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Abstract. Android is a programming language based on Java and an
operating system for embedded or mobile devices whose upper layers are
written in that language. It features an extended event-based library and
dynamic inflation of graphical views from declarative XML layout files.
A static analyzer for Android programs must consider such features, for
correctness and precision. This article is an in-depth description of how
we extended the Julia system, based on abstract interpretation, to run
formally correct analyses of Android programs, of the difficulties that
we faced and of the results that we obtained. Namely, we have analyzed
with Julia the whole set of Android sample applications by Google and a
few larger open-source programs. We have applied seven static analyses,
including classcast, dead code, nullness and termination analysis. Julia
has found, automatically, bugs and flaws both in the Google samples and
in the open-source applications.

1 Introduction

Android is a main actor in the operating system market for mobile and embedded
devices such as mobile phones, tablets and televisions. It is an operating system
for such devices, whose upper layers are written in a programming language,
also called Android. As a language, Android is Java with an extended library for
mobile and interactive applications, hence based on an event-driven architecture.
Any Java compiler can compile Android applications, but the resulting Java
bytecode must be translated into a final, very optimized, Dalvik bytecode.

Static analysis of Android applications is important because quality and re-
liability are keys to success on the Android market [2]. Buggy applications get a
negative feedback and are immediately discarded by their potential users. Hence
Android programmers want to ensure that their programs are bug-free, for in-
stance that they do not throw any unexpected exception and do not hang the
device. For such reasons, an industrial actor such as Klocwork [7] has already
extended its static analysis tools from Java to Android, obtaining the only static
analysis for Android that we are aware of. It is relatively limited in power, as far
as we can infer from their web page. We could not get a free evaluation licence.
In any case, it must be stated that their tools are incorrect: if the analyzed
program contains a bug, they will often miss it. Nevertheless, this shows that
industry recognizes the importance of the static analysis of Android code.



Julia is a static analyzer for Java bytecode, based on abstract interpre-
tation [3], that ensures, automatically, that the analyzed applications do not
contain a large set of programming bugs. It applies non-trivial whole-program,
interprocedural and semantical static analyses, including classcast, dead code,
nullness and termination analysis. It comes with a correctness guarantee, as it
is typically the case in the abstract interpretation community: if the application
contains a bug, of a kind considered by the analyzer, then Julia will report it.
This makes the result of the analyses more significant. However, the application
of Julia to Android is not immediate and we had to solve many problems be-
fore Julia could analyze Android programs in a correct and precise way. In this
article, we present those problems and our solutions and show that the result-
ing system analyzes non-trivial Android programs with high degree of precision
and finds bugs in third-party code. This paper does not describe in detail the
static analyses provided by Julia, already published elsewhere, but only their
adaptation to Android. In particular, our class analysis, at the heart of simple
checks such as classcast and dead code analysis, is described in [15]; our nullness
analysis is described in [13, 14]; our termination analysis is described in [16].

The rest of this paper is organized as follows. Section 2 justifies the difficulties
of the static analysis of Android programs. Section 3 introduces the Android con-
cepts relevant to this paper. Section 4 presents the seven static analyses that we
performed on Android code. Sections 5, 6 and 7 describe how we improved Julia
to work on Android. Section 8 presents experimental results over 25 non-trivial
Android programs from the standard Google distribution and from larger open-
source projects. It shows that Julia found some actual bugs in those programs.
Our analyzer is a commercial product (http://www.juliasoft.com). It can
be freely used through the web interface at http://julia.scienze.univr.it,
whose power is limited by a time-out and a maximal size of analysis.

2 Challenges in the Static Analysis of Android

The analysis of Android programs is non-trivial since we must consider some
specific features of Android, both for correctness and precision of analysis.

First of all, Julia analyzes Java bytecode while Android applications are
shipped in Dalvik bytecode. There are translators from Dalvik to Java byte-
code (such as undx [12]). But Android applications developed inside the Eclipse
IDE [4] can always be exported in jar format, that is, in Java bytecode. Eclipse
is the standard development environment for Android at the moment, hence we
have preferred to generate the jar files from Eclipse.

Another problem is that Julia starts the analysis of a program from its main
method while Android programs start from many event handlers. Hence, we had
to modify Julia so that it starts the analysis from all such handlers, considering
them as potentially concurrent entry points. It must be stated that the Android
event handlers are executed by a single thread, so we had not to consider the
difficult problem of the analysis of multithreaded applications.



