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1. INTRODUCTION

Human beings, as social animals, can organize themselves into groups to solve problems that a single
individual is not able to solve by working alone [Smith 1994]. Indeed, merging their problem repre-
sentations [Heylighen 1999], the group members’ become capable of overcoming the hurdle that each
one member does not exceed alone. The social problem-solving that the group implements in order
to solve higher-level tasks is the result of the group members’ cooperation and of their abilities in
sharing knowledge. Thus, people tend to turn to groups when they have to solve complex problems
because they believe that groups have better decision-making skills than a single individual [Forsyth
2018]. The measure of the difference between the rate of success of the group in a specific problem
and the average of the rate of the success of the group’s agents in the same issue can be considered
the collective intelligence. The collective intelligence is an emergent property of groups, not reducible to
the simple sum of its members’ individual intelligence. The general factor able to explain the “groups
performance on a wide variety of tasks” [Woolley et al. 2010] is the result of the complex interaction
among many factors, such as the member characteristics, the group structure that regulate collective
behavior [Woolley et al. 2015], the context in which the group work [Barlow and Dennis 2016], the
cognitive processes underlying the social problem-solving reasoning [Heylighen 1999], the average of
members’ individual intelligence [Bates and Gupta 2017] and the structure [Credé and Howardson
2017; Lam 1997], and the complexity of the problem that it has to solve [Capraro and Cococcioni 2016;
Guazzini et al. 2015; Moore and Tenbrunsel 2014]. Although the literature identifies a relationship be-
tween collective intelligence and task complexity, the limited number of studies in this field make the
results still elusive. In particular, it is possible to postulate the existence of a complex and nonlinear
interaction between the potential of the group (average of members’ intelligence) and the complex-
ity of the problem that the group has to solve that may explain the variance of group performance.
Thus, it could be of interest in the field of the study of collective intelligence to clarify the relationship
between the two variables named above in order to propose a model useful to explain the group per-
formance. To better understand how the relationship between group members’ intelligence and task
complexity influences the group performance, it would be necessary to analyze the cognitive processes
underlying the social problem-solving reasoning that the group implements. In this regard, Heylighen
[1999], thorough an interesting formal model, suggests that groups, solving a task, develop a Collective
Mental Map (CMM) as a product of the interaction between some psychosocial processes, such as the
cross-cueing [Meudell et al. 1995] and the information and knowledge sharing. The Heylighen’s frame-
work allows studying the collective intelligence dynamics taking into account the merge of the group
members’ representations of the problem in a single representation (MM). The problems’ mental maps
are composed of a set of problem states, a set of possible steps for the solution of the task, and a pref-
erence fitness criterion for selecting the preferred actions. Here, adopting the Heylighen’s framework,
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we propose a mathematical model of collective intelligence useful to shed in light how the interaction
between the average of group members’ intelligence and the complexity of the task can influence the
group performance.

2. MODEL

In order to study the complex relationship among task difficulty, group members’ intelligence, and col-
lective intelligence, we designed a computational model based on the Heylighen theoretical framework.
Adopting the Heylighen topological metaphor of human knowledge, the i-agent has been represented
by a vector made of D entries (knowledge nodes), ~K(i) = (K

(i)
1 , . . . ,K

(i)
D ). Each element of the knowl-

edge vector could assume values in the range [0, 1]; the smaller (resp. the larger) was the value, the
lower (resp. the higher) was the knowledge on this specific topic. As a consequence, the total knowledge
of an agent can be obtained by the sum of the elements of its knowledge vector, IQ(i) =

∑D
j=1K

(i)
j ; thus

the latter can be used as a proxy of the Intelligence Quotient of the agent. For the sake of simplicity,
we assumed the agent knowledge as a random variable uniformly distributed in [0, 1]. We adopted the
same rationale in order to represent the tasks that an agent, or a group, were to solve. We assumed a
task made by a D dimensional vector, representing the D topics one has to master to achieve the task.
In the present work, for the sake of simplicity, we studied the simplified case in which the components
of a task have all the same values τ , so having ~τ = (τ, . . . , τ) ∈ [0, 1]D. Finally, an agent was able
to solve a task with difficulty τ , if all the entries in its knowledge vector were larger than τ , namely
minj K

