
We propose here a model to simulate the process of opinion formation, which accounts for the mutual
affinity between interacting agents. Opinion and affinity evolve self-consistently, manifesting a highly non-
trivial interplay. A continuous transition is found between single and multiple opinion states. Fractal dimension
and signature of critical behavior are also reported. A rich phenomenology is presented and discussed with
reference to corresponding psychological implications.

The paradigms of complex systems are nowadays being
applied to an ample spectrum of interdisciplinary problems,
ranging from molecular biology to social sciences. The chal-
lenge is to model the dynamical evolution of an ensemble
made of interacting, microscopic constituents and infer the
emergence of collective, macroscopic behaviors that are then
eventually accessible for direct experimental inspection. Sta-
tistical mechanics and nonlinear physics provide quantitative
tools to elucidate the key mechanisms underlying the phe-
nomena under scrutiny, often resulting in novel interpretative
frameworks. Agent-based computational models have been
widely employed for simulating complex adaptive systems,
in particular with reference to sociophysics applications.
Within this context, opinion dynamics has recently attracted
a growing interest clearly testified by the vast production of
specialized contributions �1�. Peculiar aspects of its intrinsic
dynamics make opinion formation a rich field of analysis
where self-organization, clustering, and polarization occur.

Opinion dynamics models can be ideally grouped into two
large classes. The first deals with binary opinions: Agents
behave similarly to magnetic spins and just two states are
allowed �up or down� �2�. Here social actors update their
opinions driven by a social influence pressure, which often
translates into a majority rule. Alternatively, opinions can be
schematized with continuous variables, the latter being dy-
namically evolved as a result of subsequent interactions
among individuals. In the celebrated Deffuant et al. �3�
model, agents adjust their opinion as a result of random bi-
nary encounters whenever their difference in opinion is be-
low a given threshold. The rationale behind the threshold
ansatz reflects humans’ natural tendency to avoid conflicting
interests and consequently ignore the perception of incom-
patibility between two distant cognitions. In this respect, the
threshold value measures the average openness of mind of
the community.

In real life, the difference in opinion on a debated issue is
indeed playing a crucial role. However, the actual outcome
of a hypothetic binary interaction also relies on a number of
other factors, which supposedly relate to the quality of the
interpersonal relationships. Mutual affinity condensates in
fact past interactions’ history and contribute to select prefer-
ential interlocutors for future discussions. Previous attempts
aimed at incorporating this effect resulted in static descrip-

tions, which deliberately disregarded affinity’s self-
consistent evolution �4�. In this article we take one step for-
ward by proposing a formulation where the affinity is
dynamically coupled to the opinion, and consequently up-
dated in time. Moreover, affinity translates in a social dis-
tance, a concept that is introduced here to drive preferential
interactions between affine individuals. Macroscopically, the
system is shown to asymptotically organize in clusters of
agents sharing a common opinion, whose number depends
on the choice of the parameters involved. Interestingly, a
continuous transition is identified that separates the mono-
clustered from the fragmented phase. Scaling laws are also
found and their implications discussed. Most importantly,
our proposed theoretical scenario captures the so-called cog-
nitive dissonance phenomenon, a qualitatively well docu-
mented theory in psychology pioneered by Leon Festinger in
1956 �5�.

Consider a population of N agents, each bearing at time t
a scalar opinion Oi

t� �0,1�. Moreover, let us introduce the
N�N time dependent matrix �t, whose elements �ij

t are
bound to the interval �0,1�. Such elements specify the affinity
of individual i versus j, larger numbers being associated to
more trustable relationships. Both the opinions vector and
the affinity matrix are randomly initialized at time t=0. At
each time step t, two agents, say i and j, are selected accord-
ing to a strategy that we shall elucidate in the forthcoming
discussion. They interact and update their characteristics ac-
cording to the following recipe �9�:

