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ÉTIENNE PAYET and FRED MESNARD

IREMIA - LIM - université de la Réunion, France
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Abstract

On the one hand, termination analysis of logic programs is now a fairly established research
topic within the logic programming community. On the other hand, non-termination anal-
ysis seems to remain a much less attractive subject. If we divide this line of research into
two kinds of approaches: dynamic versus static analysis, this paper belongs to the latter.
It proposes a criterion for detecting non-terminating atomic queries with respect to binary
CLP rules, which strictly generalizes our previous works on this subject. We give a generic
operational definition and an implemented logical form of this criterion. Then we show
that the logical form is correct and complete with respect to the operational definition.

KEYWORDS: constraints, constraint logic programming, non-termination.

1 Introduction

On the one hand, termination analysis of logic programs is a fairly established re-

search topic within the logic programming community, see the following surveys:

(De Schreye and Decorte 1994; Mesnard and Ruggieri 2003). Various termination

analyzers are now available via web interfaces and we note that the Mercury com-

piler, designed with industrial goals in mind, includes a termination analysis (de-

scribed in (Speirs et al. 1997)) available as a compiler option.

On the other hand, non-termination analysis seems to remain a much less at-

tractive subject. We can divide this line of research into two kinds of approaches:

dynamic versus static analysis. In the former one, (Bol et al. 1991) sets up some

solid foundations for loop checking, while (Shen et al. 2001) presents some recent

work. The main idea is to prune infinite derivations at runtime (some finite deriva-

tions may also be pruned by some loop checkers). In the latter approach, which

includes the work we present in this article, one tries to compute at compile-time

queries which admit at least one infinite derivation. One of the earliest works on the

static approach is described in (De Schreye et al. 1989) where the authors present

an algorithm for detecting non-terminating atomic queries with respect to (w.r.t.)

a binary clause of the form p(s̃)← p(t̃). The condition is described in terms of ra-

tional trees, while we aim at generalizing non-termination analysis for the generic

http://arxiv.org/abs/0807.3451v3
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CLP(X) framework. Non-termination has also been studied in other paradigms,

such as Term Rewrite Systems (Waldmann 2004; Giesl et al. 2005; Zantema 2005;

Waldmann 2007; Zankl and Middeldorp 2007; Payet 2008); the technique described

in (Payet 2008) is close to that of this paper. In (Gupta et al. 2008), non-termination

of C programs is considered and in (Godefroid et al. 2005; Sen et al. 2005) some

techniques are provided that detect crashes, assertion violation and non-termination

in C programs.

Our analysis shares with the work on termination analysis which is presented

in (Codish and Taboch 1999) a key component: the binary unfoldings of a logic

program (Gabbrielli and Giacobazzi 1994), which transform a finite set of definite

clauses into a possibly infinite set of facts and binary definite clauses. Some termi-

nation analyses compute a finite over-approximation of the binary unfolding seman-

tics, over a constraint domain such as CLP(N ). In contrast, the non-termination

analysis we have presented in (Payet and Mesnard 2006) starts from a finite subset

BP of the binary unfoldings of the concrete program P ; of course, a larger subset

may increase the precision of the analysis ((Payet and Mesnard 2006) provides some

experimental evidence). This non-termination analysis first detects patterns of non-

terminating atomic queries from the binary recursive clauses and then propagates

this non-termination information to compute classes of atomic queries for which we

have a finite proof that there exists at least one infinite derivation w.r.t. BP . The

equivalence between the termination of a logic program and that of its binary un-

foldings (Codish and Taboch 1999) is a corner stone of the analysis; it allows us to

conclude that any atomic query belonging to the identified above classes admits an

infinite left derivation w.r.t. P . The basic idea in (Payet and Mesnard 2006) relies

on checking, for each recursive clause in BP , that the body is more general than

the head; if this test succeeds, we can conclude that the head is an atomic query

which has an infinite derivation w.r.t. BP . A key observation consists in consid-

ering neutral argument positions i.e. argument positions of the predicate symbols

defined in P that do not have any effect on the derivation process when they are

filled with a term that satisfies a given condition. The subsumption test presented

in (Payet and Mesnard 2006) only considers the arguments that are in the non-

neutral positions and checks that the arguments in the neutral positions satisfy

their associated condition. This extension of the classical subsumption test con-

siderably increases the power of the approach in the sense that it allows one to

compute more classes of non-terminating atomic queries.

The initial motivation in (Payet and Mesnard 2006) was to complement termi-

nation analysis with non-termination inside the logic programming paradigm in

order to detect optimal termination conditions expressed in a language describ-

ing classes of queries. Although we obtained interesting experimental results, the

overall approach remains quite syntactic, with an ad hoc flavor and tight links to

some basic logic programming machinery such as the unification algorithm. So in

the present paper our aim is to generalize the approach to the constraint logic pro-

gramming (CLP) setting and the main contribution of this work consists in a strict

generalization of the logical criterion defined in (Payet and Mesnard 2004).

The paper is organized as follows. In Section 2 we give some preliminary def-
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initions and in Section 3 we recall in CLP terms the subsumption test to detect

looping queries. In Section 4 we introduce the neutral argument positions; the op-

erational definition we give (Section 4.3) is useless in practice, hence we propose

a sufficient condition for neutrality, expressed as a logical formula related to the

constraint binary clause under consideration (Section 4.4). For some constraint do-

mains, we show that the condition is also necessary (Section 4.5). Depending on the

constraint theory, the validity of such a condition can be automatically decided. In

Section 4.6, we describe an algorithm that uses the logical formula of the sufficient

condition to compute neutral argument positions. Finally, in Section 5 we describe

our prototype and we conclude in Section 6. The detailed proofs of the results can

be found in the appendices at the end of the paper.

Notice that our approach consists in computing a finite subset BP of the binary

unfoldings of the program of interest and then in inferring non-terminating queries

using BP only; hence, we deliberately choose to restrict the analysis to binary CLP

rules and atomic CLP queries as the result we obtain can be lifted to full CLP.

2 Preliminaries

For any non-negative integer n, [1, n] denotes the set {1, . . . , n}. If n = 0, then

[1, n] = ∅. We recall some basic definitions about CLP, see (Jaffar et al. 1998) for

more details. From now on, we fix an infinite countable set V of variables together

with a signature Σ, i.e. a pair 〈F,Π〉 where F is a set of function symbols and Π

is a set of predicate symbols with F ∩ Π = ∅ and (F ∪ Π) ∩ V = ∅. Every element

of F ∪ Π has an arity which is the number of its arguments. We write f/n ∈ F

(resp. p/n ∈ Π) to denote that f (resp. p) is an element of F (resp. Π) whose arity

is n ≥ 0. A constant symbol is an element of F whose arity is 0.

A term is a variable, a constant symbol or an object of the form f(t1, . . . , tn)

where f/n ∈ F , n ≥ 1 and t1, . . . , tn are terms. An atomic proposition is an element

p/0 of Π or an object of the form p(t1, . . . , tn) where p/n ∈ Π, n ≥ 1 and t1, . . . , tn
are terms. A first-order formula on Σ is built from atomic propositions in the usual

way using the logical connectives ∧, ∨, ¬,→,↔ and the quantifiers ∃ and ∀. If φ is a

formula and W := {X1, . . . , Xn} is a set of variables, then ∃Wφ (resp. ∀Wφ) denotes

the formula ∃X1 . . . ∃Xnφ (resp. ∀X1 . . . ∀Xnφ). We let ∃φ (resp. ∀φ) denote the

existential (resp. universal) closure of φ.

We fix a Σ-structure D, i.e. a pair 〈D, [·]〉 which is an interpretation of the

symbols in Σ. The set D is called the domain of D and [·] maps each f/0 ∈ F to

an element of D and each f/n ∈ F with n ≥ 1 to a function [f ] : Dn → D; each

p/0 ∈ Π to an element of {0, 1} and each p/n ∈ Π with n ≥ 1 to a boolean function

[p] : Dn → {0, 1}. We assume that the predicate symbol = is in Σ and is interpreted

as identity in D. A valuation is a mapping from V to D. Each valuation v extends

by morphism to terms. As usual, a valuation v induces a valuation [·]v of terms to

D and of formulas to {0, 1}.

Given a formula φ and a valuation v, we write D |=v φ when [φ]v = 1. We write

D |= φ when D |=v φ for all valuation v. Notice that D |= ∀φ if and only if D |= φ,

that D |= ∃φ if and only if there exists a valuation v such that D |=v φ, and that
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D |= ¬∃φ if and only if D |= ¬φ. We say that a formula φ is satisfiable (resp.

unsatisfiable) in D when D |= ∃φ (resp. D |= ¬φ).

We fix a set L of admitted formulas, the elements of which are called constraints.

We suppose that L is closed under variable renaming, existential quantification and

conjunction and that it contains all the atomic propositions, the always satisfiable

formula true and the unsatisfiable formula false . We assume that there is a com-

putable function solv which maps each c ∈ L to one of true or false indicating

whether c is satisfiable or unsatisfiable in D. We call solv the constraint solver.

Example 2.1 (Qlin)

The constraint domain Qlin has <, ≤, =, ≥, > as predicate symbols, +, −, ∗,

/ as function symbols and sequences of digits as constant symbols. Only linear

constraints are admitted. The domain of computation is the structure with the

set of rationals, denoted by Q, as domain and where the predicate symbols and

the function symbols are interpreted as the usual relations and functions over the

rationals. A constraint solver for Qlin always returning either true or false is

described in (Refalo and Hentenryck 1996).

Sequences of distinct variables are denoted by X̃, Ỹ or Z̃ and are sometimes

considered as sets of variables: we may write ∀X̃ , ∃X̃ or X̃ ∪ Ỹ . Sequences of (not

necessarily distinct) terms are denoted by s̃, t̃ or ũ. Given two sequences of n terms

s̃ := (s1, . . . , sn) and t̃ := (t1, . . . , tn), we write s̃ = t̃ either to denote the constraint

s1 = t1 ∧ · · · ∧ sn = tn or as a shorthand for “s1 = t1 and . . . and sn = tn”. Given

a valuation v, we write v(s̃) to denote the sequence (v(s1), . . . , v(sn)) and [s̃]v to

denote the sequence ([s1]v, . . . , [sn]v).

The signature in which all programs and queries under consideration are included

is ΣL := 〈F,Π ∪ Π′〉 where Π′ is the set of predicate symbols that can be defined

in programs, with Π ∩Π′ = ∅.

An atom has the form p(t1, . . . , tn) where p/n ∈ Π′ and t1, . . . , tn are terms. A

program is a finite set of clauses. A clause has the form H ← c ⋄ B where H and

B are atoms and c is a finite conjunction of atomic propositions such that D |= ∃c.

A query has the form 〈A | d〉 where A is an atom and d is a finite conjunction

of atomic propositions. Given an atom A := p(t̃), we write rel(A) to denote the

predicate symbol p. Given a query Q := 〈A | d〉, we write rel(Q) to denote the

predicate symbol rel(A). The set of variables occurring in some syntactic objects

O1, . . . , On is denoted Var(O1, . . . , On).

We consider the following operational semantics given in terms of derivations

from queries to queries. Let 〈p(ũ) | d〉 be a query and p(s̃)← c⋄ q(t̃) be a fresh copy

of a clause r. When solv (s̃ = ũ ∧ c ∧ d) = true then

〈p(ũ) | d〉=⇒
r
〈q(t̃) | s̃ = ũ ∧ c ∧ d〉

is a derivation step of 〈p(ũ) | d〉 w.r.t. r with p(s̃)← c ⋄ q(t̃) as its input clause. We

write Q
+

=⇒
P

Q′ to summarize a finite number (> 0) of derivation steps from Q to

Q′ where each input clause is a variant of a clause from program P . Let Q0 be a

query. A sequence of derivation steps Q0 =⇒
r1

Q1 =⇒
r2
· · · of maximal length is called
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a derivation of P ∪{Q0} when r1, r2, . . . are clauses from P and the standardization

apart condition holds, i.e. each input clause used is variable disjoint from the initial

query Q0 and from the input clauses used at earlier steps. We say Q0 loops w.r.t.

P when there exists an infinite derivation of P ∪ {Q0}.

3 Loop Inference with Constraints

In the logic programming framework, the subsumption test provides a simple way

to infer looping queries: if, in a logic program P , there is a clause p(s̃) ← p(t̃)

such that p(t̃) is more general than p(s̃), then the query p(s̃) loops w.r.t. P . In this

section, we extend this result to the constraint logic programming framework.

