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Abstract. Concolic testing is a well-known validation technique for imperative and object-oriented
programs. We have recently introduced an adaptation of this technique to logic programming. At
the heart of our framework for concolic testing lies a logic programming specific procedure that we
call “selective unification”. In this paper, we consider concolic testing in the context of constraint
logic programming and extend the notion of selective unification accordingly. We prove that the
selective unification problem is generally undecidable for constraint logic programs, and we present
a correct and complete algorithm for selective unification in the context of a class of constraint
structures.

1 Introduction

Concolic testing is a well-known validation technique for imperative and object-oriented programs. Roughly
speaking, concolic testing combines concrete and symbolic execution (called concolic execution) in order
to systematically produce test cases that aim at exploring all feasible execution paths of a program. Typi-
cally, one starts with an arbitrary concrete call, say main(i1, . . . , in) and runs both concrete and symbolic
execution on main(i1, . . . , in) and main(v1, . . . , vn), respectively, where v1, . . . , vn are symbolic variables
denoting unknown input values. In contrast to ordinary symbolic execution, the symbolic component of
concolic execution does not explore all possible execution paths, but just mimics the steps of the concrete
execution, gathering along the way constraints on the symbolic variables to follow a particular path.
Once a concolic execution terminates (and it usually terminates, since concrete executions are assumed
terminating), one uses the collected constraints to produce new concrete calls that will explore different
paths. E.g., if the collected constraints are c1, c2, c3, then by solving ¬c1 we get values for the symbolic
variables of main(v1, . . . , vn) so that the resulting concrete call will follow a different execution path.
Other alternative initial calls can be obtained by solving c1 ∧ ¬c2 and c1 ∧ c2 ∧ ¬c3.

We have recently introduced an adaptation of this technique to logic programming [16, 17]. In contrast
to the case of imperative or object-oriented programming, computing the alternatives of a given execution
is more complex in logic programming. Consider, e.g., a predicate p/n defined by the set of clauses

{H1 ← B1, H2 ← B2, H3 ← B3}
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and a goal where the selected atom, p(t1, . . . , tn), only unifies with H1. What are then the possible
alternatives? In principle, one could think that producing a goal where the selected atom only unifies
with H2 and another goal where the selected atom only unifies with H3 is enough. However, there are
five more possibilities: unifying with no clause, unifiying with both H1 and H2, unifying with both H1

and H3, unifying with both H2 and H3, and unifying with all three atoms H1, H2 and H3.3 Moreover,
we found in [16, 17] that producing goals that satisfy each of these conditions is far from trivial. This
problem, called “selective unification” in [17], can be roughly expressed as follows: given an atom A, a
set of positive atoms H+ and a set of negative atoms H−, we look for a substitution θ (if it exists) for
the variables of A such that Aθ unifies with every atom in H+ but it does not unify with any atom in
H−. Observe that we want Aθ to unify with each atom in H+ separately.

Let us illustrate the notion of selective unification with a simple example. Consider, e.g., an atom
p(X) and the sets H+ = {p(f(a)), p(f(b))} and H− = {p(c)}. A solution of this selective unification
problem is {X/f(Y )}, since p(X){X/f(Y )} = p(f(Y )) unifies with p(f(a)), it also unifies with p(f(b))
(with different unifiers, though), but it does not unify with p(c). In contrast, the problem with atom p(X)
and sets H+ = {p(a), p(b)} and H− = {p(c)} is unfeasible since we need a renaming, e.g., θ = {X/Y } in
order for p(X)θ to unify with both p(a) and p(b), but then p(X)θ would also unify with p(c).

In [16, 17] we also considered a groundness condition that requires some arguments of the initial goal
to be ground. This condition is required to ensure that the produced goals are valid run time goals
(thus ensuring they are appropriate test cases), see Definition 1 in Section 4.1. Although the problem is
decidable in some cases, finding an efficient algorithm is rather complex (see [17] for more details).