Oi
t+1 = Oi

t − ��Oij
t �1��ij

t � , �1�

�ij
t+1 = �ij

t + �ij
t �1 − �ij

t ��2��Oij� , �2�

where the functions �1 and �2 respectively read

�1��ij
t � =

1

2
�tanh��1��ij

t − �c�� + 1� , �3�

�2��Oij� = − tanh��2���Oij
t � − �Oc�� . �4�

Here, �Oij
t =Oi

t−Oj
t, while �c and �Oc are constant param-

eters. For the sake of simplicity we shall consider the limit
�1,2→�, which practically amounts to replacing the hyper-
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bolic tangent with a simpler step function profile. Within this
working assumption, the function �1 is 0 or 1, while �2
ranges from −1 to 1, depending on the value of the argu-
ments. �1 and �2 act therefore as effective switchers. Notice
that, for �c→0, Eq. �1� reduces to the Deffuant et al. scheme
�3�. To clarify the ideas inspiring our proposed formulation,
we shall focus on specific examples. First, suppose two sub-
jects meet and imagine they confront their opinions, assumed
to be divergent ���Oij��1�. According to Deffuant’s model,
when the disagreement exceeds a fixed threshold, the agents
simply stick to their positions. Conversely, in the present
case, the interaction can still result in a modification of each
other beliefs, provided the mutual affinity �ij

t is larger than
the reference value �c. In other words, individuals exposed
to conflicting thoughts have to resolve such dissonance in
opinion by taking one of two opposite actions: If �ij

t 	�c, the
agent ignores the contradictory information, which is there-
fore not assimilated; when instead the opinion is coming
from a trustable source ��ij

t 
�c�, the agent is naturally in-
clined to seek consistence among the cognitions, and conse-
quently adjust its belief. The mechanism here outlined is part
of Festinger’s cognitive dissonance theory �5�: Contradicting
cognitions drive the mind to modify existing beliefs to re-
duce the amount of dissonance �conflict� between cognitions,
thus removing the feeling of uncomfortable tension. The sca-
lar �ij schematically accounts for a larger number of hidden
variables �personality, attitudes, behaviors, etc.�, which are
nontrivially integrated in an abstract affinity concept. Notice
that the matrix �t is nonsymmetric: Hence, following a ran-
dom encounter between two dissonant agents, one could
eventually update his opinion, with the other still keeping his
own view. A dual mechanism governs the self-consistent
evolution for the affinity elements; see Eq. �2�. If two people
gather together and discover they share common interests
���Oij

t �	�Oc�, they will increase their mutual affinity
��ij

t →1�. On the contrary, the fact of occasionally facing
different viewpoints ���Oij

t �
�Oc� translates into a reduc-
tion of the affinity indicator ��ij

t →0�. The logistic contribu-
tion in Eq. �2� confines �ij

t in the interval �0,1�. Moreover, it
maximizes the change in affinity for pairs with �ij

t �0.5, cor-
responding to agents which have not come in contact often.
Couples with �ij

t �1 �0� have already formed their mind and,
as expected, behave more conservatively.

Before illustrating the result of our investigations, we
shall discuss the selection rule implemented here. First the
agent i is randomly extracted, with uniform probability. Then
we introduce a new quantity dij, hereafter termed social dis-
tance, defined as �10�

dij
t = �Oij

t �1 − �ij
t �, j = 1, . . . ,N, j � i . �5�

The smaller the value of dij
t the closer the agent j to i, both in

terms of affinity and opinion. A random, normally distrib-
uted, vector � j�0,�� of size N−1 is subsequently generated,
with mean zero and variance �. The social distance is then
modified into the new social metric Dij

� =dij
t +� j�0,��. Fi-

nally, the agent j which is closer to i with respect to the
measure Dij

� is selected for interaction. The additive random
perturbation � is hence acting on a fictictious one-

dimensional �1D� manifold, which is introduced to define the
pseudo-particle �agent� interaction on the basis of a nearest
neighbors selection mechanism. � is thus formally equiva-
lent to a thermal noise �6�. Based on this analogy, � is here
baptized social temperature and sets the level of mixing in
the community. Notably, for any value of �, it is indeed
possible that agents initially distant in the unperturbed social
space dij

t mutually interact: Their chances to meet increase
for larger values of the social temperature.