3.1 A “More General Than” Relation

A query can be viewed as a finite description of a possibly infinite set of atoms, the

arguments of which are values from D.

Example 3.1

In the constraint domain Qlin , the query Q := 〈p(X,Y ) |Y ≤ X + 2〉 describes the

set of atoms p(x, y) where x and y are rational numbers and X and Y can be

made equal to x and y respectively while the constraint Y ≤ X +2 is satisfied. For

instance, p(0, 2) is an element of the set described by Q.

In order to capture this intuition, we introduce the following definition.

Definition 3.2 (Set Described by a Query)

The set of atoms that is described by a query Q := 〈p(t̃) | d〉 is denoted by Set(Q)

and is defined as: Set(Q) = {p([t̃]v) | D |=v d}.

Clearly, Set(〈p(t̃) | d〉) = ∅ if and only if d is unsatisfiable in D. Moreover, two

variants describe the same set:

Lemma 3.3

Let Q and Q′ be two queries such that Q′ is a variant of Q. Then, Set(Q) = Set(Q′).

Notice that the operational semantics we introduced above can be expressed using

sets described by queries:

Lemma 3.4

Let Q be a query and r := H ← c ⋄B be a clause. There exists a derivation step of

Q w.r.t. r if and only if Set(Q) ∩ Set(〈H | c〉) 6= ∅.

The “more general than” relation we consider is defined as follows:

Definition 3.5 (More General)

We say that a query Q1 is more general than a query Q when Set(Q) ⊆ Set(Q1).

Example 3.6

In Qlin , the query Q1 := 〈p(X,Y ) |Y ≤ X + 3〉 is more general than the query

Q := 〈p(X,Y ) |Y ≤ X + 2〉. However, Q is not more general than Q1; for instance,

p(0, 3) ∈ Set(Q1) but p(0, 3) 6∈ Set(Q).



6 É. Payet and F. Mesnard

3.2 Loop Inference

Suppose we have a derivation step Q=⇒
r

Q1 where r := H ← c ⋄ B. Then, by

Lemma 3.4, Set(Q) ∩ Set(〈H | c〉) 6= ∅. Hence, if Q′ is a query that is more general

than Q, as Set(Q) ⊆ Set(Q′), we have Set(Q′)∩Set(〈H | c〉) 6= ∅. So, by Lemma 3.4,

there exists a query Q′
1 such that Q′=⇒

r
Q′

1. The following lifting result says that,

moreover, Q′
1 is more general than Q1.

Theorem 3.7 (Lifting)

Consider a derivation step Q=⇒
r

Q1 and a query Q′ that is more general than Q.

Then, there exists a derivation step Q′ =⇒
r

Q′
1 where Q′

1 is more general than Q1.

From this theorem, we derive two corollaries that can be used to infer looping

queries just from the text of a program.

Corollary 3.8

Let r := H ← c ⋄ B be a clause. If 〈B | c〉 is more general than 〈H | c〉 then 〈H | c〉

loops w.r.t. {r}.

The intuition of Corollary 3.8 is that we have 〈H | c〉=⇒
r

Q1 where Q1 is a variant of

〈B | c〉; hence, Q1 is more general than 〈H | c〉; so, by the Lifting Theorem 3.7, there

exists a derivation step Q1 =⇒
r

Q2 where Q2 is more general than Q1; by repeatedly

using this reasonning, one can build an infinite derivation of {r} ∪ {〈H | c〉}.

Corollary 3.9

Let r := H ← c ⋄ B be a clause from a program P . If 〈B | c〉 loops w.r.t. P then

〈H | c〉 loops w.r.t. P .

The intuition of Corollary 3.9 is that we have 〈H | c〉=⇒
r

Q1 where Q1 is a variant of

〈B | c〉, which implies that Q1 is more general than 〈B | c〉; as there exists an infinite

derivation ξ of P ∪ {〈B | c〉}, by successively applying the Lifting Theorem 3.7 to

each step of ξ one can construct an infinite derivation of P ∪ {Q1}.

Example 3.10

Consider the following recursive clause r in Qlin :

p(N)← N ≥ 1 ∧N = N1 + 1 ⋄ p(N1)

The queryQ1 := 〈p(N1) |N ≥ 1 ∧N = N1 + 1〉 is more general than the queryQ :=

〈p(N) |N ≥ 1 ∧N = N1 + 1〉 (for instance, p(0) ∈ Set(Q1) but p(0) 6∈ Set(Q)). So,

by Corollary 3.8, Q loops w.r.t. {r}. Therefore, there exists an infinite derivation

ξ of {r} ∪ {Q}. Then, if Q′ is a query that is more general than Q, by successively

applying the Lifting Theorem 3.7 to each step of ξ, one can construct an infinite

derivation of {r} ∪ {Q′}. So, Q′ also loops w.r.t. {r}.

4 Loop Inference Using Filters

The condition provided by Corollary 3.8 is rather weak because it fails at inferring

looping queries in some simple cases. This is illustrated by the following example.
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Example 4.1

Consider the following recursive clause r in Qlin :

p(N, T )← N ≥ 1 ∧N = N1 + 1 ∧ T1 = 2 ∗ T ∧ T ≥ 1 ⋄ p(N1, T1)

Let c denote the constraint in r. The query 〈p(N, T ) | c〉 loops w.r.t. {r} because

only the first argument of p decreases in r and in this query it is unspecified.

But we cannot infer that 〈p(N, T ) | c〉 loops w.r.t. {r} from Corollary 3.8 as in r

〈p(N1, T1) | c〉 is not more general than 〈p(N, T ) | c〉 because of the second argument

of p: for instance, p(1, 1) ∈ Set(〈p(N, T ) | c〉) but p(1, 1) 6∈ Set(〈p(N1, T1) | c〉).

In what follows, we extend the relation “is more general”. Instead of comparing

atoms in all positions using the “more general” relation, we distinguish some pred-

icate argument positions for which we just require that a certain property must

hold, while for the other positions we use the “more general” relation as before.

Doing so, we aim at inferring more looping queries.

Example 4.2 (Example 4.1 continued)

Let us consider argument position 2 of predicate symbol p. In the clause r, the

projection of c on T is equivalent to T ≥ 1; this projection expresses the constraint

placed upon the second argument of p to get a derivation step with r. Notice that the

projection of c on T1 is equivalent to T1 ≥ 2, which implies T1 ≥ 1. Therefore, the

requirements on the head variable T propagates to the body variable T1. Moreover,

the “piece” 〈p(N1) | c〉 of 〈p(N1, T1) | c〉 is more general than the “piece” 〈p(N) | c〉

of 〈p(N, T ) | c〉. Consequently, 〈p(N1, T1) | c〉 is more general than 〈p(N, T ) | c〉 up

to the second argument of p which, in 〈p(N1, T1) | c〉, satisfies T1 ≥ 1, the condition

to get a derivation step with r. Hence, by an extended version of Corollary 3.8 we

could infer that 〈p(N, T ) | c〉 loops w.r.t. {r}.

4.1 Sets of Positions

A basic idea in Example 4.2 lies in identifying argument positions of predicate

symbols. Below, we introduce a formalism to do so.

Definition 4.3 (Set of Positions)

A set of positions, denoted by τ , is a function that maps each p/n ∈ Π′ to a subset

of [1, n].

Example 4.4

If we want to distinguish the second argument position of the predicate symbol p

defined in Example 4.1, we set τ := 〈p 7→ {2}〉. If we do not want to distinguish

any argument position of p, we set τ ′ := 〈p 7→ ∅〉.

Definition 4.5

Let τ be a set of positions. Then, τ is the set of positions defined as: for each

p/n ∈ Π′, τ (p) = [1, n] \ τ(p).
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Example 4.6

If we set τ := 〈p 7→ {2}〉 and τ ′ := 〈p 7→ ∅〉 where the arity of p is 2, then

τ = 〈p 7→ {1}〉 and τ ′ = 〈p 7→ {1, 2}〉.

Using a set of positions τ , one can project syntactic objects:

Definition 4.7 (Projection)
Let τ be a set of positions.

• The projection of p ∈ Π′ on τ is the predicate symbol denoted by pτ . Its arity

is the number of elements of τ(p).
• Let p/n ∈ Π′ and t̃ := (t1, . . . , tn) be a sequence of n terms. The projection of

t̃ on τ(p), denoted by t̃τ(p), is the sequence (ti1 , . . . , tim) where {i1, . . . , im} =

τ(p) and i1 < · · · < im.
• Let A := p(t̃) be an atom. The projection of A on τ , denoted by Aτ , is the

atom pτ (t̃τ(p)).
• The projection of a query 〈A | d〉 on τ , denoted by 〈A | d〉τ , is the query 〈Aτ | d〉.

Example 4.8 (Example 4.4 continued)
The projection of the query 〈p(N, T ) | c〉 on τ (resp. τ ′) is the query 〈pτ (T ) | c〉 (resp.

the query 〈pτ ′ | c〉).

Projection preserves inclusion and non-disjointness of sets described by queries:

Lemma 4.9 (Inclusion)
Let τ be a set of positions and Q and Q′ be two queries. If Set(Q) ⊆ Set(Q′) then

Set(Qτ ) ⊆ Set(Q′
τ ).

Lemma 4.10 (Non-Disjointness)
Let τ be a set of positions and Q and Q′ be two queries. If Set(Q) ∩ Set(Q′) 6= ∅

then Set(Qτ ) ∩ Set(Q′
τ ) 6= ∅.

4.2 Filters

A second idea in Example 4.2 consists in associating constraints with argument

positions (T ≥ 1 for position 2 in Example 4.2). We define a filter to be the com-

bination of sets of positions with their associated constraint:

Definition 4.11 (Filter)
A filter, denoted by ∆, is a pair (τ, δ) where τ is a set of positions and δ is a function

that maps each p ∈ Π′ to a query of the form 〈pτ (t̃) | d〉 where D |= ∃d.

Example 4.12

Consider τ := 〈p 7→ {2}〉 and τ ′ := 〈p 7→ ∅〉. Let δ := 〈 p 7→ 〈pτ (B) |B ≥ 1〉 〉 and

δ′ := 〈 p 7→ 〈pτ ′ | true〉 〉. Then, ∆ := (τ, δ) and ∆′ := (τ ′, δ′) are filters.

Note that δ(p) is given in the form of a query 〈pτ (t̃) | d〉, instead of just a constraint

d, because we need to indicate that the entry points of d are the terms in t̃. Indeed,

the function δ is used to “filter” queries: we say that a query Q satisfies ∆ when the

set of atoms described by Qτ , the projection of Q on the positions τ , is included in

the set of atoms described by δ(rel(Q)), the query defined for Q’s predicate symbol

by ∆. More formally:
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Definition 4.13 (Satisfies)

Let ∆ := (τ, δ) be a filter and Q be a query. Let p := rel(Q). We say that Q satisfies

∆ when Set(Qτ ) ⊆ Set(δ(p)).

Now we come to the extension of the relation “more general than”. Intuitively,

〈p(t̃′) | d′〉 is ∆-more general than 〈p(t̃) | d〉 if the “more general than” relation holds

for the elements of t̃ and t̃′ whose position is not in τ while the elements of t̃′ whose

position is in τ satisfy δ. More formally:

Definition 4.14 (∆-More General)

Let ∆ := (τ, δ) be a filter and Q and Q′ be two queries. We say that Q′ is ∆-more

general than Q when Q′
τ is more general than Qτ and Q′ satisfies ∆.

Example 4.15

Consider the constraint c in the clause

p(N, T )← N ≥ 1 ∧N = N1 + 1 ∧ T1 = 2 ∗ T ∧ T ≥ 1 ⋄ p(N1, T1)

of Example 4.1. The query Q1 := 〈p(N1, T1) | c〉 is ∆-more general than Q :=

〈p(N, T ) | c〉 for the filter ∆ :=
(〈

p 7→ {2}
〉

,
〈

p 7→ 〈pτ (B) |B ≥ 1〉
〉)

. However, Q1

is not ∆′-more general than Q for the filter ∆′ :=
(〈

p 7→ ∅
〉

,
〈

p 7→ 〈pτ ′ | true〉
〉)

;

indeed, τ ′(p) = ∅ implies that being ∆′-more general is equivalent to being more

general and, by Example 4.1, Q1 is not more general than Q.

