Ontology Matching using Textual Class Descriptions - Equipe Data, Intelligence and Graphs Access content directly
Conference Papers Year : 2023

Ontology Matching using Textual Class Descriptions

Abstract

In this paper, we propose TEXTO, a TEXT-based Ontology matching system. This matcher leverages the rich semantic information of classes available in most ontologies by a combination of a pre-trained word embedding model and a pre-trained language model. Its performance is evaluated on the datasets of the OAEI Common Knowledge Graphs Track, augmented with the description of each class, and a new dataset based on the refreshed alignment of Schema.org and Wikidata. Our results demonstrate that TEXTO outperforms all state-of-art matchers in terms of precision, recall, and F1 score. In particular, we show that almost perfect class alignment can be achieved using textual content only, excluding any structural information like the graph of classes or the instances of each class.
Fichier principal
Vignette du fichier
ISWC-OM-2023/main.pdf (460.4 Ko) Télécharger le fichier
ISWC-OM-2023/cc-by.pdf (58.48 Ko) Télécharger le fichier
ISWC-OM-2023/main.synctex.gz (71.41 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04459105 , version 1 (15-02-2024)

Identifiers

  • HAL Id : hal-04459105 , version 1

Cite

Yiwen Peng, Mehwish Alam, Thomas Bonald. Ontology Matching using Textual Class Descriptions. The 18th International Workshop on Ontology Matching co-located with the 22nd International Semantic Web Conference (ISWC 2023), Athens, Greece, November 7, 2023, Nov 2023, Athens, Greece. ⟨hal-04459105⟩
166 View
41 Download

Share

Gmail Mastodon Facebook X LinkedIn More