
sharing or “ontology evolution in collaborative environments”
are about (semi-)automatic procedures for integrating two
ontologies [8] and for rejecting or integrating changes made in
other ontologies, e.g., [3] [19] [21]. In a cbwoKB, no
adaptation or integration has to be done for each re-use:
important relations from an object simply have to be entered
by its creators and can then be complemented by any user.

III. KB SHARING PROTOCOL

This protocol is intended to keep the cbwoKB “at-least-
minimally-well-organized” in the sense given in the
introduction. It is not tied to any particular knowledge
representation language (KRL) or inference mechanism. All it
requires is for “actual/potential conflicts” (i.e., total/partial
inconsistencies/redundancies between statements of the KB) to
be detected by some inference engine (as shown below, this
does not imply that the KR language should be restricted), or
for users to tell the system about conflicts they believe exist.
This KRL independence is clear in the high-level algorithms
which are given below in Java (and, for clarity purposes, in an
object-oriented way) and then discussed.

These algorithms present some checks on a user's attempt
to remove or add a statement and the resulting system
decision: rejecting the action (“return false”) or accepting it,
with possibly some repair step before accepting. Only
statement removal and adding are considered since i) updating
is considered as removal followed by adding, ii) reading or re-
using an object (term or statement) is always accepted (privacy
control is not dealt with in this article), and iii) term removal or
adding must be made via the removal or addition of a
statement. Indeed, an additional rule of the protocol – not
presented in the algorithms below – is that a new term can only
be added (vs. removed) by specializing or aliasing another term
(vs. removing this specialization or identity relation), except
for processes which, for convenience purposes, can also be
added (vs. removed) via sub-process relations. Giving a
definition is equivalent to using a specialization/identity
relation, except that the system can exploit the definition to
better place the term in the specialization hierarchy. A
statement is either a definitions or a belief. Every belief is also
automatically inserted in the specialization hierarchy and its
place may be refined by its creator if this does not introduce an
inconsistency in the KB.

In order to have a unique specialization/generalization
hierarchy and hence be able to compare any pair of formal or
informal objects (i.e., know if one generalizes or specializes the
other), this hierarchy must actually use several kinds of
specialization relations (all of which being subtypes of an
“extended-specialization” relation type): i) the classic
“subtype” and “instance” relations between formal terms,
ii) the classic “logical-deduction-of” between formal
statements (which, when formal terms have definitions, permits
to calculate or check subtype/instance relations between these
terms), and iii) an “informal-generalization” from a formal or
informal object to an informal one.

WebKB-2 uses the same graph-matching technique for
calculating partial or total extended-specialization relations
between formal/informal statements, and therefore also “actual
or potential conflicts”. Other inference mechanisms could be
used instead or in addition for detecting more specialization
relations. One advantage of this graph-matching is that it can
be computed in polynomial time if one of the graphs
(statements) has no cycle [4]. Another advantage is that
although from a logical viewpoint it is not sound and complete
when the graphs are not simply “positive conjunctive
existential formulas, possibly including a positive context (i.e.,
a meta-statement that does not restrict its truth domain)”, it can
be applied to any graph, however expressive it is, and always
be “relevant” from an “extended-specialization” viewpoint. A
statement Y is an extended specialization of a statement X if X
structurally matches a part of Y and if each of the terms in this
part of Y is identical or an extended specialization of its
counterpart term in X. For example, WebKB-2 can detect that
the Formalized English (FE) statement u2#`Tweety can be
agent of a flight with duration at least 2.5
hour´ (which means “u2 believes that Tweety can fly for at
least 2.5 hours”) is an extended specialization (and an
“extended instantiation”) of both u1#`2 bird can be agent
of a flight´ and u1#`every bird can be agent of a
flight´. In KIF (Knowledge Interchange Format) [9], a
representation of this last statement can be:
 (believer u1 '(modality possible '(forall ((?b bird))
 (exists ((?f flight)) (agent ?b ?f)))))
Furthermore, these last two FE statements can respectively be
found to be extended specializations of u2#`75% of bird can
be agent of a flight´ and u2#`at least 1 bird can
be agent of a flight´. Similarly, this last graph can be found
to be exclusive with u3#`no bird can be agent of a flight´.