A much more complex problem is the declarative specification of user in-
terfaces through XML files, used by Android. This means that the code is not
completely available in bytecode format, but is rather inflated, at runtime, from
XML layout files into actual bytecode, by using Java reflection. This problem
must not be underestimated by thinking that layout code only contains graph-
ical aspects, irrelevant to static analysis. Instead, in Android programs, layout
classes, such as views, menus and preferences, contain most or even all the code
of an application, including its business logic. Moreover, the link between XML
inflated code and the explicit application code introduces casts and potential null
pointer exceptions. Hence, the analyzer must consider XML inflation in detail if
we want it to be correct and precise.

Finally, a real challenge is the size of the libraries: in general, Android pro-
grams use both the java.* and the new android.* hierarchies. Their classes
must be analyzed along with the programs, which easily leads to analyze 10,000
methods and more. Keeping the cost of a global, correct, precise and inter-
procedural static analysis under an acceptable threshold has been an actual
feat, obtained after two months of software profiling.

3 Android Basics

We describe here only the concepts of Android that are useful in this paper. For
more information, see [1].

Android applications are written in Java, run in their own process within
their own virtual machine. They do not have a single entry point but can rather
use parts of other Android applications on-demand and can require their ser-
vices by calling their event handlers, directly or through the operating system.
In particular, Android applications contain activities (code interacting with the
user through a visual interface), services (background operations with no inter-
action with the user), content providers (data containers such as databases) and
broadcast receivers (objects reacting to broadcast messages). Event handlers are
scheduled in no particular ordering, with some notable exceptions such as the
lifecycle of activities.

An XML manifest file registers the components of an application. Other XML
files describe the visual layout of the activities. Activities inflate layout files into
visual objects (a hierarchy of views), through an inflater provided by the An-
droid library. This means that library or user-defined views are not explicitly
created by new statements but rather inflated through reflection. Library meth-
ods such as findViewById access the inflated views. As an example, consider the
activity in Fig. 1, from the Google distribution of Android 2.2. The onCreate
event handler gets called when the activity is first created, after its construc-
tor has been implicitly invoked by the Android system. The setContentView
library method calls the layout inflator. Its integer parameter uniquely iden-
tifies the XML layout file shown in Fig. 2. From line 3 of this file, it is clear
that the view identified as lunar at line 9 of Fig. 1 belongs to the user-defined
view class com.example.android.lunarlander.LunarView. The cast at line 9



1 public class LunarLander extends Activity {
2 private LunarView mLunarView;
3 @Override
4 protected void onCreate(Bundle savedInstanceState) {
5 super.onCreate(savedInstanceState );
6 // tell system to use the layout defined in our XML file
7 setContentView(R.layout.lunar_layout );
8 // get handles to the LunarView from XML
9 mLunarView = (LunarView) findViewById(R.id.lunar );

10 // give the LunarView a handle to a TextView
11 mLunarView.setTextView (( TextView) findViewById(R.id.text ));
12 }
13 }

Fig. 1. A portion of the source code Android file LunarLander.java.

1 <FrameLayout xmlns:android="http :// schemas.android.com/apk/res/android"
2 android:layout_width="match_parent" android:layout_height="match_parent">
3 <com.example.android.lunarlander.LunarView android:id="@+id/lunar"
4 android:layout_width="match_parent" android:layout_height="match_parent"/>
5 <RelativeLayout
6 android:layout_width="match_parent" android:layout_height="match_parent" >
7 <TextView android:id="@+id/text"
8 android:text="@string/lunar_layout_text_text"
9 android:visibility="visible"

10 android:layout_width="wrap_content" android:layout_height="wrap_content"
11 android:layout_centerInParent="true" android:gravity="center_horizontal"
12 android:textColor="#88 ffffff" android:textSize="24sp"/>
13 </RelativeLayout >
14 </FrameLayout >

Fig. 2. The XML layout file lunar layout.xml.

in Fig. 1 is hence correct. Constants R.layout.lunar_layout and R.id.lunar
are automatically generated at compile-time from the XML layout file names
and from the view identifiers that they contain, respectively. The user can call
setContentView many times and everywhere in the code; he can pass the value
of any integer expression to it and to findViewById, although the usual approach
is to pass the compiler generated constants. This declarative construction of ob-
jects also applies to preferences (graphical application options) and menus.