Lemma 4.16 (Transitivity)

For any filter ∆, the “∆-more general than” relation is transitive.

Notice that for any filter ∆ := (τ, δ) and any query Q, we have that Qτ is more

general than itself (because the “more general than” relation is reflexive), butQmay

not satisfy ∆. Hence, the “∆-more general than” relation is not always reflexive.

Example 4.17

Consider the constraint domain Qlin . Let p/1 ∈ Π′ and ∆ := (τ, δ) be the fil-

ter defined by τ := 〈p 7→ {1}〉 and δ := 〈 p 7→ 〈pτ (X) |X ≥ 1〉 〉. The query

Q := 〈p(0) | true〉 is not ∆-more general than itself because Set(Qτ ) = {pτ (0)} 6⊆

{pτ(x) | x is a rational and x ≥ 1} = Set(δ(p)). Hence, Q does not satisfy ∆.

The fact that reflexivity does not always hold is an expected property. Indeed,

suppose that a filter ∆ := (τ, δ) induces a “∆-more general than” relation that is re-

flexive. Then for any queries Q and Q′, we have that Q′ is ∆-more general than Q if

and only if Q′
τ is more general than Qτ (because, as Q′ is ∆-more general than itself,

Q′ necessarily satisfies ∆). Hence, δ is useless in the sense that it “does not filter any-

thing”. Filters equipped with such a δ were introduced in (Payet and Mesnard 2004)

where for any predicate symbol p, δ(p) has the form 〈pτ (X̃) | true〉, where X̃ is a

sequence of distinct variables. In this paper, we aim at generalizing the approach

of (Payet and Mesnard 2004). Hence, we also consider functions δ that really filter

queries.
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4.3 DN Filters: an Operational Definition

Let us now introduce a special kind of filters that we call “derivation neutral”. The

name “derivation neutral” stems from the fact that if in a derivation of a query Q,

we replace Q by a ∆-more general Q′, then we get a “similar” derivation.

Definition 4.18 (Derivation Neutral)
Let r be a clause and ∆ be a filter. We say that ∆ is DN for r when for each

derivation step Q=⇒
r

Q1, the query Q1 satisfies ∆ and for each query Q′ that is ∆-

more general than Q, there exists a derivation step Q′=⇒
r

Q′
1 where Q′

1 is ∆-more

general than Q1. This definition is extended to programs: ∆ is DN for P when it

is DN for each clause of P .

Derivation neutral filters lead to the following extended version of Corollary 3.8

(to get Corollary 3.8, take ∆ := (τ, δ) with τ(p) = ∅ for any p).

Theorem 4.19

Let r := H ← c ⋄ B be a clause. Let ∆ be a filter that is DN for r. If 〈B | c〉 is

∆-more general than 〈H | c〉 then 〈H | c〉 loops w.r.t. {r}.

Example 4.20

If the filter ∆ of Example 4.15 is DN for the clause r = p(N, T ) ← c ⋄ p(N1, T1)

of Example 4.1, then we can deduce that 〈p(N, T ) | c〉 loops w.r.t. {r} because

〈p(N1, T1) | c〉 is ∆-more general than 〈p(N, T ) | c〉 (see Example 4.15).

Computing a derivation neutral filter from the text of a program is not straight-

forward if we use the above definition. Section 4.4 presents a logical characterization

that we use in Section 4.6 to compute a filter that is DN for a given recursive clause.

4.4 A Logical Characterization of DN Filters

From now on, we suppose, without loss of generality, that a clause has the form

p(X̃)← c⋄ q(Ỹ ) where X̃ and Ỹ are disjoint sequences of distinct variables. Hence,

c is the conjunction of all the constraints, including unifications. We distinguish the

following set of variables that appear inside such a clause.

Definition 4.21

The set of local variables of a clause r := p(X̃) ← c ⋄ q(Ỹ ) is local vars(r) :=

Var(c) \ (X̃ ∪ Ỹ ).

In this section, we aim at characterizing DN filters in a logical way. To this end,

we define:

Definition 4.22 (sat)
Let Q := 〈p(t̃) | d〉 be a query and s̃ be a sequence of terms of the same length

as t̃. Then, sat(s̃, Q) denotes a formula of the form ∃Var(Q′)(s̃ = t̃′ ∧ d′) where

Q′ := 〈p(t̃′) | d′〉 is a variant of Q and variable disjoint with s̃.

Intuitively, sat(s̃, Q) holds when the terms in the sequence s̃ satisfy the constraint

d, the entry points of which are the terms in t̃. Clearly, the satisfiability of sat(s̃, Q)

does not depend on the choice of the variant of Q. The set that is described by a

query can then be characterized as follows:
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Lemma 4.23

Let Q be a query and p := rel(Q). Let ũ be a sequence of arity(p) terms and v be

a valuation. Then, p([ũ]v) ∈ Set(Q) if and only if D |=v sat(ũ, Q).

Now we give a logical definition of derivation neutrality. As we will see later,

under certain circumstances, this definition is equivalent to the operational one we

gave above.

Definition 4.24 (Logical Derivation Neutral)
We say that a filter ∆ := (τ, δ) is DNlog for a clause r := p(X̃)← c ⋄ q(Ỹ ) when

D |= c→ ∀X̃τ(p)

[

sat(X̃τ(p), δ(p))→ ∃Yc
]

and D |= c→ sat(Ỹτ(q), δ(q))

where Y = Ỹτ(q) ∪ local vars(r).

Example 4.25

In Qlin , the filter
(〈

p 7→ {2}
〉

,
〈

p 7→ 〈pτ (B) |B ≥ 1〉
〉)

is DNlog for the clause

p(N, T )← N ≥ 1 ∧N = N1 + 1 ∧ T1 = 2 ∗ T ∧ T ≥ 1 ⋄ p(N1, T1)

of Example 4.1. Indeed, X̃τ(p) = {T }, Ỹτ(q) = {T1} and local vars(r) = {}. So, if

we let c denote the constraint in this clause, the formulas of Definition 4.24 turn

into

D |= c→ ∀T
[

T ≥ 1→ ∃T1 c
]

and D |= c→ T1 ≥ 1

which are true.

The first formula in Definition 4.24 has the following meaning. If one holds a

solution for constraint c, then, changing the value given to the variables of X̃

distinguished by τ to some value satisfying δ(p), there exists a value for the local

variables and the variables of Ỹ distinguished by τ such that c is still satisfied. This

formula expresses the fact that DNlog arguments (i.e. those distinguished by τ) do

not interact in c with the other arguments. Intuitively, two variables X1 and X2

do not interact in a constraint c when the set of values assigned to (X1, X2) by

all the solutions of c results from the exhaustive combination of the set of values

assigned to X1 by all the solutions of c and the set of values assigned to X2 by all

the solutions of c; more formaly, when
{

(v(X1), v(X2)) | D |=v c
}

=
{

v(X1) | D |=v c
}

×
{

v(X2) | D |=v c
}

.

Example 4.26

• In Example 4.25 above, the set of values assigned to (N, T ) by all the solutions

of c is {(a, b) | a ≥ 1, b ≥ 1}. We have {(a, b) | a ≥ 1, b ≥ 1} = {a | a ≥

1} × {b | b ≥ 1} where {a | a ≥ 1} is the set of values assigned to N by all

the solutions of c and {b | b ≥ 1} is the set of values assigned to T by all the

solutions of c. Hence, N and T do not interact.
• Now consider c = (X ≥ Z ∧ Z ≥ Y ). The set of values assigned to (X,Y ) by

all the solutions of c is {(a, b) | a ≥ b} and the set of values assigned to X

and to Y by all the solutions of c is Q. As {(a, b) | a ≥ b} 6= Q ×Q, we have

that X and Y do interact.
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The second formula in Definition 4.24 means that any solution of c assigns to

the variables of Ỹ distinguished by τ a value that satisfies δ(q). This corresponds

to the intuition that neutral argument positions are sorts of “pipes” where one can

place any term satisfying δ with no effect on the derivation process.

The logical definition of derivation neutrality implies the operational one:

Theorem 4.27

Let r be a clause and ∆ be a filter. If ∆ is DNlog for r then ∆ is DN for r.

DNlog in Definition 4.24 consists of two formulas, say DNlog1 and DNlog2, where

DNlog2 requires Ỹτ(q) to always satisfy δ(q). One may think of a (perhaps more

natural) requirement, say DNlog12, resulting from “merging” DNlog1 and DNlog2:

D |= c→ ∀X̃τ(p)

[

sat(X̃τ(p), δ(p))→ ∃Y(c ∧ sat(Ỹτ(q), δ(q)))
]

.

The point is that a filter satisfying DNlog12 is not necessarily DN (i.e. Theorem 4.27

does not hold for DNlog12). For instance, consider in Qlin the clause

r := p(X)← X ≤ 3 ∧ 2 ≤ Y ⋄ p(Y )

and the filter ∆ := (τ, δ) with τ(p) = {1} and δ(p) = 〈pτ (X) |X ≤ 3〉. Then,

DNlog2 i.e.

D |= c→ sat(Ỹτ(q), δ(q))

does not hold: we have Ỹτ(p) = {Y } and any valuation v with v(X) = 1 and

v(Y ) = 4 is a solution of the constraint c in r i.e. D |=v c; but, as 3 < v(Y ), we have

D 6|=v Y ≤ 3 i.e. D 6|=v sat(Ỹτ(p), δ(p)); therefore, D 6|=v c→ sat(Ỹτ(p), δ(p)). Hence,

∆ is not DNlog for r. In the next section (see Theorem 4.29 and Example 4.30)

we prove that DNlog in Qlin is equivalent to DN. Therefore, ∆ is not DN for r.

On the other hand, DNlog12 holds as in this example it is equivalent to (we have

X̃τ(p) = {X} and Y = {Y }):

D |= c→ ∀X
[

X ≤ 3→ ∃Y (c ∧ Y ≤ 3)
]

.

4.5 When DN Filters Are Also DNlog

DN filters are not always DNlog as illustrated by the following example.

Example 4.28

Suppose that Σ = {0,=,≥} and D = DQlin
. Consider

r := p(X1, X2)← X2 ≥ X1 ∧X1 ≥ 0 ∧ Y1 = X1 ∧ Y2 = X2 ⋄ p(Y1, Y2) .

Let c denote the constraint in r. Consider also a filter ∆ := (τ, δ) where τ(p) = {1}

and δ(p) = 〈pτ (X) |X ≥ 0〉. Notice that given the form of Σ, one cannot write a

constraint that has only one solution different from 0; more precisely, for any terms

t1 and t2 and any constraint d 6= false :

p(0, 0) ∈ Set(〈p(t1, t2) | d〉) . (1)

Whatever Q, if there is a derivation step Q=⇒
r

Q1:
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• the query Q1 satisfies ∆ because c implies that Y1 ≥ 0,

• for any Q′ that is ∆-more general than Q, Set(〈p(X1, X2) | c〉)∩ Set(Q′) 6= ∅

because by (1) p(0, 0) ∈ Set(〈p(X1, X2) | c〉) ∩ Set(Q′); hence, there exists a

derivation step Q′=⇒
r

Q′
1. Notice that Q′

1τ is more general than Q1τ because

Q′
τ is more general than Qτ and c demands that Y2 = X2; moreover, Q′

1

satisfies ∆ because c implies that Y1 ≥ 0; therefore, Q′
1 is ∆-more general

than Q1.

Consequently, ∆ is DN for r. However, ∆ is not DNlog for r because the first formula

of Definition 4.24 does not hold. Indeed, as X̃τ(p) = X1, Ỹτ(p) = Y1 and Y = {Y1},

this formula is equivalent to D |= c → ∀X1[X1 ≥ 0 → ∃Y1c]. Let v be a valuation

such that v(X1) = v(Y1) = v(X2) = v(Y2) = 0; then, D |=v c. Let v1 be a valuation

with v1(X1) = 1 and v1 matches v on the other variables; then, D |=v1 X1 ≥ 0;

however, D |=v1 ∃Y1c does not hold because c contains the constraint X2 ≥ X1

with v1(X2) = 0 and v1(X1) = 1 and it is not possible to change the value that v1
assigns to Y1 so that v1(X2) ≥ v1(X1). Therefore, D |=v c→ ∀X1[X1 ≥ 0→ ∃Y1c]

does not hold.