To avoid lexical conflicts and permit knowledge filtering
on the creator of objects, every object in the KB has at least
one associated “source” (creator, believer, interpreter, source
file or language) which itself is represented by a formal term. In
the above example knowledge representations, the terms are
formal but, for readability purposes, their creators are not
shown; wn2.1#flight is an example in FE of formal term in
WordNet 2.1 that represents of of the meaning of the informal
English term en#”flight”; such a prefixing avoid lexical
conflicts between homonym formal/informal terms from
different sources). In the following algorithms, the word “user”
is used as a synonym for “source”.

boolean statement.removal_by (User agent)
{ if (object.creator != agent) return false;
 if (agent.created_statements.are_inconsistent_with(this))
 return false;
 if (agent.created_statements.are_redundant_with(this))
 return false;
 if (this.is_definition())
 { if (KB.statements_without(this).are_inconsistent())
 KB.clone_term_in_statements_using(this.defined_term());
 }
 else if (KB.statements_without(this).are_inconsistent())
 this.clone_for_other_believers();
 KB.remove(this,agent); return true;
}

boolean statement.adding_by (User agent)
{ if (this.is_informal_statement() &&
 !this.has_associated_argumentation_relation())
 return false;
 if (agent.created_statements.are_inconsistent_with(this))
 return false;
 if (agent.created_statements.are_redundant_with(this))
 return false;
 if (this.is_definition())
 { if (this.is_definition_of_new_term() &&
 KB.statements.are_inconsistent_with(this))
 return false;
 if (this.is_new_definition_of_already_declared_term() &&
 KB.statements.are_inconsistent_with(this))
 KB.clone_term_in_statement_inconsistent_with(this);
 }
 else if (KB.statements.are_partially_conflicting_with(this))
 return false; //”implicitly redundant/inconsistent”
 KB.add(this,agent); return true;
}

Here are the informal rules enforced by these algorithms.

1) Any user can add and use any object but an object may
only be modified or removed by its creator.

2) If adding, modifying or removing a statement introduces a
detected implicit redundancy in the shared KB, or if this
introduces an inconsistency between statements believed
by the user having done this action, this action is rejected
by the system. Thus, in the case of an addition, the user
must refine his statement before trying to add it again or he
must first modify at least one of his already entered
statements. An “implicit” redundancy is a redundancy
between two statements without a relation between them
making the redundancy explicit, typically an equivalence
relation or an extended specialization relation (e.g., an
“example” relation). The detection of implicit extended
specializations between two objects reveals an
inconsistency or a total/partial redundancy. It is often not
necessary to distinguish between these two cases to reject
the newly entered object. Extended “instantiations” are
exceptions (see the example given above): since adding an
instantiation is giving an example for a more general
statement, it does not reveal a redundancy or inconsistency
that needs to be made explicit. It is important to reject an
action introducing a redundancy instead of silently ignoring
it because this often permits the author of the action to
detect a mistake, a bad interpretation or a lack of precision
(on his part or not). At the very least, this reminds the users
that they should check what has already been represented
on a subject before adding something on this subject.

3) If the addition of a new term u1#T by a user u1 introduces
an inconsistency with statements of other users, this
action is rejected by the system. Indeed, such a conflict
reveals that u1 has directly or indirectly used at least one
term from another user in his definition of u1#T and has
misunderstood the meaning of this term. The addition by a
user u2 of a definition to u1#T is actually a belief of u2
about the meaning of u1#T. This belief should be rejected
if it is found (logically) inconsistent with the definition(s) of
u1#T by u1. An example is given in Point 6.

4) If the addition, modification or removal of a statement
defining an already existing term u1#T by a user u1
introduces an inconsistency involving statements directly
or indirectly re-using u1#T and created or believed by
other users (i.e., users different from u1), u1#T is
automatically cloned to solve this conflict and ensure that
the original interpretation of u1#T by these other users is
still represented. Indeed, such a conflict reveals that these
other users had a more general interpretation of u1#T than
u1 had or now has. Assuming that u2 is this other user or
one of these other users, the term cloning of u1#T consists
in creating u2#T with the same definitions as u1#T except
for one, and then replacing u1#T by u2#T in the statements
of u2. The difficulty is to chose a relevant definition to
remove for the overall change of the KB to be minimal. In
the case of term removal by u1, term cloning simply means
changing the creator's identifier in this term to the identifier
of one of the other users (if this generated term already
exists, some suffix can be added). In a cbwoKB server,
since statements point to the terms they use, changing an
identifier does not require changing the statements. In a
global virtual cbwoKB distributed on several servers,
identifier changes in one server must be replicated to other
servers using this identifier. Manual term cloning is also
used in knowledge integrations that are not loss-less [5].

In a cbwoKB, it is not true that beliefs and term
definitions “have to be updated sooner or later”. Indeed, in
a cbwoKB, every belief must be contextualized in time and
space as in u3#` `75% of bird can be agent of a
flight´ in place France and in period 2005 to
2006´ (such contexts are not shown in the other examples
of this article). If needed, u3 can associate the term
u3#75%_of_birds_fly__in_France_from_2005_to_2006
with this last belief. Due to the possibility of
contextualizing beliefs, it is rarely necessary to create
formal terms such as u2#Sydney_in_2010. Most
common formal terms, e.g., u3#bird and wn1.7#bird
never need to be modified by their creators. They are
specializations of more general formal terms, e.g.,
wn#bird (the fuzzy concept of bird shared by all
versions of the WordNet ontologies). What evolves in time
is the popularity of a belief or the popularity of the
association between an informal term and a concept. If
needed, this changing popularity can be represented by
different statements contextualized in time and space.