Numerical simulations are performed and the dynamical
evolution of the system monitored. Qualitatively, asymptotic
clusters of opinion are formed, whose number depends on
the parameters involved. The individuals that reach a consen-
sus on the question under debate are also characterized by
large values of their reciprocal affinity, as clearly displayed
in Fig. 1. The final scenario results from a nontrivial dynami-
cal interplay between opinion and affinity: The various ag-
glomerations are hence different in size and centered around
distinct opinion values, which cannot be predicted a priori.
The dynamics is therefore significantly more rich, and far
more realistic, than that arising within the framework of the
original Deffuant et al. scheme �3�, where cluster number
and average opinions are simply related to the threshold
amount. Notice that, in our model, the affinity enters both the
selection rule and the actual dynamics, these ingredients be-
ing crucial to reproduce the observed self-organization.

To gain quantitative insight into the process of opinion
formation, we run several simulations relative to different
initial realizations and record the final �averaged� number of
clusters, Nc, as function of the social temperature �, for dif-
ferent values of the critical parameter �c. Results of the nu-
merics are reported in Fig. 2. All the curves are approxi-
mately collapsed together plotting Nc as function of the
rescaled quantity ���c�−1/2. A continuous phase transition is
identified, above which the system is shown to asymptoti-
cally fragment in several opinion clusters. The proposed
scaling is sound in terms of its psychological interpretation.
When �c gets small the barrier in affinity fades off and the
agents update their beliefs virtually at any encounter. The
imposed selection rule drives a rapid evolution toward an
asymptotic fragmented state, by favoring the interaction of
candidates that share a similar view ��Oij small�. This ten-
dency can be counterbalanced by adequately enhancing the
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FIG. 1. Left: Typical evolution of the opinion vs time, i.e., num-
ber of iterations. Right plot: Final affinity matrix. Here �=0.02,
�Oc=0.5, and �c=0.5. Initial opinions are �random� uniformly dis-
tributed within the interval �0,1�. �ij

0 is initialized with uniform
�random� values between 0 and 0.5. Here, �1=�2=1000.
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social mixing, which in turn amounts to increasing the value
of ��c

−1. On the other hand, for large values of �c the
system is initially experiencing a lethargic regime, due to the
hypothesized thresholding mechanism. Agents’ opinions are
therefore temporarily freezed to their initial values, while
occasional encounters contribute to increasing the degree of
cohesion �synchronization� of the community. As the affinity
grows, the social metric Dij becomes less sensitive to �Oij
and the system naturally flows toward an ordered �single-
clustered� configuration. Notice that our system displays in-
triguing similarities with granular media that have been
shown to develop analogous self-organization features. This
entails the possibility of addressing the analysis of the ob-
served structures within a purely statistical mechanics set-
ting, where the balance between competing effects is explic-
itly modeled �7�.

Aiming at further characterizing the process of conver-
gence we have also analyzed the following indicators: The
fractal dimension of the orbits topology and the distribution
of opinion differences. First, we focused on the single-
clustered phase �main plot in Fig. 3� and calculated the frac-
tal dimension in the �O , t� plane, a parameter that relates to
the geometrical aspects of the dynamical evolution. A stan-

dard box-counting algorithm is applied, which consists in
partitioning the plan in small cells and identifying the boxes
visited by the system trajectory. In this specific case, the
space �O , t� is mapped into �0,1�� �0,1�, and covered with a
uniform distribution of squares of linear size l. The number
of filled box Nb is registered and the measure repeated for
different choices of l. In particular we set l=2−nb, where nb
=1,2 , .... For each nb, Nb is plotted versus l, in log-log scale
�see inset of Fig. 3�: A power-law decay is detected, whose
exponent ��1.57 quantifies the fractal dimension. The or-
bits are also analyzed in the multiclustered regime and simi-
lar conclusions are drawn. In addition, every single cluster is
isolated and studied according to the above procedure, lead-
ing to an almost identical �. In Fig. 4 we also report the
probability distribution function of �O= �Oi

t+1−Oi
t�. �O mea-

sures the rate of change of individuals’ opinions. A power-
law behavior is found which is an additional sign of the
system’s criticality.