The point in Example 4.28 is that the problematic values (for DNlog-ness) cannot

be captured by a query, hence they do not prevent ∆ from being DN. More pre-

cisely, we have p
(

v(X1), v(X2)
)

= p
(

v(Y1), v(Y2)
)

= p(0, 0) and the atom p(0, 0) is

captured by the query 〈p(0, 0) | true〉, i.e. Set(〈p(0, 0) | true〉) = {p(0, 0)}. However,

p
(

v1(X1), v1(X2)
)

= p(1, 0) and there exists no query Q with Set(Q) = {p(1, 0)}. If

we had considered r in the constraint domain Qlin then ∆ would not have been DN

as there exists Q1 such that 〈p(0, 0) | true〉=⇒
r

Q1, the query 〈p(1, 0) | true〉 is well-

formed inQlin and is ∆-more general than 〈p(0, 0) | true〉1, but there exists no query

Q′
1 such that 〈p(1, 0) | true〉=⇒

r
Q′

1. Hence, an idea for matching DN with DNlog

consists in considering domains where every sequence of values can be captured by

a query:

Theorem 4.29

If, for all atoms A whose arguments are elements of D, there exists a query Q such

that Set(Q) = {A}, then every filter that is DN for a clause r is also DNlog for r.

The intuition of the proof of Theorem 4.29 consists in mapping some sequences of

values (induced by the considered valuations) to queries that capture them and in

using the DN property to prove that DNlog-ness holds. More precisely, let r :=

p(X̃)← c⋄ q(Ỹ ) and ∆ := (τ, δ) be a filter that is DN for r. First, we have to prove

that

D |= c→ ∀X̃τ(p)

[

sat(X̃τ(p), δ(p))→ ∃Yc
]

.

Let v be a valuation such that D |=v c and v′ be a valuation such that v′(V ) = v(V )

for all variable V 6∈ X̃τ(p) and D |=v′ sat(X̃τ(p), δ(p)). Then, there exists a query

Q such that Set(Q) = {p([X̃]v)} and a query Q′ such that Set(Q′) = {p([X̃]v′)}.

1 because 〈p(1, 0) | true〉τ = 〈pτ (0) | true〉 = 〈p(0, 0) | true〉τ and 〈p(1, 0) | true〉τ = 〈pτ (1) | true〉
with Set(〈pτ (1) | true〉) = {pτ (1)} ⊆ Set(δ(p))



14 É. Payet and F. Mesnard

Intuitively, as D |=v c, there exists a derivation step Q=⇒
r

Q1; moreover, as v′

matches with v on X̃τ(p) and as the sequence of values that v′ assignes to X̃τ(p)

satisfies ∆, then Q′ is ∆-more general than Q. Therefore, as ∆ is DN for r, there

exists a query Q′
1 such that Q′ =⇒

r
Q′

1 and Q′
1 is ∆-more general than Q1; using

these properties of Q′ and Q′
1, one can deduce that D |=v′ ∃Yc, where Y = Ỹτ(q) ∪

local vars(r). We also have to prove that

D |= c→ sat(Ỹτ(q), δ(q)) .

This is a consequence of the fact that for any derivation step Q=⇒
r

Q1, the query

Q1 satisfies ∆ (because ∆ is DN for r).

Example 4.30

For any rational number x, there exists a term t constructed from the constant

and function symbols of Qlin such that [t]v = x for any valuation v. Therefore, for

each atom p(ã) where ã is a sequence of rational numbers, there exists a query Q

in Qlin of the form 〈p(t̃) | true〉, where the elements of t̃ are constructed from the

constant and function symbols of Qlin , which is such that Set(Q) = {p(ã)}. Hence,

by Theorem 4.29, in Qlin DN is equivalent to DNlog.

4.6 Computing Looping Queries

For any filter ∆ := (τ, δ) and any clause r := p(X̃)← c ⋄ q(Ỹ ), we let

• DNlog1(∆, r) :=
(

c→ ∀X̃τ(p)

[

sat(X̃τ(p), δ(p))→ ∃Yc
])

• DNlog2(∆, r) :=
(

c→ sat(Ỹτ(q), δ(q))
)

denote the formulas in Definition 4.24.

A solution to compute a DNlog filter for a clause r := p(X̃) ← c ⋄ p(Ỹ ) is to

consider the projection of c on the elements of X̃ that we wish to distinguish and

to check that DNlog1 and DNlog2 hold for r and the corresponding filter ∆proj .

Formally, for any set of variables W , the projection of c onto W is denoted by ∃W c

and is the formula ∃Var(c)\W c. If DNlog1 and DNlog2 hold for r and ∆proj , then

∆proj is DNlog for r, hence it is DN for r by Theorem 4.27; so we can try the test of

Theorem 4.19 to get a query that loops w.r.t. {r}. Hence the following algorithm:

An algorithm to compute a looping query

Input: a clause r := p(X̃)← c ⋄ p(Ỹ ).

1. For each m ⊆ [1, arity(p)] do:

2. Set τ(p) := m, δ(p) := 〈pτ (X̃τ(p)) | ∃X̃τ(p)
c〉 and ∆proj := (τ, δ).

3. If DNlog1(∆proj , r) and DNlog2(∆proj , r) hold then

4. If 〈p(Ỹ ) | c〉 is ∆proj -more general than 〈p(X̃) | c〉 then

5. return 〈p(X̃) | c〉, which is a looping query w.r.t. {r}.
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This algorithm always finds a DNlog filter. Indeed, for m = ∅, the corresponding

filter ∆proj = (τ, δ) is such that X̃τ(p) is the empty sequence, so δ(p) = 〈pτ | ∃∅c〉

where ∃∅c is equivalent to ∃Var(c)c i.e. to true because in the definition of a clause

(see Section 2) we suppose that c is satisfiable; therefore, DNlog1(∆proj , r) and

DNlog2(∆proj , r) hold as they are equivalent to c → (true → ∃local vars(r)c) and

c→ true respectively.

Four tests are performed by the above algorithm for each subset m of [1, arity(p)]:

does DNlog1(∆proj , r) hold and does DNlog2(∆proj , r) hold and, if these tests suc-

ceed, is 〈p(Ỹ ) | c〉τ more general than 〈p(X̃) | c〉τ and does 〈p(Ỹ ) | c〉 satisfy ∆proj ?

Actually, only three tests are necessary as we have:

Lemma 4.31

Let r := p(X̃) ← c ⋄ p(Ỹ ) be a clause and ∆ := (τ, δ) be a filter. Then, we have

D |= DNlog2(∆, r) if and only if 〈p(Ỹ ) | c〉 satisfies ∆.

Example 4.32

Let us consider the constraint domain Qlin and the recursive clause

r := p(X1, X2)← X1 ≥ X2 ∧ Y1 = X1 + 1 ∧ Y2 = X2 ⋄ p(Y1, Y2) .

Let c be the constraint in r. Consider m := {1, 2}. The projection of c onto

{X1, X2} is the constraint X1 ≥ X2 hence the algorithm sets τ(p) := {1, 2} and

δ(p) := 〈p(X1, X2) |X1 ≥ X2〉 and ∆proj := (τ, δ). The formulas DNlog1(∆proj , r)

and DNlog2(∆proj , r) hold as they are respectively equivalent to

c→ ∀X1∀X2(X1 ≥ X2 → ∃Y1∃Y2c) and c→ Y1 ≥ Y2 .

So, ∆proj is DNlog for r. Moreover, as 〈p(Y1, Y2) | c〉 is ∆proj -more general than

〈p(X1, X2) | c〉, by Theorem 4.19 the query 〈p(X1, X2) | c〉 loops w.r.t. {r}. Notice

that by Definition 4.18, every query that is ∆proj -more general than 〈p(X1, X2) | c〉

also loops w.r.t. {r}. Generally speaking, for any predicate symbol q/n, a set of

positions m ⊆ [1, n] can be seen as a finite representation of the set of queries

of the form 〈q(t1, . . . , tn) | d〉 where for each i ∈ m, d constrains ti to a ground

term. For instance, 〈p(0, 0) | true〉 loops w.r.t. {r} as it is ∆proj -more general than

〈p(X1, X2) | c〉; this query belongs to the class described by the set of positions {1, 2}

for p; therefore we say that this class is non-terminating because there exists a query

in this class that loops. As 〈p(0, X) | true〉, 〈p(X, 0) | true〉 and 〈p(X,Y ) | true〉 are

more general than 〈p(0, 0) | true〉, by the Lifting Theorem 3.7 these queries also loop

w.r.t. {r}; consequently, the classes described by the sets of positions {1}, {2} and

{} for p are non-terminating too. So, for every set of positions m for p, the class of

queries described by m is non-terminating.

Example 4.33

In Qlin again, now consider the recursive clause (slightly different from that in

Example 4.32)

r := p(X1, X2)← X1 ≤ X2 ∧ Y1 = X1 + 1 ∧ Y2 = X2 ⋄ p(Y1, Y2)

Let c be the constraint in r and v be a valuation with v(X1) = v(X2) = v(Y2) = 0

and v(Y1) = 1; then we have D |=v c.
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• Consider m := {1, 2}. The projection of c onto {X1, X2} is X1 ≤ X2 hence

the algorithm sets τ(p) := {1, 2}, δ(p) := 〈p(X1, X2) |X1 ≤ X2〉 and ∆proj :=

(τ, δ). The formula DNlog2(∆proj , r) is equivalent to c → Y1 ≤ Y2. We have

D |=v c and D 6|=v Y1 ≤ Y2 so D 6|=v c→ Y1 ≤ Y2. Therefore, DNlog2(∆proj , r)

does not hold, so ∆proj is not DNlog for r.

• Consider m := {1}. The projection of c onto {X1} is equivalent to the

constraint true. The algorithm sets τ(p) := {1}, δ(p) := 〈pτ (X1) | true〉

and ∆proj := (τ, δ). The formula DNlog1(∆proj , r) is equivalent to c →

∀X1(true → ∃Y1c) i.e. c → ∀X1∃Y1c. We have D |=v c; if we change the

value assigned to X1 to 1, then X1 ≤ X2 (a subformula of c) does not hold

anymore and one cannot find any value for Y1 such that X1 ≤ X2 holds

again; therefore, we have D 6|=v ∀X1∃Y1c so D 6|=v c → ∀X1∃Y1c. Hence,

DNlog1(∆proj , r) does not hold, so ∆proj is not DNlog for r.

• Consider m := {2}. The projection of c onto {X2} is equivalent to the

constraint true. The algorithm sets τ(p) := {2}, δ(p) := 〈pτ (X2) | true〉

and ∆proj := (τ, δ). The formula DNlog1(∆proj , r) is equivalent to c →

∀X2(true → ∃Y2c) i.e. c → ∀X2∃Y2c. We have D |=v c; if we change the

value assigned to X2 to −1, then X1 ≤ X2 (a subformula of c) does not

hold anymore and one cannot find any value for Y2 such that X1 ≤ X2 holds

again; therefore, we have D 6|=v ∀X2∃Y2c so D 6|=v c → ∀X2∃Y2c. Hence,

DNlog1(∆proj , r) does not hold, so ∆proj is not DNlog for r.

• Consider m := ∅. The projection of c onto ∅ is equivalent to the constraint

true. The algorithm sets τ(p) := ∅, δ(p) := 〈pτ | true〉 and ∆proj := (τ, δ).

Both DNlog1(∆proj , r) and DNlog2(∆proj , r) hold as they are equivalent to

c → (true → c) and c → true respectively. So, ∆proj is DNlog for r. As

〈p(Y1, Y2) | c〉 is ∆proj -more general than 〈p(X1, X2) | c〉, by Theorem 4.19

〈p(X1, X2) | c〉 loops w.r.t. {r}. This query allows us to conclude that the

class described by the set of positions {} for p is non-terminating.

Consequently, we get no information about the classes described by the sets of

positions {1, 2}, {1} and {2}. Actually, the class described by {1, 2} is terminating,

i.e. every query in this class does not loop; indeed, intuitively, when the arguments

of p in a query Q are fixed to some values in Q, we have a finite derivation of

{r} ∪ {Q} because in r the first argument of p strictly increases until it becomes

greater than the second argument. Hence, the class described by {1, 2} will not

be inferred by our approach. On the other hand, the query 〈p(1, X) | true〉 loops

w.r.t. {r}, which implies that the class described by {1} is non-terminating. Our

approach fails to infer this result as X1 and X2 interact in c via X1 ≤ X2, so

there is no DNlog filter for r that distinguishes position 1 and not position 2 of p.