5) If adding, modifying or removing a belief introduces an
implicit potential conflict (partial/total inconsistency or
redundancy) involving beliefs created by other creators, it
is rejected. However, a user may represent his belief (say,
b1) – and thus “loss-less correct” another user's belief that
he does not believe in (say, b2) – by connecting b1 to b2 via
a corrective relation. E.g., here are two FE statements by
u2, each of which corrects a statement made earlier by u1:
u2#` u1#`every bird is agent of a flight´
 has for corrective_restriction
 u2#`most healthy flying_bird are
 able to be agent of a flight´ ´ and
u2#` u1#`every bird can be agent of a flight´
 has for corrective_generalization
 u2#`75% of bird can be agent of a flight´ ´.
If instead of the belief `every bird can be agent of a flight´
(all birds can fly), u1 entered the definition `any bird can

be agent of a flight´, i.e., if he gave a definition to the type
named “bird”, there are two cases (as implied by the rules
of the two previous points):
a) u1 originally created this type (u1#bird); then, u2's

attempt to correct the definition is rejected, or
b) u1 added a definition to another user's type, say

wn#bird since this WordNet type has no associated
constraint preventing the adding of such a definition;
then, i) the types u1#bird and u2#bird are
automatically created as clones (and subtypes of)
wn#bird, ii) the definition of u1 is changed into
`any u1#bird is agent of a flight´, and iii) the
belief of u2 is (automatically) changed into u2#`75%
of u2#bird can be agent of a flight´.

In WebKB-2, users are encouraged to provide
argumentation relations on corrective relations, i.e., a
meta-statement using argument/objection relations on the
statement using the corrective relation. However, to
normalize the shared KB, people are encouraged not to use
an objection relation but a “corrective relation with
argument relations on them”. Thus, not only are the
objections stated but a correction is given and may be
agreed with by several persons, including the author of the
corrected statement (who may then remove it). Even more
importantly, unlike objection relations, most corrective
relations are transitive relations and hence their use permits
better organization of argumentation structures, thus
avoiding redundancies and easing information retrieval.
The use of corrective relations makes explicit the disagree-
ment of one user with (his interpretation of) the belief of
another user. There is no inconsistency: an assertion A
may be inconsistent with an assertion B but a belief that “A
is a correction of B” is technically consistent with a belief
in B. Thus, the shared KB can remain consistent.

For problem-solving purposes, application-dependent
choices between contradictory beliefs often have to be
made. To make them, an application designer can exploit
i) the statements describing or evaluating the creators of
the beliefs, ii) the corrective/argumentation and
specialization relations between the beliefs, and more
generally, iii) their evaluations via meta-statements (see
the next section). For example, an application designer
may choose to select only the most specialized or restricted
beliefs of knowledge providers having worked for more
than 10 years in a certain domain. Thus, the approach of
this protocol is unrelated to de-feasible logics and avoids
the problems associated with classic “version
management” (furthermore, as above explained, in a
cbwoKB, formal objects do not have to evolve in time).

This approach assumes that all beliefs can be argued
against and hence be “corrected”. This is true only in a
certain sense. Indeed, among beliefs, one can distinguish
“observations”, “interpretations” (“deductions” or
“assumptions”; in this approach, axioms are considered to
be definitions) and “preferences”; although all these kinds
of beliefs can be false (their authors can lie, make a mistake
or assume a wrong fact), most people would be reluctant to

argue against self-referencing beliefs such as u2#"u2 likes
flowers" and u2#"u2 is writing this sentence".
Instead of formalizing this into exceptions, the editing
protocol of WebKB-2 relies on the reluctance of people to
argue against such beliefs that should not be argued against.

Before browsing or querying the cbwoKB, a user should be
given the opportunity to set “filters for certain objects not to be
displayed (or be displayed only in small fonts)”. These filters
may set conditions on statements about these objects or on the
creators of these objects. They are automatically executed
queries over the results of queries. In WebKB-2, filtering is
based on a search for extended specialization, as for conceptual
querying. Filters are useful when the user is overwhelmed by
information in an insufficiently organized part of the KB.

The approach described by the previous points is
incremental and works on semi-formal KBs. Indeed, the users
can set corrective or specialization relations between objects
even when the system does not detect an inconsistency or
redundancy. As noted, a new informal statement must be
connected via an argumentation relation (e.g., a corrective
relation) or an extended specialization relation to an already
stored statement. For this relation to be correct, this new
statement should generally not be composed of several sub-
statements. However, allowing the storing of (small)
paragraphs within a statement eases the incremental
transformation of informal knowledge into (semi-)formal
knowledge and allows doing so only when needed. This is
necessary for the general acceptance of the approach. The
techniques described in this article do not seem particularly
difficult for information technology amateurs, since the
minimum they require is for the users to set the above
mentioned relations from/to each term or statement. Hence,
these techniques could be used in semantic wikis to avoid their
governance problems cited in the introduction and other
problems caused by their lack of structure. More generally, the
presented approach removes or reduces the file-based approach
problems without creating new problems. Its use would allow
merging of (information discussed or provided by members of)
many communities with similar interests, e.g., the numerous
different communities working on the Semantic Web.