4 Our Set of Static Analyses

We describe here the analyses that we let Julia apply to Android programs.
The first five are relatively simple, compared to the last two. They all exploit
the class analysis already performed during the extraction of the application
(Sect. 5). Hence none of them is a simple syntactical check, but they all exploit
semantical, whole-program and inter-procedural information about the program.

Equality Checks Java programmers can compare objects with a pointer iden-
tity check == and with a programmatic check .equals. In most cases, the



latter is preferred. But == is used for efficient comparisons of interned ob-
jects, when the programmer knows that identity equality corresponds to
programmatic equality. The use of both kinds of checks on the same class
type is hence a symptom of a potential bug. In order to determine the classes
== and .equals are applied to, Julia uses its very precise class analysis.

Classcast Checks Incorrect classcasts are typical programming bugs. The in-
troduction of generic types into Java has reduced the use of casts, but pro-
grammers still need them sometimes. Unfortunately, Android has introduced
new situations where casts are unavoidable, such as at lines 9 and 11 in Fig. 1.
Julia applies its very precise class analysis to prove casts correct. We had to
consider the idiosyncracies of the Android library to keep this class analysis
precise for those casts (see Sect. 5).

Static Update Checks The modification of a static field from inside a con-
structor or an instance method is legal but a symptom of a possible bug
or, at least, of bad programming style. For this reason, we check when that
situation occurs. We only do that inside the reachable code, by exploiting
the precise class analysis computed by Julia.

Dead Code Checks By dead code we mean here a method or constructor
never invoked in the program and hence useless. This is often consequence
of a partial use of a library but also the symptom of an actual bug. Spotting
dead code is hence important for debugging. The identification of dead code
is quite complex in object-oriented programs, since method calls have no ex-
plicit target but are resolved at run-time. Here, the very precise class analysis
of Julia comes to help again, by providing a precise static over-approximation
of the set of run-time resolved targets. Android complicates this problem,
since event handlers are called by the system, implicitly, and since some
constructors are invoked, implicitly, during the XML layout inflation.

Method Redefinition Checks Method redefinition in Java might be a source
of bugs when the programmer does not use the same name and argument
types for both the redefining and redefined methods. This may happen as a
consequence of incomplete renaming or incorrect refactoring. Similarly, the
programmer might use an inconsistent policy while calling super, forgetting
some of those calls. This check controls such situations.

Nullness Checks In Java, dereferences occur when an instance field or an array
is accessed, when an instance method is called and when threads synchro-
nize. They must not occur on the special value null, or a run-time exception
is raised. This is, however, a typical and frequent programming bug. Julia
performs a very precise nullness analysis for Java, described in [13, 14]. An-
droid complicates the problem, because of the XML layout inflation and of
the use of the onCreate event handler to perform tasks, such as state initial-
ization, that in Java are normally done in constructors. Hence the precision
of the nullness analysis of Julia, applied to Android code, is not so high as
for Java. For instance, it cannot determine that field mLunarView in Fig. 1
is non-null when it is dereferenced. Thus we had to improve its precision
by considering some specific features of Android, as we describe in Sect. 6.



Termination Checks A non-terminating program is often considered incor-
rect. Hence, termination analysis can be used during debugging to spot those
methods or constructors that might not terminate. Julia already performs
termination analysis of Java code [16], and has won the latest international
competition of termination analysis for Java bytecode on July 2010. The ap-
plication of its termination analysis to Android code is challenging because
of the size of the Java and Android libraries together.

5 Class Analysis for Android

Before a static analysis tool can analyze a program, the latter must be available
and its boundaries clear. This might seem obvious, but it is not the case for
object-oriented languages. They allow dynamic lookup of method implementa-
tions in method calls, on the basis of the run-time class of their receiver. Hence,
the exact control-flow graph of a program is not even computable, in general. An
over-approximation can be computed, where each method call is decorated with
a superset of its actual run-time targets. This is obtained through a class anal-
ysis that computes, for each program variable, field or method return value, a
superset of the class types of the objects that it might contain at run-time. Some
traditional class analyses are formalized and proved correct in [15]. In particular,
Julia uses an improvement of the very precise class analysis defined in [10]. The
latter builds a constraint graph whose nodes are the variables, fields and method
return values in the program. Arcs link these nodes and mimick the propagation
of data in the program. The new statements inject class types in the graph, that
propagate along the arcs. After propagation, each node over-approximates the
set of classes for the variable, field or method return value that it stands for.