(i)
j ≥ τ . Let us observe that the dimension D indirectly participates to make a task hard or

not; indeed, if D is large, it can be difficult (i.e. less probable) for the agents to have all the entries of
their knowledge vector larger than τ . The last required ingredient is a set of rules driving the merge of
different mental maps (agents’ knowledge) into a common one (group knowledge) in order to model the
group task solving process. One of the simplest way to implement the Heylighen framework in the ab-
sence of any communication issue and/or social hierarchy (e.g., status, roles), is to assume that agents
“juxtapose” their knowledge, that is the Collective Mental Map will result to be aD-dimensional vector,
~G = (G1, . . . , GD), whose entries are the “best ones” among the agents, more precisely Gj = maxiK

(i)
j .

Based on the above, a group was able to solve a task of difficulty τ ∈ [0, 1] if minj Gj ≥ τ . Clearly if
the group contained agents capable to solve by their own a task of a given difficulty, the group would
also do the same, but in this case, the collective intelligence would be null because there was not an
added value to be together. On the other hand, a group made by agents unable to solve alone a task of a
given difficulty, but excelling in sufficiently many different topics, could perform well and solve a prob-
lem where each agent would have been failed. In this latter case, one can consider such achievement
an emergent property of the group and assign a large collective intelligence. Given a task of difficulty
τ ∈ [0, 1] in a knowledge space of D dimensions, we can define the collective intelligence CI(τ,D) of
a group as the difference between the rate of success of the group R, and the rate of success of the
average agent composing the group R〈A〉 (Eq. 1).

CI(τ,D) = R(τ,D)−R〈A〉(τ,D) (1)

In this way this function depends on τ and D, it is non-negative and positive values are associated
with tasks too hard for the individual agent while solvable by the group.

2.1 Numerical Simulation

In each step of the numerical simulations, a group of size N composed by randomly generated agents
faced with tasks of increasing complexity τ , both as a group (considering the collective mental map
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resulting from the merging of the agents’ knowledge vectors), as well as individually (i.e., each agent
was let to try to solve the task alone). To reduce the stochastic effects of the model each point has
been obtained as the average over 1000 independent replicas. Finally the average value of collective
intelligence, as computed by the equation 1, was recorded.

3. RESULTS

The main aim of the present work was to investigate the complex relationships among task difficulty,
group members’ intelligence, and collective intelligence, however using a uniform distribution to gen-
erate agents knowledge would induce a constant average IQ. So to overcome this limitation we decided
to adopt a tent distribution for the agent knowledge; let us recall that the tent distribution depends on
a parameter, tuning which the average agent IQ will vary. The figure 1 confirms a non-linear relation
between average agents IQ and collective intelligence. Three different regimes depending on the task
difficulty can be appreciated: when the task is easy, the collective intelligence rapidly decreases with
the increases in the average agents IQ. The opposite happens when the task difficulty is high, while
for tasks of intermediate value a maximum in CI emerges for an optimal value of group IQ.

Fig. 1. The collective intelligence as a function of the average agent IQ in a small group. We show the CI for a group made by
N = 10 agents solving an easy task (left panel τ = 0.1), a simple level task (middle panel τ = 0.3) or a more difficult one (right
panel τ = 0.6), in all cases D = 10.

Fig. 2. The collective intelligence as a function of
the task difficulty, τ and D, for a group made of
N = 10 agents.

Finally, generating the agents using a tent distribution,
we studied collective intelligence as a function of τ and D.
Results presented in Fig. 2 suggest that for small τ , namely
once the task are simple, both the group and the average
agent perform well, and thus the collective intelligence ap-
pears to be small. Within this regime, the added value of
the group is negligible concerning the average agent. Once
τ increases, the agent starts to do poorly while the group
keeps is a high level of success, determining a large value
for the collective intelligence. Once τ gets even larger also
the groups’ rate deteriorates and the collective intelligence
drop again to 0. Increasing the dimension space D makes
the emergence of the collective intelligence even sharper.
Thus, considering a system where every agent i is charac-
terized by the same IQi, is possible to highlights three dif-
ferent regimes emerging from the interaction between the
task dimensionality D, and the task complexity τ .
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