In this paper, we consider concolic testing in the setting of constraint logic programming (CLP) [9,
10]. We prove that the selective unification problem is generally undecidable for CLP programs, and we
present a correct and complete algorithm for selective unification in the context of a class of constraint
structures.

The paper is organized as follows. In Section 2, we present the main definitions about CLP. In Section
3, we recall the framework for concolic testing for LP and sketch its generalization to CLP. Section 4
focuses on selective unification. In Section 5, we show that selective unification is in general undecidable
for CLP. In Section 6, we add assumptions on constraint structures which help solving selective unification
problems. Finally, Section 7 discusses related work and concludes the paper.

2 Preliminary Definitions

The set of natural numbers is denoted by N. We recall some basic definitions about CLP, see [10, 11] for
more details. From now on, we fix an infinite countable set V of variables together with a signature Σ,
i.e., a pair 〈F,ΠC〉 where F is a finite set of function symbols and ΠC is a finite set of predicate symbols
with F ∩ΠC = ∅ and (F ∪ΠC) ∩ V = ∅. Every element of F ∪ΠC has an arity which is the number of
its arguments. We write f/n ∈ F (resp. p/n ∈ ΠC) to denote that f (resp. p) is an element of F (resp.
ΠC) whose arity is n ≥ 0. A constant symbol is an element of F whose arity is 0.

A term is a variable, a constant symbol or an entity f(t1, . . . , tn) where f/n ∈ F , n ≥ 1 and t1, . . . , tn
are terms. A term is ground when it contains no variable. An atomic constraint is an element p/0 of ΠC

or an entity p(t1, . . . , tn) where p/n ∈ ΠC , n ≥ 1 and t1, . . . , tn are terms. A first-order formula on Σ
is built from atomic constraints in the usual way using the logical connectives ∧, ∨, ¬, →, ↔ and the
quantifiers ∃ and ∀. Let φ be a formula. Then Var(φ) denotes its set of free variables. We let ∃φ (resp.
∀φ) denote the existential (resp. universal) closure of φ.

3 In general, though, not all possibilities are feasible.
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We fix a Σ-structure D, i.e., a pair 〈D, [·]〉 which is an interpretation of the symbols in Σ. The set
D is called the domain of D and [·] maps each f/0 ∈ F to an element of D and each f/n ∈ F with
n ≥ 1 to a function [f ] : Dn → D; each p/0 ∈ ΠC to an element of {0, 1} and each p/n ∈ ΠC with
n ≥ 1 to a boolean function [p] : Dn → {0, 1}. We assume that the binary predicate symbol = is in Σ
and is interpreted as identity in D. A valuation is a mapping from V to D. Each valuation v extends by
morphism to terms. As usual, a valuation v induces a valuation [·]v of terms to D and of formulas to
{0, 1}.

Given a formula φ and a valuation v, we write D |=v φ when [φ]v = 1. We write D |= φ when D |=v φ
for all valuation v. Notice that D |= ∀φ if and only if D |= φ, that D |= ∃φ if and only if there exists a
valuation v such that D |=v φ, and that D |= ¬∃φ if and only if D |= ¬φ. We say that a formula φ is
satisfiable (resp. unsatisfiable) in D when D |= ∃φ (resp. D |= ¬φ).

We fix a set L of admitted formulas, the elements of which are called constraints. We suppose that L
is closed under variable renaming, existential quantification and conjunction and that it contains all the
atomic constraints. We assume that there is a computable function solv which maps each c ∈ L to one of
true or false indicating whether c is satisfiable or unsatisfiable in D. We call solv the constraint solver.
A structure D admits quantifier elimination if for each first-order formula φ there exists a quantifier-free
formula ψ such that D |= ∀[φ↔ ψ].

Example 1 (CLP(Qlin)). The constraint domain Qlin has <, ≤, =, ≥, > as predicate symbols, +, −, ∗,
/ as function symbols and sequences of digits as constant symbols. L is the set of conjunctions of linear
atomic constraints. The domain of computation is the structure with the set of rationals, denoted by
Q, as domain and where the predicate symbols and the function symbols are interpreted as the usual
relations and functions over the rationals. A constraint solver for Qlin always returning either true or
false is described in [18]. Qlin admits variable elimination via the Fourier-Motzkin algorithm (see e.g.,
[15]).