Since the control-flow graph of the program is not yet available when the
class analysis starts, the latter extracts the program on-demand, starting from
its main method, during the same propagation of the class types. This is prob-
lematic for Android programs, that do not have a single main entry point, but
many event handlers, that the system calls when a specific event occurs. They
are syntactically identified as implementations overriding some method in the
android.* hierarchy. Class analysis must hence start from all event handlers and
use, at their beginning, a worst-case assumption about the state of the system:
any class type may be bound to the receiver or parameters of the handler, as
long as it is compatible with their static type.

This does not solve the problem of class analysis for Android programs yet.
As we said above, new statements inject class types in the constraint graph. But,
for instance, there is no new LunarView statement in the program in Fig. 1. How
is ever created the LunarView object stored into field mLunarView? It turns out
that Android does heavy use of reflection inside setContentView, to inflate
graphical views from layout XML files. It instantiates the views from the strings
found in the XML file, such as com.example.android.lunarlander.LunarView
at line 3 in Fig. 2. This can only happen through reflection, since the user can
define new view names, as in this example. It is well known that class analyses



are in general incorrect for reflection, but for the simplest ones. Here, we want
to stick on Julia’s precise class analysis and we want it to work on Android code.

The first step in that direction has been to instrument the code of the library
class android.view.LayoutInflater, that performs the inflation. Namely, Julia
replaces reflection, there, with a non-deterministic execution of new statements,
for all view classes reported in the layout files of the application. This makes the
class analysis of Julia correct w.r.t. layout inflation. But we have a problem of
precision here: both class types LunarView and TextView are computed for the
return value of the findViewById calls in Fig. 1, since both class names occur
in the layout file in Fig. 2 and hence two new statements are instrumented in
the code of the inflator. This is correct but imprecise: we know that the first
call yields a LunarView, while the second call yields a TextView, consistently
with the constants passed to findViewById and with the identifiers declared in
Fig. 2, at lines 3 and 7. Without such knowledge, Julia will not be able to prove
correct the two casts on the return value of findViewById in Fig. 1 and it will
issue annoying, spurious warnings about apparently incorrect classcasts.

Thus, the second step has been to improve the precision of the class analysis
of Julia, with explicit knowledge on the view identifiers. We introduced new
nodes views(x ) in the constraint graph, one for each view identifier x occurring
in the XML layout files. Node views(x ) contains a superset of the class types of
the views labelled as x . Note that the same identifier x can be used for many
views in the same or different layout files and this is why, in general, we need a
set. Node views(x ) is used for the return value of the findViewById(R.id.x)
calls. Moreover, we build the arc

{name | x identifies a view of class name in some layout file} → views(x )

to inject into views(x ) all class types explicitly bound to the identifier x . Since
it is possible, although unusual, to set the identifier of a view explicitly, through
its setId method, in that case we build an arc from the receiver of setId to
all views(y) nodes, for every y . This is imprecise but correct. Moreover, we
let (very unusual) calls findViewById(exp), for an expression exp that is not,
syntactically, a constant view identifier, keep their normal approximation for the
return value, containing all views referenced in the XML layout files. Again, this
is imprecise but correct and only applies in very unusual situations. This same
technique is used also for menus and preferences, that work similarly in Android.

We have performed other improvements to the class analysis of Julia, for bet-
ter precision, although they are less important than the one described above. For
instance, we determine, precisely, the class type of the return value of method
android.content.Context.getSystemService. The latter receives a string s
as parameter and yields a service, such as a layout manager, a location service,
a vibrator service etc. That method is defined as returning a java.lang.Object,
which requires a cast of its return value to the required service class. The correct-
ness of these casts depends on s. The standard class analysis of Julia infers that
the return value of getSystemService belongs to any service class, which is too
imprecise to prove the correctness of such casts. Since this method is used often,



this would induce Julia to issue many spurious classcast warnings. Hence, we
have instructed Julia to check if s is equal to one of the constant service strings
defined in the Android library. In that case, the class of the return value of
getSystemService is uniquely determined and the casts can be proved correct.
We do this only if the user does not redefine getSystemService, since otherwise
he might violate the contract on the class type of the returned service.