The hypotheses of this protocol are that i) conflicts can
always be solved by adding more precision (e.g., by making
their sources explicit: different “observations”, “interpre-
tations” or “preferences”), ii) solving conflicts in a loss-less
way most often increases or maintains the precision and
organization of the KB, and iii) different, internally consistent,
ontologies do not have to be structurally modified to be
integrated (strongly inter-related) into a unique consistent
semantic network. None of the various kinds of integrations of
ontologies that I made invalidated these hypotheses.

IV. EVALUATING OBJECTS AND THEIR SOURCES

Many information repositories support free-text/numerical
evaluations on objects or files by people and then display them
or statistical measures on them. For example, Knowledge Zone
[12] allows each of its users to i) rate ontologies with
numerical or free text values for criteria such as “usage”,
“coverage”, “correctness” and “mappings to other ontologies”,
ii) rate other users' ratings, and iii) uses all these ratings to
retrieve and rank ontologies. Such evaluations have several

problems: i) the evaluations are not organized into a semantic
network, ii) the above examples of criteria and their numerical
values are not about objects in the ontologies and hence do not
help choosing between objects, iii) multi-criteria decision
making is difficult since two sets of (values for) criteria are
rarely comparable (indeed, one set rarely includes all the
criteria of the other set and, at the same time, has higher values
for all these criteria), and iv) similarity measures on criteria
only permit to retrieve possibly “related” ontologies: the work
of understanding, comparing or merging their statements still
has to be (re-)done by each user. In a cbwoKB, such problems
are strongly reduced since evaluations are on objects and are
themselves objects: they are managed/manageable like other
objects and are integrated into a network of specialization,
correction and argumentation relations.

To support more knowledge filtering or decision making
possibilities and lead the users to be careful and precise in their
contributions, a cbwoKB server should propose “default
measures” deriving a global evaluation of each
statement/creator from i) users' individual evaluations of these
objects, and ii) global evaluations of these users. These
measures should not be hard-coded but explicitly represented
(and hence be executable) to let each user adapt them - i.e.,
combine their basic functions - according to his goals or
preferences. Indeed, only the user knows the criteria (e.g.,
originality, popularity, acceptance, ..., number of arguments
without objections on them) and weighting schemes that suit
him. Then, since the results of these evaluations are also
statements, they can be exploited by queries on the objects
and/or their creators. Here are comments (only general ones
due to space restrictions) on the global measures that are
implemented in WebKB-2.

a) A global measure of how consensual a belief is should
take into account i) the number of times it has been re-
used or marked as co-believed, and ii) its argumentation
structure (i.e., how its arguments/objections are
themselves (counter-)argued). A simple version of such a
measure was implemented in the hypertext system
SYNVIEW [13]. The KB server Co4 [7] had protocols
based on peer-reviewing for finding consensual
knowledge; the result was a hierarchy of KBs, the
uppermost ones containing the most consensual
knowledge while the lowermost ones were the private KBs
of contributing users. Establishing “how consensual a
belief is” is more flexible in a cbwoKB: i) each user can
design his own global measure for what it means to be
consensual, and ii) KBs of consensual knowledge need not
be generated.

b) A global measure of how interesting a statement is should
be based on its type (if it has one, e.g., observation,
deduction, assumption, preference, ...), on its relations
(especially those arguing for/against it or representing its
originality, acceptance, ...), and on the usefulness of the
authors of these relations (see below).

c) A global measure of the usefulness of a statement should
exploit (at least) the above two measures.

d) A global measure of the usefulness of a user U should
use the global measures of usefulness of U's statements
and, to encourage participation to evaluations, the number
of objects he evaluated.

Given these comments, the interest of enabling end-users to
adapt the default measures is clear. Whichever way it is done,
taking into account the above cited elements should incite
information providers to be careful and precise in their
contributions and give arguments for them. Indeed, unlike in
traditional discussions or anonymous reviews, careless
statements here penalize their authors. This may lead users not
to make statements outside their domain of expertise or without
verifying their facts. (Using a different pseudo when providing
low quality statements does not seem to be an helpful strategy
to escape the above approach since this reduces the number of
authored statements for the first pseudo.) E.g., when a belief is
objected to, the usefulness of its author decreases, he is incited
to deepen the argumentation structure on its belief or remove it.

[10] describes a “Knowledge Web” to which teachers and
researchers could add “isolated ideas” and “single
explanations” at the right place, and suggests that this
Knowledge Web could and should “include the mechanisms
for credit assignment, usage tracking and annotation that the
Web lacks” (pp. 4-5). The author of [10] did not give
indications on such mechanisms but those proposed in this
article seem one initial basis for them.