Hence, as DN and DNlog match in this example, the DN approach fails2 to infer

2 Note that the situation of this example is different from that of Example 4.32. Here, we cannot
infer the non-termination of the class described by {1} from the non-termination of the class
described by {}. Indeed, every element in the class described by {1} has the form 〈p(t1, t2) | d〉
where d constrains t1 to a ground term; on the other hand, every element in the class described
by {} has the form 〈p(t′

1
, t′

2
) | d′〉 where t′

1
and t′

2
are not constrained to some ground terms;

hence 〈p(t1, t2) | d〉 is not more general than 〈p(t′
1
, t′

2
) | d′〉.
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the non-termination of {1}. So, a limitation of the DN approach when DN and

DNlog match is the following: when two arguments interact, if there is no DNlog

filter that distinguishes both their positions, then it is not possible to infer non-

termination of a class of queries described by a set containing one of these positions

and not the other. Notice that non-interaction of arguments is expressed by DNlog

and not necessarily by DN; when DNlog and DN do not match (see Theorem 4.29),

there are situations where DN arguments can interact with non-DN arguments. In

Example 4.28, the arguments of p at positions 1 and 2 interact via X2 ≥ X1; the

filter that we give in this example distinguishes position 1 but not position 2 of p

and it is DN for r.

5 An Implementation

We have implemented the analysis in SWI-Prolog (Wielemaker 2003) for CLP(Qlin).

The prototype3 takes a recursive binary rule p(X̃) ← c ⋄ p(Ỹ ) as input and tries

to find a filter with the projection of the constraint c of the considered rule onto

its head variables X̃. For each possible set of positions, it computes the four logical

formulas corresponding to Definition 4.14 and Definition 4.24. As the number of

such sets is exponential w.r.t. the arity of the predicate p, our analysis is at least

exponential. These formulas are evaluated by a decision procedure for arbitrary

logical formulas over 〈Q; {0, 1}; {+}; {=, <}〉. If they are true (note that Lemma

4.31 shows that some tests are redundant), the analyzer prints the corresponding

filter and computes a concrete looping query.

So the analyzer implements Theorem 4.19 with the help of Theorem 4.27. We

point out that the analysis can be automated for any constraint domain the theory

of which is decidable, e.g. logic programming with finite trees and logic program-

ming with rational trees (Maher 1988).

Table 1 summarizes the result of the analysis of a set of handcrafted binary

rules. The symbol X indicates thoses examples that the analysis presented in

(Payet and Mesnard 2004) could not prove non-terminating.

6 Conclusion

In (Payet and Mesnard 2006) we have presented a technique to complement termi-

nation analysis with non-termination inside the logic programming paradigm. Our

aim was to detect optimal termination conditions expressed in a language describing

classes of queries. The approach was syntactic and linked to some basic logic pro-

gramming machinery such as the unification algorithm. In (Payet and Mesnard 2004)

we have presented a first step at generalizing the work of (Payet and Mesnard 2006)

to the CLP setting. The logical criterion we gave only considers those filters, the

function δ of which does not filter anything i.e. δ maps any predicate symbol p to

〈pτ (X̃) | true〉.

This paper describes a generalization of (Payet and Mesnard 2006) to the CLP

3 available at http://personnel.univ-reunion.fr/fred/dev/DNlog4Q.zip
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Table 1. Running the analyzer on a set of examples.

binary clause τ δ looping query

p(A)← true ⋄ p(B) {1} 〈p(X) | true〉 〈p(0) | true〉

p(A)← A = B ⋄ p(B) {1} 〈p(X) | true〉 〈p(0) | true〉

p(A)← A = 0 ⋄ p(B) ∅ 〈p | true〉 〈p(A) |A = 0〉

p(A)← A = 0 ∧ B = 0 ⋄ p(B) ∅ 〈p | true〉 〈p(A) |A = 0〉

p(A)← A = 0 ∧ B = 1 ⋄ p(B) none found

p(A)← A ≥ 0 ∧ B = 1 ⋄ p(B) {1} 〈p(X) |X ≥ 0〉 〈p(0) | true〉 X

p(A)← A ≥ 0 ∧ B ≥ 1 ⋄ p(B) {1} 〈p(X) |X ≥ 0〉 〈p(0) | true〉 X

p(A)← A ≥ 0 ∧ B ≥ −1 ⋄ p(B) ∅ 〈p | true〉 〈p(A) |A ≥ 0〉

p(A)← A ≥ 1 ∧ B ≤ 0 ⋄ p(B) none found

p(A)← A = B + 1 ∧B ≥ 0 ⋄ p(B) ∅ 〈p | true〉 〈p(A) |A ≥ 1〉

p(A,B)← A = C + 1 ∧ C ≥ 0 {2} 〈p(Y ) | true〉 〈p(A, 0) |A ≥ 1〉
⋄ p(C,D)

p(A,B)← A = C + 1 ∧ C ≥ 0 {2} 〈p(Y ) | true〉 〈p(A, 0) |A ≥ 1〉
∧B = D ⋄ p(C,D)

p(A,B)← A = C + 1 ∧ C ≥ 0 {2} 〈p(Y ) | true〉 〈p(A, 0) |A ≥ 1〉
∧B + 1 = D ⋄ p(C,D)

p(A,B)← A = C + 1 ∧ C ≥ 0 {2} 〈p(Y ) |Y ≥ −1〉 〈p(A,−1) |A ≥ 1〉 X

∧B + 1 = D ∧D ≥ 0
⋄ p(C,D)

p(A,B)← A = C + 1 ∧ C ≥ 0 ∅ 〈p | true〉 〈p(A,B)|A ≥ 1
∧B = D + 1 ∧D ≥ 0 ∧B ≥ 1〉
⋄ p(C,D)

p(A,B)← A ≥ B ∧ C = A+ 1 {1,2} 〈p(X,Y ) |X ≥ Y 〉 〈p(0, 0) | true〉 X

∧D = B ⋄ p(C,D)

p(A,B)← A ≤ B ∧ C = A+ 1 ∅ 〈p | true〉 〈p(A,B) |A ≤ B〉
∧D = B ⋄ p(C,D)

pow2(A,B,C)← {2, 3} 〈pow2(Y,Z)| 〈pow2(A, 1, 2)| X

A = D + 1 ∧D ≥ 0 Y ≥ 1 ∧ Z ≥ 2〉 A ≥ 1〉
∧E = 2 ∗ B ∧B ≥ 1
∧F = C ∧ C ≥ 2
⋄ pow2(D,E, F )
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setting. It presents a criterion, both in an operational and a logical form, to infer

non-terminating atomic queries with respect to a binary CLP clause. This crite-

rion is generic in the constraint domain; its logical form strictly generalizes that

of (Payet and Mesnard 2004) and it has been fully implemented for CLP(Qlin).

Acknowledgments

The authors thank the anonymous reviewers for helpful comments on the previous

versions of this paper.

References

Bol, R. N.,Apt, K. R., and Klop, J. W. 1991. An analysis of loop checking mechanisms
for logic programs. Theoretical Computer Science 86, 35–79.

Codish, M. and Taboch, C. 1999. A semantics basis for termination analysis of logic
programs. Journal of Logic Programming 41, 1, 103–123.

De Schreye, D., Bruynooghe, M., and Verschaetse, K. 1989. On the existence of
nonterminating queries for a restricted class of Prolog-clauses. Artificial Intelligence 41,
237–248.

De Schreye, D. and Decorte, S. 1994. Termination of logic programs: the never-ending
story. Journal of Logic Programming 19-20, 199–260.

Gabbrielli, M. and Giacobazzi, R. 1994. Goal independency and call patterns in the
analysis of logic programs. In Proc. of the ACM Symposium on Applied Computing
(SAC’94). ACM Press, 394–399.

Giesl, J., Thiemann, R., and Schneider-Kamp, P. 2005. Proving and disproving ter-
mination of higher-order functions. In Proc. of the 5th International Workshop on Fron-
tiers of Combining Systems (FroCoS’05), B. Gramlich, Ed. Lecture Notes in Artificial
Intelligence, vol. 3717. Springer-Verlag, 216–231.

Godefroid, P., Klarlund, N., and Sen, K. 2005. DART: Directed Automated Random
Testing. In Proc. of the ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation (PLDI’05), V. Sarkar and M. W. Hall, Eds. ACM, 213–223.

Gupta, A., Henzinger, T. A.,Majumdar, R.,Rybalchenko, A., and Xu, R.-G. 2008.
Proving non-termination. In Proc. of the 35th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’08), G. Necula and P. Wadler, Eds.
ACM, 147–158.

Jaffar, J., Maher, M. J., Marriott, K., and Stuckey, P. J. 1998. The semantics of
constraint logic programs. Journal of Logic Programming 37, 1-3, 1–46.

Maher, M. 1988. Complete axiomatizations of the algebras of finite, rational and infinite
trees. In Proc. of the 3rd Annual Symposium on Logic in Computer Science (LICS’88).
IEEE Computer Society, 348–357.

Mesnard, F. and Ruggieri, S. 2003. On proving left termination of constraint logic
programs. ACM Transactions on Computational Logic 4, 2, 207–259.

Payet, E. 2008. Loop detection in term rewriting using the eliminating unfoldings. The-
oretical Computer Science 403, 307–327.

Payet, E. and Mesnard, F. 2004. Non-termination inference for constraint logic pro-
grams. In Proc. of the 11th International Symposium on Static Analysis (SAS’04),
R. Giacobazzi, Ed. Lecture Notes in Computer Science, vol. 3148. Springer-Verlag,
377–392.
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Appendix A – Proof of the results in Section 3

A.1 – Lemma 3.3

If Set(Q) = ∅ then Set(Q) ⊆ Set(Q′). Otherwise, let 〈p(t̃) | d〉 := Q and let

〈p(t̃′) | d′〉 := Q′. As Q′ is a variant of Q, there exists a renaming γ such that

t̃′ = γ(t̃) and d′ = γ(d). Let p(ã) ∈ Set(Q). Then, there exists a valuation v such

that ã = [t̃]v and D |=v d. Let v1 be the valuation defined as: for all variable V ,

v1(V ) = v(γ−1(V )). Then, we have [t̃′]v1 = [γ(t̃)]v1 = [γ−1(γ(t̃))]v = [t̃]v = ã.

Moreover, [d′]v1 = [γ(d)]v1 = [γ−1(γ(d))]v = [d]v = 1. Consequently, D |=v1 d′.

Therefore, p(ã) ∈ Set(Q′).

So, we always have Set(Q) ⊆ Set(Q′). The proof of Set(Q′) ⊆ Set(Q) follows by

symmetry.

A.2 – Lemma 3.4

Let 〈p(ũ) | d〉 := Q.
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⇒) Suppose that there exists a derivation step of the form Q=⇒
r

Q1. Then, H

has the form p(s̃). Let r′ := p(s̃′) ← c′ ⋄ B′ be the input clause of this step.

We have D |= ∃(ũ = s̃′ ∧ c′ ∧ d). So, there exists a valuation v such that

D |=v (ũ = s̃′ ∧ c′ ∧ d). Notice that:

p([ũ]v) ∈ Set(Q) and p([s̃′]v) ∈ Set(〈p(s̃′) | c′〉) and [ũ]v = [s̃′]v.

Hence, Set(Q)∩Set(〈p(s̃′) | c′〉) 6= ∅. As 〈p(s̃′) | c′〉 is a variant of 〈p(s̃) | c〉, by

Lemma 3.3 we have Set(Q)∩Set(〈p(s̃) | c〉) 6= ∅ i.e. Set(Q)∩Set(〈H | c〉) 6= ∅.

⇐) Suppose that Set(Q) ∩ Set(〈H | c〉) 6= ∅. Then, H has the form p(s̃) and we

have Set(Q) ∩ Set(〈p(s̃) | c〉) 6= ∅. Let r′ := p(s̃′) ← c′ ⋄ B′ be a variant of r

variable disjoint with Q. By Lemma 3.3, Set(〈p(s̃′) | c′〉) = Set(〈p(s̃) | c〉), so

we have Set(Q) ∩ Set(〈p(s̃′) | c′〉) 6= ∅. Let p(ã) ∈ Set(Q) ∩ Set(〈p(s̃′) | c′〉).