6 Nullness Analysis for Android

Julia includes one of the most precise correct nullness analyses for Java. It com-
bines many distinct static analyses, all based on abstract intepretation. A basic
analysis is strengthened with others, to get a high degree of precision [13, 14].
We can apply it to Android, without any modification. The results are precise,
with some exceptions that we describe below, together with our solutions.

Consider Fig. 1. The nullness analysis of Julia, without any improvement,
issues a spurious warning at line 11, complaining about the possible nullness of
field mLunarView there. This is because Julia is not so clever to understand that
the setContentView at line 7 inflates a layout XML file where a view identified
as lunar exists, so that the subsequent findViewById call at line 9 does not yield
null. Since this programming pattern is extensively used in Android, failing to
cope with this problem would generate many spurious nullness warnings.

The nullness analysis of Julia includes, already, an expression non-nullness
analysis that computes, at each program point, sets of expressions that are lo-
cally non-null. For instance, this analysis knows that if a check this.foo(x)
!= null succeeds, then the expression this.foo(x) is non-null, if foo does not
modify any field or array read by foo itself. This local non-nullness is lost as soon
as the subsequent code modifies a field or array read by foo. To check these condi-
tions, Julia embeds a side-effect analysis of method calls. We exploited this anal-
ysis to embed specific knowledge on the setContentView method. Namely, after
a call to setContentView(R.layout.file), we let the expression non-nullness
analysis add non-null expressions findViewById(R.id.z), for every identifier
z of a view reported in file.xml. These expressions remain non-null as long as
no field or array is modified, that is read by findViewById (for instance, by a
setId or another setContentView), but this is the standard way of working of
our expression non-nullness analysis, so we had to change nothing for that.

This work removes the spurious warning at line 11 in Fig. 1, but it is not
completely satisfactory. Namely, Julia has just proved field mLunarView non-
null at line 11 in Fig. 1, but it is not necessarily able to prove the same at other
program points, in other methods of LunarLander.java not shown in Fig. 1,
since it does not know that the event handler onCreate is always called before
any other event handler of the activity. The aim of the programmer here was
to make mLunarLander always non-null, in the sense that it is never accessed
before being initialized to a non-null value at line 9 and is never reassigned
null later, during the life-cycle of the activity. (Fig. 1 does not show the whole
activity code, but Julia checks it all.) This notion of globally non-null fields



comes from [6] and is used by Julia as well [14]. It is important since it is less
fragile than the local non-nullness of a field at a given program point, that can
easily be broken by imprecise side-effect information. Moreover, it is important
since it can be used by automatic type-checkers for nullness, such as [11]. But
global non-nullness works for fields that are definitely initialized to a non-null
value in all constructors of their defining class directly called in the program
(hence not only through the constructor chaining mechanism of Java), and are
never read before that moment. Method onCreate in Fig. 1 is not a constructor.
Hence, Julia does not prove mLunarLander globally non-null, which typically
leads to spurious warnings wherever it is derefenced, outside onCreate.

The problem, here, is that Android engineers have introduced the onCreate
event handler to put code that, in Java, would normally go into constructors.
This comes with some drawback: mLunarView cannot be declared final, al-
though, conceptually, it behaves so. (final fields can only be assigned in con-
structors.) More interestingly for us, Julia does not spot mLunarView as globally
non-null, although it does behave as such. Our solution has been to instrument
the code of activities and give them an extra constructor whose code is

public LunarLander(...) { this(); onCreate(null); }

That is, it calls the standard constructor of the activity, normally empty, and
then the onCreate event handler, passing a null Bundle, exactly as it happens
at activity start-up. Class LunarLander.java has two constructors now: the
standard one, typically never used directly, and this extra one, that Julia uses
to simulate the creation of the activity. They are syntactically distinguished by
adding extra, dummy parameters to the instrumented constructor. This solves
our problem: the instrumented constructor is now the only constructor called,
directly, in the program, to create the activity. It makes mLunarView non-null.
(onCreate becomes a helper function of the instrumented constructor, see [14].)
Thus, mLunarView is correctly marked as globally non-null.

Note that this second technique does not replace the previous one on the
local non-nullness of mLunarView at line 11. Instead, the two techniques are
complementary: the first proves that a non-null value is written at line 9 of
Fig. 1, the second proves that mLunarView keeps being non-null during the
subsequent execution of the activity.