V. EXAMPLES OF APPLICATIONS

WebKB-2 has been used for integrating many ontologies
[15] [18] and representing many domains. In particular, it has
been used for representing and inter-connecting the most
important concepts of four different courses that I gave:
“Workflow Management”, “Systems Analysis & Design”,
“Introduction to Multimedia” and “Client-Server Architecture”.
Nearly each sentence of each slide for these courses has been
represented into a semantic network of tasks, data structures,
properties, definitions, etc. Figure 1 shows an extract of a Web
file that was an input file for WebKB-2 and that mixed formal
and informal elements; the formal ones are in the FL notation
and represent important statements (here, relations between
important concepts) from a book in Workflow Management.
Each statement in these figures follow the generic schema:
 CONCEPT1 RELATION1: CONCEPT2 CONCEPT3,
 RELATION2: CONCEPT4 (sourceForRel2) ...;
Such a statement should be read: “any CONCEPT1 may have for
RELATION1 one or many CONCEPT2, and may have for
RELATION1 one or many CONCEPT3, and may have for
RELATION2 one or many CONCEPT4 (relation which can be found
at sourceForRel2), ...”. The sources of those relations in the
book and the persons who created those representations (e.g.,
pm and the student s162557) are indicated. When the creator of
relations is not indicated, I (the user “pm”) was the creator.

The students of these courses have recognised the help that
the semantic network provides them in relating and comparing
information otherwise scattered in many different slides and
other lecture materials (an analysis of their evaluation of this
teaching approach is given in [17]). However, having to learn
the FL notation was perceived as a problem, especially by the
students who were evaluated on their contributions to the
semantic network. An intuitive table-based knowledge
entering/display interface for FL should reduce this problem.
Compared to an (informal) learning journal, evaluating the
students on their contributions permitted a much better
evaluation of whether or not they understood the nature of the
important concepts and their relationships. To enter these

contributions, i.e., to collaboratively complete the initial
“course formal summary” that I designed for them, the students
used WebKB-2. The KB editing protocols were not a problem
but entering meaningful knowledge representations proved to
be very difficult for the students and highlighted the necessity
for very strong and very advanced semantic checking (due to
its knowledge normalization procedures, WebKB-2 has
stronger semantic checks than RDF+OWL inference engines
but this still proved to be very insufficient).

Figure 1. Extract from a Web file including some

formal representations of statements from a book in
Workflow Management (referred to via the variable $book).

VI. DISTRIBUTION IN A VIRTUAL KB

One cbwoKB server cannot support knowledge sharing for
all communities. For scalability purposes, the cbwoKB servers
of communities or persons should be able to interact to act as
one global virtual cbwoKB (gv_cbwoKB), without a central
brokering system, without restrictions on the content of each
KB, and without necessarily asking each server to register to a
particular super-community or peer-to-peer (P2P) network. For
several cbwoKB servers to be seen as a gv_cbwoKB, it should
not matter which KB a user or agent chooses to query or update
first. Hence, object additions/updates made in one KB should
be replicated into all the other KBs that have a scope which
covers these objects; idem for queries when this is relevant.

Given these specifications, current approaches for
collaboration between KB servers/owners (e.g., the approaches
of [3] [19] which are based on integrating changes made in
other KBs, and those of [21] which also use a workflow
system) or distributed querying between a few KB servers
(e.g., as described by [11]) are insufficient. Indeed, they are
based on partial descriptions of the content of each KB or on
predefined roles for each KB owner or user, and the
redundancies or inconsistencies between the KBs are not made
explicit. This often makes difficult to find the relevant KBs to
search/add in and to integrate query results.

As in the previous sections, a solution is to let the
knowledge indexation and distribution be made at the object
level instead of the document/KB/community/owner level. The
requirement is that for every term T stored in a cbwoKB server,
the KB must either

a) have a Web-accessible formal description specifying
that it is committed to be a “nexus” for T, i.e., that i) it
stores any statement S on T (if S is inserted in another
KB of this gv_cbwoKB, it is also inserted in this KB), or
ii) it associates to T the URLs of cbwoKB servers
permitting to find or store any statement on T, or

b) not be a “nexus” for T, and hence associate to T either
i) the URLs of all cbwoKB servers that have advertised
themselves to be a nexus for T, or ii) the URL of at least
one server that stores these URLs of nexus servers for T.

Thus, via forwards between servers, all objects using T can
be added or found in all the nexus for T. This requirement
refines the 4th rule of the Linked Data approach [2]: “link
things to their related ones in some other data sets”. Indeed, to
obtain a gv_cbwoKB, the data sets must be cbwoKB servers
and there must be at least one nexus for each term. A
consequence is that when the scopes of two nexus overlap, they
share common knowledge and there is no implicit redundancies
or inconsistencies between them. Thus, the gv_cbwoKB has a
unique ontology distributed on the various cbwoKB servers.