Then, there exists:

— a valuation v1 such that ã = [ũ]v1 and D |=v1 d,

— a valuation v2 such that ã = [s̃′]v2 and D |=v2 c′.

As r′ and Q are variable disjoint, there exists a valuation v such that:

— for all variable V ∈ Var(Q), v(V ) = v1(V ) and

— for all variable V ∈ Var(r′), v(V ) = v2(V ).

Then, we have [ũ]v = [ũ]v1 = ã, [s̃′]v = [s̃′]v2 = ã, [d]v = [d]v1 = 1 and

[c′]v = [c′]v2 = 1. Consequently, D |=v (ũ = s̃′ ∧ c′ ∧ d). Hence, solv (ũ =

s̃′ ∧ c′ ∧ d) = true, so we have Q=⇒
r
〈B′ | ũ = s̃′ ∧ c′ ∧ d〉.

A.3 – Theorem 3.7

We have already proved that there exists a query Q′
1 such that Q′ =⇒

r
Q′

1 (see

beginning of Section 3.2). Let 〈p(ũ) | d〉 := Q and 〈p(ũ′) | d′〉 := Q′. Let r1 :=

p(s̃1) ← c1 ⋄ q(t̃1) be the input clause in Q=⇒
r

Q1 and r′1 := p(s̃′1) ← c′1 ⋄ q(t̃
′
1) be

the input clause in Q′ =⇒
r

Q′
1. Then,

Q1 = 〈q(t̃1) | ũ = s̃1 ∧ c1 ∧ d〉 and Q′
1 = 〈q(t̃

′
1) | ũ

′ = s̃′1 ∧ c′1 ∧ d′〉 .

Let us prove that Q′
1 is more general than Q1 i.e. that Set(Q1) ⊆ Set(Q′

1). If

Set(Q1) is empty, then the result trivially holds. Suppose that Set(Q1) is not empty.

Let q(ã) ∈ Set(Q1). Then, there exists a valuation v such that

ã = [t̃1]v and D |=v (ũ = s̃1 ∧ c1 ∧ d) . (A1)

Hence, D |=v d, so p([ũ]v) ∈ Set(Q). As Q′ is more general than Q, then p([ũ]v) ∈

Set(Q′). Consequently, there exists a valuation v′1 such that

[ũ]v = [ũ′]v′

1
and D |=v′

1
d′ . (A2)

Notice that r1 and r′1 are variants, so r1 = γ(r′1) for a renaming γ. As Q′ and r′1
are variable disjoint (because r′1 is the input clause in Q′=⇒

r
Q′

1), there exists a

valuation v′ such that:
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• for all variable V ∈ Var(r′1), v
′(V ) = v(γ(V )) and

• for all variable V ∈ Var(Q′), v′(V ) = v′1(V ).

Then, we have [s̃′1]v′ = [γ(s̃′1)]v = [s̃1]v with [s̃1]v = [ũ]v by (A1) and [ũ′]v′ = [ũ′]v′

1

with [ũ′]v′

1
= [ũ]v by (A2). So, [s̃′1]v′ = [ũ′]v′ . Moreover, [c′1]v′ = [γ(c′1)]v = [c1]v

with [c1]v = 1 by (A1) and [d′]v′ = [d′]v′

1
with [d′]v′

1
= 1 by (A2). So, we have

D |=v′ (ũ′ = s̃′1 ∧ c′1 ∧ d′). As [t̃′1]v′ = [γ(t̃′1)]v = [t̃1]v with [t̃1]v = ã by (A1), we

conclude that q(ã) ∈ Set(Q′
1).

A.4 – Corollary 3.8 and Corollary 3.9

First, we need a lemma.

Lemma 1

Let r := H ← c ⋄ B be a clause. Then, there exists a derivation step 〈H | c〉=⇒
r

Q

where Set(Q) = Set(〈B | c〉).

Proof

AsD |= ∃c (by definition of a clause), we have Set(〈H | c〉) 6= ∅. Hence, Set(〈H | c〉)∩

Set(〈H | c〉) 6= ∅. Consequently, by Lemma 3.4, there exists a derivation step of the

form 〈H | c〉=⇒
r

Q. Let us prove that Set(Q) = Set(〈B | c〉). Let p(s̃) := H and

q(t̃) := B. Let r′ := p(s̃′) ← c′ ⋄ q(t̃′) be the input clause in 〈H | c〉=⇒
r

Q. Then,

Q = 〈q(t̃′) | s̃′ = s̃ ∧ c′ ∧ c〉. Let γ be a renaming such that r = γ(r′).

• Let us prove that Set(〈B | c〉) ⊆ Set(Q). If Set(〈B | c〉) is empty, then the result

holds. Suppose that Set(〈B | c〉) is not empty. Let q(ã) ∈ Set(〈B | c〉). Then, there

exists a valuation v such that ã = [t̃]v and D |=v c. Let v1 be the valuation defined

as:

— for all variable V ∈ Var(r′), v1(V ) = v(γ(V )) and

— for all variable V 6∈ Var(r′), v1(V ) = v(V ).

Then, we have [t̃′]v1 = [γ(t̃′)]v = [t̃]v = ã and [s̃′]v1 = [γ(s̃′)]v = [s̃]v with [s̃]v =

[s̃]v1 because, as r′ is the input clause in 〈H | c〉=⇒
r

Q, r′ is variable disjoint with

〈H | c〉 = 〈p(s̃) | c〉. Moreover, [c′]v1 = [γ(c′)]v = [c]v = 1 and [c]v1 = [c]v (because

r′ is variable disjoint with 〈p(s̃) | c〉) i.e. [c]v1 = 1. Consequently, [t̃′]v1 = ã and

D |=v1 (s̃ = s̃′ ∧ c′ ∧ c). Hence, q(ã) ∈ Set(Q).

• Let us prove that Set(Q) ⊆ Set(〈B | c〉). If Set(Q) is empty, then the result holds.

Suppose that Set(Q) is not empty. Let q(ã) ∈ Set(Q). Then, there exists a valuation

v such that ã = [t̃′]v and D |=v (s̃′ = s̃ ∧ c′ ∧ c). Let v1 be a valuation such that:

for all variable V ∈ Var(r), v1(V ) = v(γ−1(V )). Then, we have [t̃]v1 = [γ−1(t̃)]v =

[t̃′]v = ã and [c]v1 = [γ−1(c)]v = [c′]v = 1. Consequently, [t̃]v1 = ã and D |=v1 c.

Hence, q(ã) ∈ Set(〈B | c〉).
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Corollary 3.8

By Lemma 1, there exists a derivation step of the form 〈H | c〉=⇒
r

Q with Set(Q) =

Set(〈B | c〉). Then, Set(〈H | c〉) ⊆ Set(Q) (because Set(〈H | c〉) ⊆ Set(〈B | c〉)) so,

by repeatedly using the Lifting Theorem 3.7, one can build an infinite derivation

of {r} ∪ {〈H | c〉}. Consequently, 〈H | c〉 loops w.r.t. {r}.

Corollary 3.9

By Lemma 1, we have 〈H | c〉=⇒
r

Q where Q is more general than 〈B | c〉. As there

exists an infinite derivation ξ of P ∪ {〈B | c〉}, by successively applying the Lifting

Theorem 3.7 to each step of ξ one can construct an infinite derivation of P ∪ {Q}.

Consequently, 〈H | c〉 loops w.r.t. P .
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Appendix B – Proof of the results in Section 4

B.1 – Lemma 4.9 and Lemma 4.10

Lemma 4.9

If Set(Q) = ∅ then Set(Qτ ) = ∅, so the result holds. Otherwise, as Set(Q) ⊆

Set(Q′), then rel(Q) = rel(Q′) i.e. Q has the form 〈p(t̃) | d〉 and Q′ has the form

〈p(t̃′) | d′〉. Notice that

Qτ = 〈pτ (t̃τ(p)) | d〉 and Q′
τ = 〈pτ (t̃

′
τ(p)) | d

′〉 .

If Set(Qτ ) is empty, then the result holds. Suppose that Set(Qτ ) is not empty.

Let pτ (ã) ∈ Set(Qτ ). Then, there exists a valuation v such that ã = [t̃τ(p)]v and

D |=v d. Let b̃ be the sequence of arity(p) elements of D defined as:

• b̃τ(p) = ã, i.e. b̃τ(p) = [t̃τ(p)]v, and

• b̃τ(p) = [t̃τ(p)]v.

Then, we have b̃ = [t̃]v with D |=v d. Therefore, p(b̃) ∈ Set(Q). As Set(Q) ⊆

Set(Q′), then p(b̃) ∈ Set(Q′). Consequently, there exists a valuation v′ such that

b̃ = [t̃′]v′ and D |=v′ d′. Hence, we have ã = b̃τ(p) = [t̃′
τ(p)]v′ and D |=v′ d′. So,

pτ (ã) ∈ Set(Q′
τ ).

Lemma 4.10

If Set(Q)∩Set(Q′) 6= ∅ then there exists p(ã) ∈ Set(Q)∩Set(Q′) i.e. p(ã) ∈ Set(Q)

and p(ã) ∈ Set(Q′). This implies that pτ (ãτ(p)) ∈ Set(Qτ ) and pτ (ãτ(p)) ∈ Set(Q′
τ ).

So, pτ (ãτ(p)) ∈ Set(Qτ ) ∩ Set(Q′
τ ). Therefore, Set(Qτ ) ∩ Set(Q′

τ ) 6= ∅.

B.2 – Lemma 4.16

Let ∆ := (τ, δ) be a filter. Let Q, Q′ and Q′′ be some queries such that Q′′ is ∆-

more general than Q′ and Q′ is ∆-more general than Q. As Q′′ is ∆-more general

than Q′, then Q
′′

τ is more general than Q′
τ and Q′′ satisfies ∆. As Q′ is ∆-more

general than Q, then Q′
τ is more general than Qτ . Consequently, Q

′′

τ is more general

than Qτ (because the “more general than” relation is transitive) and Q′′ satisfies

∆. Therefore, Q′′ is ∆-more general than Q.

B.3 – Theorem 4.19

By Lemma 1, we have 〈H | c〉=⇒
r

Q where Set(Q) = Set(〈B | c〉). So by Lemma 4.9,

Qτ is more general than 〈B | c〉τ

and Set(Qτ ) ⊆ Set(〈B | c〉τ ). As 〈B | c〉 satisfies ∆ (because 〈B | c〉 is ∆-more general

than 〈H | c〉), we have Set(〈B | c〉τ ) ⊆ Set(δ(q)) where we let q := rel(B). Hence,

Set(Qτ ) ⊆ Set(δ(q)) i.e.

Q satisfies ∆.
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Therefore, Q is ∆-more general than 〈B | c〉. So, as 〈B | c〉 is ∆-more general than

〈H | c〉 and the “∆-more general than” relation is transitive (by Lemma 4.16), we

have that Q is ∆-more general than 〈H | c〉. As ∆ is DN for r, by repeatedly using

Definition 4.18, one can build an infinite derivation of {r}∪{〈H | c〉}. Consequently,

〈H | c〉 loops w.r.t. {r}.

B.4 – Lemma 4.23

Let 〈p(s̃) | d〉 := Q. Let Q′ := 〈p(s̃′) | d′〉 be a variant of Q variable disjoint with ũ.

⇒) Suppose that p([ũ]v) ∈ Set(Q). Then, as by Lemma 3.3 Set(Q) = Set(Q′), we

have p([ũ]v) ∈ Set(Q′). Hence, there exists a valuation w such that [ũ]v = [s̃′]w
and D |=w d′. Let v1 be a valuation such that:

— for all variable V ∈ Var(Q′), v1(V ) = w(V ) and

— for all variable V 6∈ Var(Q′), v1(V ) = v(V ).

Then, as Q′ and ũ are variable disjoint, [ũ]v1 = [ũ]v. Moreover, [s̃′]v1 =

[s̃′]w = [ũ]v and [d′]v1 = [d′]w = 1. Hence, D |=v1 (ũ = s̃′ ∧ d′). Therefore,

D |=v ∃Var(Q′)(ũ = s̃′ ∧ d′) i.e. D |=v sat(ũ, Q).