The use of findViewById far away from setContentView (possibly in other
methods than onCreate) remains problematic despite what done above. This is
because the imprecisions in the side-effects analysis and the worst-case assump-
tion at the beginning of the event handlers typically erase any information on
the non-nullness of distant findViewById(R.id.z) calls. Hence, we have further
improved our nullness analysis by exploiting information on the creation points
of the receiver of each findViewById in the program. Those creation points are
then compared with those of the receivers of the setContentView calls in the
program, to determine an over-approximation S of the setContentView that
might affect any given findViewById. If a view is defined in all layout files in-
flated in S, then the return value of findViewById is assumed as non-null. A



creation points analysis was already performed by the nullness analyzer of Julia,
hence we are not increasing the cost of the analysis here. We observe that this
procedure is correct only if we are sure that at least a setContentView has been
performed before the given findViewById is executed. To check this condition,
we have used the same technique that we use to identify globally non-null fields,
that must not be read before being assigned at least once.

7 Termination Analysis for Android

Our termination analysis for Android is basically the same that we apply to
Java [16]. It builds linear constraints on the size of the program variables. This
results in a constraint logic program whose termination is proved by the Bin-
Term tool. For efficiency, Julia uses zones [9] for the linear approximation. It
can also use polyhedra, but their cost is much higher and we have not experi-
enced significant improvements in precision. BinTerm uses polyhedra anyway.
For extra precision, we have defined the size of Android cursors as the number
of elements that must yet be scanned before reaching their end. This lets Julia
prove termination of the typical loops of Android code, where a cursor over a
database is used to scan its elements.

We observe that our tool proves termination of loops and recursive meth-
ods. Most Android programs might diverge if the user or the system keep in-
teracting with their event handlers. Our work does not consider this case of
non-termination, which is typically always possible.

8 Experiments, False Alarms and Actual Bugs

Fig. 3 presents the result of our analyses of the sample programs in the Google
distribution of Android 2.2 (ApiDemos–Wiktionary) and of some larger open-
source programs (Mileage–TippyTipper [8]). We used a Linux quad-core Intel
Xeon machine running at 2.66GHz, with 8 gigabytes of RAM. We have manually
checked all the warnings in Fig. 3. Most of them look to us as false alarms, but
a definite answer is difficult, since we are not the authors of those programs.
However, we recognized a few of them as actual bugs and we discuss them below.

8.1 Simple Checks

OpenSudoku defines the SudokuListActivity with an inner class implementing
a setViewValue method and containing the snippet of code in Fig. 4.

There, note is a local variable of type String and trim returns the string
obtained by removing white spaces from the beginning and end of note; variable
view is a parameter of setViewValue and constant View.GONE is used for setting
a view invisible so that it does not use any layout space. Julia spots the test
note.trim() == "" as a suspicious use of == instead of .equals. This is an
actual bug since, when note.trim() is the empty string, the == check fails, the
visibility of view is not set to View.GONE and view still uses some layout space.
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if (note == null || note.trim() == "")
(( TextView) view). setVisibility(View.GONE);

else
(( TextView) view). setText(note);

Fig. 4. A portion of method setViewValue defined in OpenSudoku.

8.2 Nullness Checks

Julia issues two warnings (among others) for the Mileage program:

FillUp.java:443: call with possibly-null receiver to insert

FillUp.java:445: call with possibly-null receiver to update

We have investigated those problems and found that Mileage defines the Model
class that declares the field and the methods in Fig. 5. openDatabase creates

protected SQLiteDatabase m_db = null;

protected void openDatabase () {
if (m_db == null)

m_db = SQLiteDatabase.openOrCreateDatabase (...);
}

protected void closeDatabase(Cursor c) {
...
if (m_db != null) {

m_db.close ();
m_db = null;

}
...

}

Fig. 5. Field m db and methods openDatabase and closeDatabase defined in Mileage.

a database object and stores its reference in m_db, while closeDatabase closes
the database and resets m_db to null. The programmer’s intent was to put
each database access operation inside an openDatabase/closeDatabase pair.
Unfortunately, this does not work when database access operations are nested.
This happens in the FillUp class, subclass of Model, whose save method (Fig. 6)
calls calcEconomy. The latter, in turn, executes a database operation bracketed
inside the usual openDatabase/closeDatabase calls (not shown in the figure).
Hence, after the call to calcEconomy inside save, m_db holds null and the calls
m_db.insert and m_db.update inside save raise a NullPointerException.