The difficult task is, whenever the owners of a new
cbwoKB server want to join a gv_cbwoKB, to integrate their
ontology into the global one (they must find some nexus of the
gv_cbwoKB, only one if it has a nexus for its top level type).
This integration task is at the core of most knowledge
sharing/re-use approaches. In this one, it is done only by the
owners of the new cbwoKB; once this is done, regularly and
(semi-)automatically integrating new knowledge from/to other
nexus is much easier since a common ontology is shared. Thus,
it can be envisaged that one initial cbwoKB server be

progressively joined by other ones to form a more and more
general gv_cbwoKB.

The key point of the approach is the formal commitment to
be a nexus for a term (and hence to be a cbwoKB since direct
searches/additions by people must be allowed). There is
currently no standard vocabulary to specify this, e.g., from the
W3C, the Dublin Core and voiD (a vocabulary for discovering
linked datasets). To specify - and commit to - the processes
related to i) being a nexus, and ii) being a cbwoKB, the
ontology of WebKB-2 proposes the process types named
“integrating-all-published-information-specified-as-parameter”
and “supporting-the-collaborative-building-of-a-KB”. The
described cbwoKB server is specified via an “agent” relation to
those kinds of processes. For the first kind, a “parameter”
relation is used for specifying the set of types for which the
cbwoKB is a nexus. For the first kind, the KB is specified via
an “output” relation. Any other “relation-fom/to-a-process”
(defined in the ontology of the cbwoKB, e.g., input and period)
can be used for further describing what the cbwoKB commits
to do. Thus, this specification approach is flexible. It would not
have been the case if relation types had been used instead of
process types since all the parameters to those relation types
would have had to be predefined.

It is in the interest of a competitive company to advertise
that it hosts a nexus for a certain term, e.g., apartment­for­
rent­in­Sydney for a real estate agent covering the whole of
Sydney. If the actual coverage of a nexus is less than the
advertised one, a competitor may publish this. In a business
environment, it is in the interest of a competitive company to
check what its competitors or related companies offer and, if it
is legal, integrate their public information in its cbwoKB. It is
also in its interest to refer to the most comprehensive
KBs/nexus of its related companies. To sum up, the approach
could be technically and socially adopted. Since its result is a
gv_cbwoKB, it can be seen as a way to combine advantages
commonly attributed to “distributed approaches” and
“centralized approaches”.

VII. CONCLUSION

This article first aimed to show that a (gv_)cbwoKB is
technically and socially possible. To that end, Section III
presented a protocol permitting, enforcing or encouraging
people to incrementally interconnect their knowledge into a
well-organized (formal or semi-formal) KB without having to
discuss and agree on terminology or beliefs. As noted, it seems
that all other knowledge-based cooperation protocols that
currently exists work on the comparison or integration of
whole KBs, not on the comparison and loss-less integration of
all their objects into a same KB. Other required elements for a
(gv_)cbwoKB - and for which WebKB-2 implements research
results - were also introduced (Section IV and Section VI) or
simply mentioned: expressive and normalizing notations,
methodological guidance, a large general ontology, and an
initial cbwoKB core for the application domain of the intended
cbwoKB.

Already explored kinds of applications were cited. One
currently explored is the collaborative representation and
classification by Semantic Web experts of “Semantic Web
related techniques”. This means that in the medium term
Semantic Web researchers will be able and invited to represent
and compare their techniques in WebKB-2, instead of just

indexing their research via domain related terms, as was the
case in the KA(2) project [1] or with the Semantic Web Topics
Ontology [20]. More generally, the approach proposed in this
article seems interesting for collaboratively-built corporate
memories or catalogues, e-learning, e-government, e-science,
e-research, etc.

A second aim of this article was to show that - in the long term
or when creating a new KB for general knowledge sharing
purposes - using a cbwoKB does/can provide more
possibilities, with on the whole no more costs, than the
mainstream approach [2] [21] [22] where knowledge creation
and re-use involves searching, merging and creating
(semi-)independent (relatively small) ontologies or semi-
formal documents. The problem - and related debate - is more
social (which formalism and methodology will people accept to
learn and use?) than technical. A cbwoKB is much more likely
to be adopted by a small communities of researchers but could
incrementally grow to a larger and larger community. In any
case, research on the two approaches are complementary:
i) techniques of knowledge extraction or merging ease the
creation of a cbwoKB, ii) the results of applying these
techniques with a cbwoKB as input would be better, and
iii) these results would be easier to retrieve, compare, combine
and re-use if they were stored in a cbwoKB.

REFERENCES

[1] V.R. Benjamins et al., “Knowledge Annotation Initiative of the
Knowledge Acquisition Community: (KA)2,” in KAW 1998,
11th Knowledge Acquisition for Knowledge Based System
Workshop, Banff, Canada, April 18-23, 1998.

[2] C. Bizer, T. Heath, and T., Berners-Lee, “Linked data - the story
so far,” International Journal on Semantic Web and Information
Systems, 5, vol. 3, pp. 1-22, 2010.