Example 2 (CLP(A)). A constraint domain with natural numbers and arrays is presented in Section 5.

Sequences of distinct variables are denoted by
#»

X,
#»

Y or
#»

Z and are sometimes considered as sets of
variables: we may write ∀ #»

X , ∃ #»
X or

#»

X ∪ #»

Y . Sequences of (not necessarily distinct) terms are denoted by
#»s ,

#»
t or #»u . Given two sequences of n terms #»s := (s1, . . . , sn) and

#»
t := (t1, . . . , tn), we write #»s =

#»
t to

denote the constraint s1 = t1 ∧ · · · ∧ sn = tn.

The signature in which all programs and queries under consideration are included is ΣL := 〈F,ΠC ∪
ΠP 〉 where ΠP is the set of predicate symbols that can be defined in programs, with ΠC ∩ΠP = ∅.

An atom has the form p(t1, . . . , tn) where p/n ∈ ΠP and t1, . . . , tn are terms. Given an atom A :=

p(
#»
t ), we write rel(A) to denote the predicate symbol p. A rule has the form H ← c ∧ #»

B where H is

an atom, c is a satisfiable constraint, and
#»

B is a finite sequence of atoms. A program is a finite set of
rules. A state has the form 〈d | #»

B〉 where
#»

B is a sequence of atoms and d is a satisfiable constraint. A

constraint atom is a state of the form 〈d | p( #»
t )〉. A constraint atom of the form 〈c | p( #»

X)〉 is projected

when Var(c) ⊆ { #»

X}.
We consider the usual operational semantics given in terms of derivations from states to states. Let

〈d | p( #»u ),
#»

B〉 be a state and p( #»s )← c∧
# »

B′ be a fresh copy of a rule r. When solv( #»s = #»u ∧ c∧ d) = true

then

〈d | p( #»u ),
#»

B〉=⇒
r
〈 #»s = #»u ∧ c ∧ d |

# »

B′,
#»

B〉
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is a derivation step of 〈d | p( #»u ),
#»

B〉 w.r.t. r with p( #»s )← c∧
# »

B′ as its input rule. Let S be the state 〈d | #»

B〉.
S is failed if

#»

B is not empty and no derivation step is possible. S is successful if
#»

B is empty.

We write S
+

=⇒
P
S′ to summarize a finite number (> 0) of derivation steps from S to S′ where each

input rule comes from program P . Let S0 be a state. A sequence of derivation steps S0 =⇒
r1

S1 =⇒
r2
· · · of

maximal length is called a derivation of P ∪{S0} when r1, r2, . . . are rules from P and the standardization
apart condition holds, i.e. each input rule used is variable disjoint from the initial state S0 and from the
input rules used at earlier steps.

3 Concolic Testing

In this section, we briefly introduce concolic testing for both logic programs and CLP.

3.1 Concolic Testing in Logic Programming

We first summarize the framework for concolic testing of logic programs introduced in [16]. On the positive
side, in logic programming, the same principle for standard execution, SLD resolution, can also be used
for symbolic execution. On the negative side, computing alternative test cases is way more complex than
in the traditional setting (e.g., for imperative programs) due to the nondeterministic nature of logic
programming computations.

Concolic execution combines both concrete and symbolic execution. However, despite the fact that
the concrete and symbolic execution mechanisms are the same, one still needs to consider concolic states
that combine both a concrete and a symbolic (less instantiated) goal. The concolic execution semantics
deals with nondeterminism and backtracking explicitly, similarly to the linear operational semantics of
[19] for Prolog. In this context, rather than considering a goal, the semantics considers a sequence of goals
that, roughly, represents a frontier of the execution tree built so far.

Concolic states have the form 〈S ][ S′〉, where S and S′ are sequences of (possibly labeled) concrete
and symbolic goals, respectively. The structure of S and S′ is identical, the only difference being that the
atoms in S′ might be less instantiated.