Julia issues the following warning (among others) for BluetoothChat:

BluetoothChatService.java:397: call with possibly-null receiver to read



439 public long save() {
440 openDatabase ();
441 calcEconomy (); ...
442 if (...)
443 m_id = m_db.insert (...); // save a new record
444 else
445 m_db.update (...); // update an existing record
446 closeDatabase(null); ...
447 }

Fig. 6. Method save defined in Mileage.

public ConnectedThread(BluetoothSocket socket) {
mmSocket = socket;
InputStream tmpIn = null;
OutputStream tmpOut = null;
try { // Get the BluetoothSocket input and output streams

tmpIn = socket.getInputStream ();
tmpOut = socket.getOutputStream ();

} catch (IOException e) {}
mmInStream = tmpIn;
mmOutStream = tmpOut;

}

Fig. 7. The constructor of class ConnectedThread in BluetoothChat.

Line 397 is inside the inner class ConnectedThread of BluetoothChatService
and contains bytes = this.mmInStream.read(buffer). Field mmInStream is
initialized in the constructor of ConnectedThread, shown in Fig. 7. But, there,
mmInStream and mmOutStream are set to null if there is some problem with
the bluetooth interface and an IOException is thrown inside the try block. A
similar bug has been found at line 253 of BluetoothChatService, in Wiktionary
and in OpenSudoku.

Julia also reports the warning

BluetoothChatService.java:236: call with possibly-null receiver

to listenUsingRfcommWithServiceRecord

That line contains tmp = this.mAdapter.listenUsingRfcommWithServiceRe-
cord(NAME, MY_UUID) and it turns out that field mAdapter is initialized at line
71, inside the constructor of BluetoothChatService, as

mAdapter = BluetoothAdapter.getDefaultAdapter();

However, method getDefaultAdapter yields null on devices that do not feature
a bluetooth adapter and this condition is not checked in the program.

Finally, for Home, Julia issues the warning

Home.java:383: call with possibly-null receiver to resolveActivity

and at that line we actually find manager.resolveActivity(intent, 0). Vari-
able manager is initialized at line 282 as



while (true) {
mGoalX = (int) (Math.random ()*( mCanvasWidth -mGoalWidth ));
if (Math.abs(mGoalX -(mX-mLanderWidth /2)) > mCanvasHeight /6)

break;
}

Fig. 8. A portion of method doStart defined in LunarLander.

PackageManager manager = getPackageManager();

The Android method getPackageManager can yield null sometimes, as we
have verified by looking at its source code, but we could not find any docu-
mentation about that behavior. Some user actually got null as return value
of getPackageManager. (See the discussion thread at [5], apparently never an-
swered.)

8.3 Termination Checks

Most warnings issued by Julia about possibly diverging methods are false alarms.
A few are actually diverging methods, that can in principle run for an indefinite
time, as long as the user does not decide to stop a game or network connection.
An interesting diverging method, although not actually a bug, is found in pro-
gram LunarLander, whose inner class LunarView.LunarThread has a doStart
method containing the snippet of code in Fig. 8. Julia spots this loop as possibly
non-terminating: variable mGoalX is assigned a random value at each iteration of
the while loop. In principle, that value might keep falsifying the condition of the
if and the break statement might never be executed. Although this is statisti-
cally improbable, it is, at least, a case of inefficient use of computing resources.

9 Conclusion

This is the first static analysis framework for Android programs, based on a
formal basis such as abstract interpretation. We have shown that it can analyze
real third-party Android applications, without any user annotation of the code,
yielding formally correct results in a few minutes and on standard hardware.
Hence it is ready for a first industrial use. Formal correctness means for instance
that programs such as VoiceRecognition in Fig. 3 are proved to be bug-free,
w.r.t. the classes of bugs considered by Julia.

The problems of the analysis of real Android software are far from trivial
and we do not claim to have solved them all. For instance, Fig. 3 shows far from
optimal precision for the nullness analysis of OpenSudoku and Solitaire, with
an unacceptable high number of warnings. It turns out that those programs use
arrays of references and Julia could not prove their elements to be non-null
when they are dereferenced. The size of the analyzed code is also problematic.



For instance, we could not perform the nullness and termination analyses of
ApiDemos (Fig. 3) because they ran into out of memory. Hence, our tool still
requires improvements w.r.t. precision and efficiency and we are actively working
at them.
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