⇐) Suppose that D |=v sat(ũ, Q) i.e. D |=v ∃Var(Q′)(ũ = s̃′ ∧ d′). Then, there

exists a valuation v1 such that

— D |=v1 (ũ = s̃′ ∧ d′) and

— for all variable V 6∈ Var(Q′), v1(V ) = v(V ).

As Q′ and ũ are variable disjoint, we have [ũ]v = [ũ]v1 . Moreover, [ũ]v1 = [s̃′]v1
and D |=v1 d′. Consequently, p([ũ]v) ∈ Set(Q′). As, by Lemma 3.3, Set(Q) =

Set(Q′), we have p([ũ]v) ∈ Set(Q).

B.5 – Theorem 4.27

First, we need a technical lemma:

Lemma 2

Let Q := 〈p(ũ) | d〉 and Q′ := 〈p(ũ′) | d′〉 be two variable disjoint queries. If Set(Q)∩

Set(Q′) 6= ∅ then there exists a valuation v such that D |=v (ũ = ũ′ ∧ d ∧ d′).

Proof

Suppose that Set(Q)∩Set(Q′) 6= ∅. Then, there exists p(ã) such that p(ã) ∈ Set(Q)

and p(ã) ∈ Set(Q′). Hence, there exists:

• a valuation v1 such that ã = [ũ]v1 and D |=v1 d and

• a valuation v2 such that ã = [ũ′]v2 and D |=v2 d′.

As Q and Q′ are variable disjoint, there exists a valuation v such that:

• for all variable V ∈ Var(Q), v(V ) = v1(V ) and

• for all variable V ∈ Var(Q′), v(V ) = v2(V ).
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Then, [d]v = [d]v1 = 1, [d′]v = [d′]v2 = 1 and [ũ]v = [ũ]v1 = ã = [ũ′]v2 = [ũ′]v.

Consequently, D |=v (ũ = ũ′ ∧ d ∧ d′).

Given a clause r and a filter ∆ that is DNlog for r, we have to prove that ∆ is

DN for r. By Definition 4.18, given a derivation step Q=⇒
r

T , we have to establish

the following facts:

Fact 1. The query T satisfies ∆.

Fact 2. For each query Q′ that is ∆-more general than Q, there exists a derivation

step Q′ =⇒
r

T ′ where T ′ is ∆-more general than T .

Fact 1 is established by Proposition 3 below. We prove Fact 2 in two steps; given a

query Q′ that is ∆-more general than Q, we prove that:

Fact 2a. there exists a derivation step Q′ =⇒
r

T ′ where T ′ satisfies ∆ (see Proposition 4

below).

Fact 2b. the query T ′ in Q′ =⇒
r

T ′ is such that T ′
τ is more general than Tτ (see Propo-

sition 5 below).

Then by Definition 4.14, the query T ′ is ∆-more general than T .

Proposition 3

Let ∆ be a filter that is DNlog for a clause r and Q=⇒
r

T be a derivation step.

Then, T satisfies ∆.

Proof

Let (τ, δ) := ∆ and 〈p(ũ) | d〉 := Q. Let r1 := p(X̃)← c ⋄ q(Ỹ ) be the input clause

in Q=⇒
r

T . Then, T = 〈q(Ỹ ) | X̃ = ũ ∧ c ∧ d〉. Let us prove that T satisfies ∆ i.e.

that Set(Tτ ) ⊆ Set(δ(q)). Let qτ (ã) ∈ Set(Tτ ). Then, there exists a valuation v

such that

ã = [Ỹτ(q)]v and D |=v X̃ = ũ ∧ c ∧ d . (B1)

As ∆ is DNlog for r, it is also DNlog for r1. Consequently, we have D |=v c →

sat(Ỹτ(q), δ(q)). As D |=v c (by (B1)), then we have D |=v sat(Ỹτ(q), δ(q)). There-

fore, by Lemma 4.23, qτ ([Ỹτ(q)]v) ∈ Set(δ(q)) i.e. qτ (ã) ∈ Set(δ(q)).

Proposition 4

Let ∆ be a filter that is DNlog for a clause r, Q=⇒
r

T be a derivation step and

Q′ be a query that is ∆-more general than Q. Then, there exists a derivation step

Q′=⇒
r

T ′ where T ′ satisfies ∆.

Proof

Let (τ, δ) := ∆ and H ← c ⋄ B := r. As Q′ is ∆-more general than Q, Set(Qτ ) ⊆

Set(Q′
τ ). Moreover, as Q=⇒

r
T , by Lemma 3.4 we have Set(Q) ∩ Set(〈H | c〉) 6= ∅.

So, by Lemma 4.10, Set(Qτ ) ∩ Set(〈H | c〉τ ) 6= ∅. Hence,

Set(Q′
τ ) ∩ Set(〈H | c〉τ ) 6= ∅ . (B2)
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Let 〈p(ũ′) | d′〉 := Q′ and r′ := p(X̃ ′) ← c′ ⋄ q(Ỹ ′) be a variant of r variable

disjoint with Q′. By Lemma 3.3, we have Set(〈H | c〉) = Set(〈p(X̃ ′) | c′〉) which

implies, by Lemma 4.9, that Set(〈H | c〉τ ) ⊆ Set(〈p(X̃ ′) | c′〉τ ) i.e., by (B2), that

Set(Q′
τ ) ∩ Set(〈p(X̃ ′) | c′〉τ ) 6= ∅. Therefore, by Lemma 2, there exists a valuation

v such that

D |=v (X̃ ′
τ(p) = ũ′

τ(p) ∧ c′ ∧ d′) . (B3)

As ∆ is DNlog for r, it is also DNlog for r′. Hence, if we let Y := Ỹ ′
τ(q)∪local vars(r

′),

we have D |=v c′ → ∀X̃′

τ(p)

[

sat(X̃ ′
τ(p), δ(p))→ ∃Yc

′
]

. As by (B3) D |=v c′, then

D |=v ∀X̃′

τ(p)

[

sat(X̃ ′
τ(p), δ(p))→ ∃Yc

′
]

. (B4)

Let v1 be the valuation defined as:

• for all variable V 6∈ X̃ ′
τ(p), v1(V ) = v(V ) and

• v1(X̃
′
τ(p)) = [ũ′

τ(p)]v.

Then by (B4) we have:

D |=v1 sat(X̃ ′
τ(p), δ(p))→ ∃Yc

′ . (B5)

Notice that pτ ([ũ
′
τ(p)]v) ∈ Set(Q′

τ ) because, by (B3), D |=v d′. Moreover, as Q′

satisfies ∆, Set(Q′
τ ) ⊆ Set(δ(p)). Hence, pτ ([ũ

′
τ(p)]v) ∈ Set(δ(p)). As, by definition

of v1, [ũ
′
τ(p)]v = v1(X̃

′
τ(p)) with v1(X̃

′
τ(p)) = [X̃ ′

τ(p)]v1 (by definition of [·]v1), we

have pτ ([X̃
′
τ(p)]v1) ∈ Set(δ(p)). So, by Lemma 4.23, D |=v1 sat(X̃ ′

τ(p), δ(p)). Hence,

by (B5), D |=v1 ∃Yc
′. Therefore, there exists a valuation v2 such that:

• for all variable V 6∈ Y, v2(V ) = v1(V ) and
• D |=v2 c′.

Notice that as Var(Q′)∩Var(r′) = X̃ ′
τ(p)∩ (X̃

′
τ(p)∪Y) = ∅, by definition of v2 and

v1 we have [d′]v2 = [d′]v1 = [d′]v, [ũ
′]v2 = [ũ′]v1 = [ũ′]v and [X̃ ′

τ(p)]v2 = [X̃ ′
τ(p)]v1 =

[X̃ ′
τ(p)]v. So, by (B3), we have

D |=v2 (X̃ ′
τ(p) = ũ′

τ(p) ∧ c′ ∧ d′) . (B6)

As X̃ ′
τ(p) and Y are variable disjoint, [X̃ ′

τ(p)]v2 = [X̃ ′
τ(p)]v1 with [X̃ ′

τ(p)]v1 = [ũ′
τ(p)]v

by definition of v1 and [ũ′
τ(p)]v = [ũ′

τ(p)]v2 . So, D |=v2 (X̃ ′
τ(p) = ũ′

τ(p)). Hence

by (B6) D |=v2 (X̃ ′ = ũ′ ∧ c′ ∧ d′) i.e. solv (X̃ ′ = ũ′ ∧ c′ ∧ d′) = true. Consequently,

we have

Q′ =⇒
r

T ′ where T ′ = 〈q(Ỹ ′) | X̃ ′ = ũ′ ∧ c′ ∧ d′〉 .

Let us prove that T ′ satisfies ∆ i.e. that Set(T ′
τ ) ⊆ Set(δ(q)). Let qτ (ã) ∈ Set(T ′

τ ).

Then, there exists a valuation w such that

ã = [Ỹ ′
τ(q)]w and D |=w X̃ ′ = ũ′ ∧ c′ ∧ d′ . (B7)

As ∆ is DNlog for r′, we have D |=w c′ → sat(Ỹ ′
τ(q), δ(q)). As D |=w c′ (by (B7)),

then we have D |=w sat(Ỹ ′
τ(q), δ(q)). So, by Lemma 4.23, qτ ([Ỹ

′
τ(q)]w) ∈ Set(δ(q)).

As ã = [Ỹ ′
τ(q)]w (by (B7)), we have qτ (ã) ∈ Set(δ(q)).
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Proposition 5

Let ∆ := (τ, δ) be a filter that is DNlog for a clause r. Let Q=⇒
r

T and Q′=⇒
r

T ′

be some derivation steps such that Q′ is ∆-more general than Q. Then, T ′
τ is more

general than Tτ .

Proof

Let 〈p(ũ) | d〉 := Q and 〈p(ũ′) | d′〉 := Q′. Let r1 := p(X̃) ← c ⋄ q(Ỹ ) be the input

clause in Q=⇒
r

T and r′1 := p(X̃ ′)← c′ ⋄ q(Ỹ ′) that in Q′=⇒
r

T ′. Then, we have

T = 〈q(Ỹ ) | X̃ = ũ ∧ c ∧ d〉 and T ′ = 〈q(Ỹ ′) | X̃ ′ = ũ′ ∧ c′ ∧ d′〉 .

Let us prove that Set(Tτ ) ⊆ Set(T ′
τ ). Let qτ (ã) ∈ Set(Tτ ). Then, there exists a

valuation v such that

ã = [Ỹτ(q)]v and D |=v X̃ = ũ ∧ c ∧ d . (B8)

So, D |=v d, hence pτ ([ũτ(p)]v) ∈ Set(Qτ ). As Set(Qτ ) ⊆ Set(Q′
τ ) (because Q

′ is ∆-

more general than Q), we have pτ ([ũτ(p)]v) ∈ Set(Q′
τ ). So, there exists a valuation

v′1 such that

[ũτ(p)]v = [ũ′
τ(p)]v′

1
and D |=v′

1
d′ . (B9)

Notice that r1 and r′1 are variants, so r1 = γ(r′1) for a renaming γ. As Q′ and r′1
are variable disjoint (because r′1 is the input clause in Q′ =⇒

r
T ′), there exists a

valuation v′ such that:

• for all variable V ∈ Var(r′1), v
′(V ) = v(γ(V )) and

• for all variable V ∈ Var(Q′), v′(V ) = v′1(V ).

Then, we have

• [X̃ ′
τ(p)]v′ =

def v′

[γ(X̃ ′
τ(p))]v =

def γ
[X̃τ(p)]v =

(B8)
[ũτ(p)]v =

(B9)
[ũ′

τ(p)]v′

1
=

def v′

[ũ′
τ(p)]v′

• [c′]v′ =
def v′

[γ(c′)]v =
def γ

[c]v =
(B8)

1 and [d′]v′ =
def v′

[d′]v′

1
=

(B9)
1

• [Ỹ ′
τ(q)]v′ =

def v′

[γ(Ỹ ′
τ(q))]v =

def γ
[Ỹτ(q)]v =

(B8)
ã.