Finally, working in the relevant monoclustered regime, we
also performed a dedicated campaign of simulations to esti-
mate the convergence time, Tc

���c�, i.e., the time needed to
completely form the cluster under scrutiny. The experiments
are conducted fixing the social temperature �, and allowing
�c to span the interval �0,�max�, where �max=maxi,j�ij

0 . In
Fig. 5 the rescaled convergence time Tc

���c� /Tc
��0� is plotted

as a function of �c, for various choices of �. All the different
curves nicely collapse together, revealing an interesting posi-
tive correlation between the relative convergence time and
the threshold �c. Again, this finding is certainly bound to
reality: When �c increases, individuals stick more rigidly to
their opinion and changes happen only when encounters
among neighbors occur. Instead, when reducing �c
large jumps in opinion are allowed which dynamically
translate in a more effective mixing, hence faster conver-
gence. To make this argument more rigorous, introduce
��=��tanh��1��ij

t −�c��+1� /2. A reduced dynamical formu-
lation can be obtained by averaging out the dependence on
�i,j in Eq. �1�, thus formally decoupling it from Eq. �2�. This
is accomplished, at fixed i, as follows:

FIG. 2. Average number of clusters as function of the rescaled
quantity ���c�−1/2. A phase transition is found at ���c�−1/2�20.
Above the transition, histograms of the number of clusters are com-
puted and enclosed as insets in the main frame: Symbols refer to the
numerics; solid lines are fitted interpolation. Here, �Oc=0.5. The
variables Oi

0 and �ij
0 are initialized as described in the caption of

Fig. 1.

FIG. 3. Main plot: Typical evolution in the monoclustered
phase. Inset: Nb vs l=2−nb in log-log scale. For the choice of the
parameters refer to the caption of Fig. 2

FIG. 4. �Color online� Main frame: Histogram of �O, as follows
from the numerics �N=100, averaged over 1000 independent real-
izations�, plotted in log-log scale �symbols�. The solid line is a
guide for the eye. Inset: Cumulative distribution of the differences
�O, in log-log scale.



	��
 = �� �1��ij
t �f t��ij

t �d�ij
t � ��

0

�max

�1��ij
0 �f0��ij

0 �d�ij
0

� �
�max − �c

�max
, �6�

where in the last passage we made use of the fact that
�1→� and f0��ij

0 �=1 /�max as it follows from the normaliza-
tion condition. The function f t�·� �f0�·�� represents the affin-
ity distribution of agents j versus i, at time t �at time zero�.

Within this simplified scenario, the time of convergence
scales as 1 / 	��
 �8� and therefore expression �7� immedi-
ately yields

Tc
���c�

Tc
��0�

=
�max

�max − �c
. �7�

Relation �7� is reported in Fig. 5 �dashed line� and shown to
approximately reproduce the observed functional depen-
dence. A good agreement with direct simulations is found for
small �c. It however progressively deteriorates for larger �c,
due to nonlinear contributions. The latter can be incorporated
into our scheme by replacing �max in Eq. �7� with an effec-
tive value �eff, to be determined via numerical fit �solid line
in Fig. 5�. Such a value accounts for the system tendency to
populate the complementary domain 1−�max and results in
an excellent agreement with the simulated data.

In this article we introduced a model for studying the
process of opinion formation. This interpretative framework
allows us to account for the affinity, which is an effect of
paramount importance in real social systems. The model pro-
posed here captures the essence of the cognitive dissonance
theory, a psychological construction elaborated by Festinger
in the late 1950s. Numerical investigations are carried on and
reveal the presence of a phase transition between an ordered
�single clustered� and a disordered �multiclustered� phase.
Evidence of critical behaviors is provided, and the role of
different parameters elucidated. We firmly believe that our
formulation represents a leap forward in social system mod-
eling, thus opening up new perspectives to reinforce the ideal
bridge with the scattered psychology community.
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FIG. 5. �Color online� Rescaled convergence time Tc
���c� /Tc

��0�
is plotted as function of �c. Different symbols refer to different
values of the social temperature �; see legend. The dashed line
stands for the theoretical prediction �7�. The solid line is a numeri-
cal fit based on Eq. �7�, where �max is replaced by the effective
value �eff=0.66 �see main text for further details�.
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