[3] P. Casanovas, N. Casellas, C. Tempich, D. Vrandecic, and R.
Benjamins, “Opjk and diligent: ontology modeling in a
distributed environment,” Artificial Intelligence Law, 15, vol. 2,
pp. 171-186, 2007.

[4] M. Chein, and M.-L. Mugnier, “Positive nested conceptual
graphs,” in ICCS 1997, LNAI 1257, pp. 95-109, 1997.

[5] R. Djedidi, and A. Aufaur, “Define Hybrid Class Resolving
Disjointness due to Subsumption,”
http://ontologydesignpatterns.org/wiki/Submissions:Define_Hybri
d_Class_Resolving_Disjointness_due_to_Subsumption

[6] G.R. Dromey, “Scaleable Formalization of Imperfect Knowledge,”
in AWCVS-2006, 1st Asian Working Conference on Verified
Software, Macao SAR, China, October 29-31 2006.

[7] J. Euzenat, “Corporate memory through cooperative creation of
knowledge bases and hyper-documents,” in KAW 1996, pp.
(36)1-18, 1996.

[8] J. Euzenat, O. Mbanefo, and A. Sharma, “Sharing resources
through ontology alignment in a semantic peer-to-peer
system,”in “Cases on semantic interoperability for information
systems integration: practice and applications”, pp. 107-126,
2009.

[9] M.R. Genesereth, “Knowledge Interchange Format,” draft
proposed American National Standard (dpANS), NCITS.T2/98-
004, http://logic.stanford.edu/kif/dpans.html

[10] W.D. Hillis, “Aristotle (the knowledge web),” Edge Foundation,
Inc., 138, May 2004.

[11] J. Lee, J. Park, M. Park, C. Chung, and J. Min, “An intelligent
query processing for distributed ontologies,” Systems and
Software, 83, vol. 1, pp. 85-95, January 2010.

[12] H. Lewen, K.S. Supekar, N.F. Noy, and M.A. Musen, “Topic-
specific trust and open rating systems: An approach for ontology
evaluation,” in EON 2006 at WWW 2006.

[13] D. Lowe, “Co-operative structuring of information: The
representation of reasoning and debate,” International Journal of
Man-Machine Studies, 23, pp. 97-111, August 1985.

[14] P. Martin, “Knowledge representation in CGLF, CGIF, KIF,
Frame-CG and Formalized-English,” in ICCS 2002, Springer
Verlag, LNAI 2393, pp. 77-91.

[15] P. Martin, “Correction and Extension of WordNet 1.7,” in ICCS
2003, Springer Verlag, LNAI 2746, pp. 160-173.

[16] P. Martin, and M. Eboueya, “For the ultimate accessibility and
re-usability,” Chapter 29 of the Handbook of Research on
Learning Design and Learning Objects: Issues, Applications and
Technologies, IGI Global, pp. 589-606, 2008.

[17] P. Martin, “Managing Knowledge to Enhance Learning,”
International Journal of Knowledge Management & E-Learning
(ISSN 2073-7904), Vol.1, No.2, 2009, pp. 103-119.

[18] P. Martin, “Towards a collaboratively-built knowledge base
of&for scalable knowledge sharing and retrieval,” HDR thesis,
University of La Réunion, France, December 8, 2009.

[19] N.F. Noy, and T. Tudorache, “Collaborative ontology
development on the (semantic) web,” in SWKE 2008, AAAI
Spring Symposium on Semantic Web and Knowledge
Engineering, March 2008.

[20] OWL specification of the Semantic Web Topics Ontology,
2006.lsdis.cs.uga.edu/library/resources/ontologies/swtopics.owl

[21] R. Palma, P. Haase, Y. Wang, and M. d'Aquin, “Propagation
models and strategies,” Deliverable 1.3.1 of NeOn - Lifecycle
Support for Networked Ontologies; NEON EU-IST-2005-
027595, January 2008.

[22] N. Shadbolt, T. Berners-Lee, and W. Hall, “The semantic web
revisited,” IEEE Intelligent Systems, 21, vol. 3, pp. 96-101,
May/June 2006.

[23] J. Sowa, “Theories, models, reasoning, language, and truth,”
http://www.jfsowa.com/logic/theories.htm, December 2005.

http://ontologydesignpatterns.org/wiki/Submissions:Define_Hybrid_Class_Resolving_Disjointness_due_to_Subsumption
http://ontologydesignpatterns.org/wiki/Submissions:Define_Hybrid_Class_Resolving_Disjointness_due_to_Subsumption