Hence,

D |=v′ X̃ ′
τ(p) = ũ′

τ(p) ∧ c′ ∧ d′ and [Ỹ ′
τ(q)]v′ = ã . (B10)

As ∆ is DNlog for r, then it is DNlog for r′1. Consequently, if we let Y := Ỹ ′
τ(q) ∪

local vars(r′1), we have D |=v′ c′ → ∀X̃′

τ(p)

[

sat(X̃ ′
τ(p), δ(p))→ ∃Yc

′
]

. As, by (B10),

D |=v′ c′, we have D |=v′ ∀X̃′

τ(p)

[

sat(X̃ ′
τ(p), δ(p)) → ∃Yc

′
]

. Let w′ be the valuation

defined as:

• for all variable V 6∈ X̃ ′
τ(p), w

′(V ) = v′(V ) and

• w′(X̃ ′
τ(p)) = [ũ′

τ(p)]v′ .

Then,

D |=w′ sat(X̃ ′
τ(p), δ(p))→ ∃Yc

′ . (B11)
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Notice that pτ ([ũ
′
τ(p)]v′) ∈ Set(Q′

τ ) because D |=v′ d′ by (B10). As [ũ′
τ(p)]v′ =

[X̃ ′
τ(p)]w′ (by definition of w′), then pτ ([X̃

′
τ(p)]w′) ∈ Set(Q′

τ ). As Q′ is ∆-more

general than Q, we have Set(Q′
τ ) ⊆ Set(δ(p)). Hence, pτ ([X̃

′
τ(p)]w′) ∈ Set(δ(p)). So,

by Lemma 4.23, D |=w′ sat(X̃ ′
τ(p), δ(p)). Therefore, we have D |=w′ ∃Yc′ by (B11).

Hence, there exists a valuation w′
1 such that:

• for all variable V 6∈ Y, w′
1(V ) = w′(V ) and

• D |=w′

1
c′.

Then, as X̃ ′
τ(p) ∩ Y = X̃ ′

τ(p) ∩ (Y ∪ X̃ ′
τ(p)) = Var(Q′) ∩Var(r′1) = ∅, we have

• [X̃ ′
τ(p)]w′

1
=

def w′

1

[X̃ ′
τ(p)]w′ =

def w′

[ũ′
τ(p)]v′ =

def w′+def w′

1

[ũ′
τ(p)]w′

1
,

• [X̃ ′
τ(p)]w′

1
=

def w′

1

[X̃ ′
τ(p)]w′ =

def w′

[X̃ ′
τ(p)]v′ =

(B10)
[ũ′

τ(p)]v′ =
def w′+def w′

1

[ũ′
τ(p)]w′

1
.

• [d′]w′

1
=

def w′

1+def w′

[d′]v′ =
(B10)

1.

So, D |=w′

1
X̃ ′ = ũ′ ∧ c′ ∧ d′. Moreover, [Ỹ ′

τ(q)]w′

1
= [Ỹ ′

τ(q)]w′ = [Ỹ ′
τ(q)]v′ with

[Ỹ ′
τ(q)]v′ = ã by (B10). Consequently, qτ (ã) ∈ Set(T ′

τ ).

B.6 – Theorem 4.29

Suppose that for all atoms A whose arguments are elements of D, there exists a

query Q such that Set(Q) = {A}. Given a clause r := p(X̃) ← c ⋄ q(Ỹ ) and a

filter ∆ := (τ, δ) that is DN for r, we have to prove that ∆ is DNlog for r. By

Definition 4.24, we have to establish that

• DNlog1(∆, r) :=
(

c→ ∀X̃τ(p)

[

sat(X̃τ(p), δ(p))→ ∃Yc
])

and

• DNlog2(∆, r) :=
(

c→ sat(Ỹτ(q), δ(q))
)

hold. Proposition 6 below establishes that DNlog1(∆, r) is true and Proposition 6

below establishes that DNlog2(∆, r) is true.

Proposition 6

Assume that the following holds: for each atom A whose arguments are elements

of D, there exists a query Q such that Set(Q) = {A}. Let ∆ be a filter that is DN

for a clause r. Then, D |= DNlog1(∆, r).

Proof

We let ∆ := (τ, δ) and r := p(X̃)← c ⋄ q(Ỹ ).

Let v be a valuation. Suppose that

D |=v c . (B12)

Let v′ be a valuation such that for all variable V 6∈ X̃τ(p), v
′(V ) = v(V ). Suppose

that

D |=v′ sat(X̃τ(p), δ(p)) . (B13)

Notice that for all variable V , [V ]v ∈ D and [V ]v′ ∈ D. So, there exists a query Q

such that Set(Q) = {p([X̃]v)} and a query Q′ such that Set(Q′
τ ) = {pτ ([X̃τ(p)]v′)}

and Set(Q′
τ ) = {pτ ([X̃τ(p)]v)}. Let us prove that D |=v′ ∃Yc. We have:
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• Set(Qτ ) = {pτ ([X̃τ(p)]v)} = Set(Q′
τ ) and

• pτ ([X̃τ(p)]v′) ∈ Set(δ(p)) because D |=v′ sat(X̃τ(p), δ(p)) and by Lemma 4.23. So,

as Set(Q′
τ ) = {pτ ([X̃τ(p)]v′)}, we have Set(Q′

τ ) ⊆ Set(δ(p)).

Consequently,Q′ is ∆-more general thanQ. Moreover, asD |=v c, we have p([X̃]v) ∈

Set(〈p(X̃) | c〉). As Set(Q) = {p([X̃]v)}, this implies that Set(Q)∩Set(〈p(X̃) | c〉) 6=

∅. Hence, by Lemma 3.4, there exists a derivation step of the form Q=⇒
r

T . Let

r1 := p(Ũ)← c1 ⋄ q(Ṽ ) be the input clause in this derivation step. Then, if we let

Q := 〈p(t̃) | d〉, we have

T = 〈q(Ṽ ) | Ũ = t̃ ∧ c1 ∧ d〉 .

As Q′ is ∆-more general than Q and ∆ is DN for r, there exists a query T ′ such

that Q′ =⇒
r

T ′ and T ′ is ∆-more general than T . Let r′1 := p(Ũ ′) ← c′1 ⋄ q(Ṽ
′) be

the input clause in Q′ =⇒
r

T ′. Then, if we let Q′ := 〈p(t̃′) | d′〉, we have

T ′ = 〈q(Ṽ ′) | Ũ ′ = t̃′ ∧ c′1 ∧ d′〉 .

As r1 is a variant of r, there exists a renaming γ such that r = γ(r1). Let v1 be the

valuation defined as:

• for all variable V ∈ Var(r1), v1(V ) = v(γ(V )) and

• for all variable V 6∈ Var(r1), v1(V ) = v(V ).

As Set(Q) = {p([X̃]v)}, there exists a valuation vQ such that

[t̃]vQ = [X̃]v and D |=vQ d . (B14)

Let v2 be the valuation defined as:

• for all variable V ∈ Var(Q), v2(V ) = vQ(V ) and

• for all variable V 6∈ Var(Q), v2(V ) = v1(V ).

As Var(Q) ∩Var(r1) = ∅ (because r1 is the input clause in Q=⇒
r

T ), we have

[c1]v2 =
def v2

[c1]v1 =
def v1

[γ(c1)]v =
def γ

[c]v =
(B12)

1 and

[Ũ ]v2 =
def v2

[Ũ ]v1 =
def v1

[γ(Ũ)]v =
def γ

[X̃]v =
(B14)

[t̃]vQ =
def v2

[t̃]v2 .

Moreover, [d]v2 =
def v2

[d]vQ =
(B14)

1. Consequently,

D |=v2 Ũ = t̃ ∧ c1 ∧ d .

So, qτ ([Ṽτ(q)]v2) ∈ Set(Tτ ). As [Ṽτ(q)]v2 =
def v2

[Ṽτ(q)]v1 =
def v1

[γ(Ṽτ(q))]v =
def γ

[Ỹτ(q)]v we

have qτ ([Ỹτ(q)]v) ∈ Set(Tτ ). Moreover, as Set(Tτ ) ⊆ Set(T ′
τ ) (because T

′ is ∆-more

general than T ), qτ ([Ỹτ(q)]v) ∈ Set(T ′
τ ). Consequently, there exists a valuation v′1

such that

[Ṽ ′
τ(q)]v′

1
= [Ỹτ(q)]v and D |=v′

1
Ũ ′ = t̃′ ∧ c′1 ∧ d′ . (B15)

As r′1 is a variant of r, there exists a renaming γ′ such that r′1 = γ′(r). Let w
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be a valuation such that for all variable V ∈ Var(r), w(V ) = v′1(γ
′(V )). Then,

[c]w = [γ′(c)]v′

1
= [c′1]v′

1
=

(B15)
1, so

D |=w c . (B16)

Notice that:

• [X̃τ(p)]w =
def w

[γ′(X̃τ(p))]v′

1
=

def γ′

[Ũ ′
τ(p)]v′

1
=

(B15)
[t̃′τ(p)]v′

1
= [X̃τ(p)]v′ because, as D |=v′

1

d′ by (B15), we have pτ ([t̃
′
τ(p)]v′

1
) ∈ Set(Q′

τ ) = {pτ ([X̃τ(p)]v′)};

• [X̃τ(p)]w =
def w

[γ′(X̃τ(p))]v′

1
=

def γ′

[Ũ ′
τ(p)]v′

1
=

(B15)
[t̃′
τ(p)]v′

1
= [X̃τ(p)]v because, as D |=v′

1

d′ by (B15), we have pτ ([t̃
′
τ(p)]v′

1
) ∈ Set(Q′

τ ) = {pτ([X̃τ(p)]v)}; moreover, by defini-

tion of v′, [X̃τ(p)]v = [X̃τ(p)]v′ because X̃τ(p) ∩ X̃τ(p) = ∅;

• [Ỹτ(q)]w =
def w

[γ′(Ỹτ(q))]v′

1
=

def γ′

[Ṽ ′
τ(q)]v′

1
=

(B15)
[Ỹτ(q)]v =

def v′

[Ỹτ(q)]v′ because we have that

Ỹτ(q) ∩ X̃τ(p) = ∅.

Consequently, as Var(c) \ Y ⊆ X̃τ(p) ∪ X̃τ(p) ∪ Ỹτ(q), we have:

for all V ∈ Var(c) \ Y, w(V ) = v′(V ) . (B17)

Let w1 be the valuation defined as:

• for all variable V 6∈ Y, w1(V ) = v′(V ) and

• for all variable V ∈ Y, w1(V ) = w(V ).

Then, for all variable V ∈ Var(c), if V ∈ Y then w1(V ) =
def w1

w(V ) and if V 6∈ Y

then w1(V ) =
def w1

v′(V ) =
(B17)

w(V ). Consequently, [c]w1 = [c]w =
(B16)

1. So, D |=w1 c

which implies, by definition of w1, that D |=v′ ∃Yc.

Hence, as we supposed (B13), we have D |=v′ sat(X̃τ(p), δ(p))→ ∃Yc. Therefore,

as v′ denotes any valuation such that v′(V ) = v(V ) for all variable V 6∈ X̃τ(p), we

get D |=v ∀X̃τ(p)

[

sat(X̃τ(p), δ(p)) → ∃Yc
]

. As we supposed (B12), we deduce that

D |=v c → ∀X̃τ(p)

[

sat(X̃τ(p), δ(p)) → ∃Yc
]

where v denotes any valuation. Hence

the result.

Proposition 7

Let ∆ be a filter that is DN for a clause r. Then, D |= DNlog2(∆, r).

Proof

We let ∆ := (τ, δ) and r := p(X̃)← c ⋄ q(Ỹ ).

By Lemma 1, there exists a derivation step

〈p(X̃) | c〉=⇒
r

Q where Set(Q) = Set(〈q(Ỹ ) | c〉) .

Then, as ∆ is DN for r, Q satisfies ∆ i.e. Set(Qτ ) ⊆ Set(δ(q)). Moreover, as

Set(〈q(Ỹ ) | c〉) ⊆ Set(Q), by Lemma 4.9 Set(〈q(Ỹ ) | c〉τ ) ⊆ Set(Qτ ). So,

Set(〈q(Ỹ ) | c〉τ ) ⊆ Set(δ(q)) . (B18)
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Let v be a valuation. Suppose that

D |=v c . (B19)

Notice that qτ ([Ỹτ(q)]v) ∈ Set(〈q(Ỹ ) | c〉τ ). So, by (B18), qτ ([Ỹτ(q)]v) ∈ Set(δ(q)).

Therefore, by Lemma 4.23, we have D |=v sat(Ỹτ(q), δ(q)). As we supposed (B19),

then we have D |=v c → sat(Ỹτ(q), δ(q)) where v denotes any valuation. Hence the

result.
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