	I. Introduction
	II. Quick Overview of Knowledge Sharing Approaches
	III. KB Sharing Protocol
	1) Any user can add and use any object but an object may only be modified or removed by its creator.
	2) If adding, modifying or removing a statement introduces a detected implicit redundancy in the shared KB, or if this introduces an inconsistency between statements believed by the user having done this action, this action is rejected by the system. Thus, in the case of an addition, the user must refine his statement before trying to add it again or he must first modify at least one of his already entered statements. An “implicit” redundancy is a redundancy between two statements without a relation between them making the redundancy explicit, typically an equivalence relation or an extended specialization relation (e.g., an “example” relation). The detection of implicit extended specializations between two objects reveals an inconsistency or a total/partial redundancy. It is often not necessary to distinguish between these two cases to reject the newly entered object. Extended “instantiations” are exceptions (see the example given above): since adding an instantiation is giving an example for a more general statement, it does not reveal a redundancy or inconsistency that needs to be made explicit. It is important to reject an action introducing a redundancy instead of silently ignoring it because this often permits the author of the action to detect a mistake, a bad interpretation or a lack of precision (on his part or not). At the very least, this reminds the users that they should check what has already been represented on a subject before adding something on this subject.
	3) If the addition of a new term u1#T by a user u1 introduces an inconsistency with statements of other users, this action is rejected by the system. Indeed, such a conflict reveals that u1 has directly or indirectly used at least one term from another user in his definition of u1#T and has misunderstood the meaning of this term. The addition by a user u2 of a definition to u1#T is actually a belief of u2 about the meaning of u1#T. This belief should be rejected if it is found (logically) inconsistent with the definition(s) of u1#T by u1. An example is given in Point 6.
	4) If the addition, modification or removal of a statement defining an already existing term u1#T by a user u1 introduces an inconsistency involving statements directly or indirectly re-using u1#T and created or believed by other users (i.e., users different from u1), u1#T is automatically cloned to solve this conflict and ensure that the original interpretation of u1#T by these other users is still represented. Indeed, such a conflict reveals that these other users had a more general interpretation of u1#T than u1 had or now has. Assuming that u2 is this other user or one of these other users, the term cloning of u1#T consists in creating u2#T with the same definitions as u1#T except for one, and then replacing u1#T by u2#T in the statements of u2. The difficulty is to chose a relevant definition to remove for the overall change of the KB to be minimal. In the case of term removal by u1, term cloning simply means changing the creator's identifier in this term to the identifier of one of the other users (if this generated term already exists, some suffix can be added). In a cbwoKB server, since statements point to the terms they use, changing an identifier does not require changing the statements. In a global virtual cbwoKB distributed on several servers, identifier changes in one server must be replicated to other servers using this identifier. Manual term cloning is also used in knowledge integrations that are not loss-less [5].
	5) If adding, modifying or removing a belief introduces an implicit potential conflict (partial/total inconsistency or redundancy) involving beliefs created by other creators, it is rejected. However, a user may represent his belief (say, b1) – and thus “loss-less correct” another user's belief that he does not believe in (say, b2) – by connecting b1 to b2 via a corrective relation. E.g., here are two FE statements by u2, each of which corrects a statement made earlier by u1:
	a) u1 originally created this type (u1#bird); then, u2's attempt to correct the definition is rejected, or
	b) u1 added a definition to another user's type, say wn#bird since this WordNet type has no associated constraint preventing the adding of such a definition; then, i) the types u1#bird and u2#bird are automatically created as clones (and subtypes of) wn#bird, ii) the definition of u1 is changed into `any u1#bird is agent of a flight´, and iii) the belief of u2 is (automatically) changed into u2#`75% of u2#bird can be agent of a flight´.

	IV. Evaluating Objects and Their Sources
	a) A global measure of how consensual a belief is should take into account i) the number of times it has been re-used or marked as co-believed, and ii) its argumentation structure (i.e., how its arguments/objections are themselves (counter-)argued). A simple version of such a measure was implemented in the hypertext system SYNVIEW [13]. The KB server Co4 [7] had protocols based on peer-reviewing for finding consensual knowledge; the result was a hierarchy of KBs, the uppermost ones containing the most consensual knowledge while the lowermost ones were the private KBs of contributing users. Establishing “how consensual a belief is” is more flexible in a cbwoKB: i) each user can design his own global measure for what it means to be consensual, and ii) KBs of consensual knowledge need not be generated.
	b) A global measure of how interesting a statement is should be based on its type (if it has one, e.g., observation, deduction, assumption, preference, ...), on its relations (especially those arguing for/against it or representing its originality, acceptance, ...), and on the usefulness of the authors of these relations (see below).
	c) A global measure of the usefulness of a statement should exploit (at least) the above two measures.
	d) A global measure of the usefulness of a user U should use the global measures of usefulness of U's statements and, to encourage participation to evaluations, the number of objects he evaluated.

	V. Examples Of Applications
	VI. Distribution in a Virtual KB
	a) have a Web-accessible formal description specifying that it is committed to be a “nexus” for T, i.e., that i) it stores any statement S on T (if S is inserted in another KB of this gv_cbwoKB, it is also inserted in this KB), or ii) it associates to T the URLs of cbwoKB servers permitting to find or store any statement on T, or
	b) not be a “nexus” for T, and hence associate to T either i) the URLs of all cbwoKB servers that have advertised themselves to be a nexus for T, or ii) the URL of at least one server that stores these URLs of nexus servers for T.

	VII. Conclusion