Given an arbitrary atom p( #»u ), an initial concolic state has the form 〈p( #»u )id ][ p(
#»

X)id〉, where
#»

X are
different fresh variables and the labels id denote an initial (empty) computed substitution. Here, p( #»u ) can

be considered a test case (a concrete goal), while p(
#»

X) is the corresponding call with unknown, symbolic

arguments, that we use to collect the constraints (here: substitutions for
#»

X) using symbolic execution.

Example 3. Given a concrete (atomic) goal, p(f(X)), the corresponding initial concolic state has the form
〈p(f(X))id ][ p(N)id〉, where N is a fresh variable.

In the following, we assume that every clause c has a corresponding unique label, which we denote by
`(c). By abuse of notation, we denote by `( #»c ) the set of labels {`(c1), . . . , `(cn)}, where #»c = c1, . . . , cn.
Also, given an atom A and a logic program P , clauses(A,P ) returns the sequence of renamed apart
program clauses of P whose head unifies with A.

The semantics is given by the rules of the labeled transition relation ; shown in Figure 1. Let us
briefly explain some aspects of the concolic execution semantics:
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(success) 〈trueδ |S ][ trueθ |S′〉;� 〈successδ ][ successθ〉

(failure)
〈(fail, #»

B)δ ][ (fail,
# »

B′)θ〉;� 〈failδ ][ failθ〉

(backtrack)
S 6= ε

〈(fail, #»
B)δ |S ][ (fail,

# »

B′)θ |S′〉;� 〈S ][ S′〉

(choice)
clauses(A,P ) = #»c ∧ #»c = {c1, . . . , cn} ∧ n > 0 ∧ clauses(A′, P ) =

#»

d

〈(A, #»
B)δ |S ][ (A′,

# »

B′)θ |S′〉;c(`( #»c ),`(
#»
d )) 〈(A,

#»
B)c1δ | . . . |(A,

#»
B)cnδ |S ][ (A′,

# »

B′)c1θ | . . . |(A′,
# »

B′)cnθ |S′〉

(choice fail)
clauses(A,P ) = ∅ ∧ clauses(A′, P ) = #»c

〈(A, #»
B)δ |S ][ (A′,

# »

B′)θ |S′〉;c(∅,`( #»c )) 〈(fail,
#»
B)δ |S ][ (fail,

# »

B′)θ |S′〉

(unfold)
mgu(A,H1) = σ ∧mgu(A′, H1) = σ′

〈(A, #»
B)H1←

# »
B1

δ |S ][ (A′,
# »

B′)H1←
# »
B1

θ |S′〉;� 〈(
#  »
B1σ,

#»
Bσ)δσ |S ][ (

#  »
B1σ′,

# »

B′σ′)θσ′ |S′〉

Fig. 1. Concolic execution semantics

– The first rules, success and failure, use fresh constants labeled with a computed substitution to denote
a final state: 〈successδ〉 and 〈failδ〉, respectively.4 Note that we are interested in both sucessful and
(finitely) failing derivations. Rule backtrack applies when the first goal in the sequence finitely fails,
but there is at least one alternative choice. In these three rules, we deal with the concrete and symbolic
components of the concolic state in much the same way. Also, the steps are labeled with an empty
label “�”.

– Rule choice represents the first stage of an SLD resolution step. If there is at least one clause whose
head unifies with the leftmost atom of the concrete goal, this rule introduces as many copies of a
goal as clauses returned by function clauses. Moreover, we label each copy of the goal (A,

#»

B) with a
matching clause. If there is at least one matching clause, unfolding is then performed by rule unfold
using the clause labeling the goal. Otherwise, if there is no matching clause, rule choice fail returns
fail so that either rule failure or backtrack applies next.

– Essentially, one can say that the application of rules choice and unfold amounts to an unfolding step
with plain SLD resolution. However, this is only true for the concrete component of the concolic state.
Note that, regarding the symbolic component, we do not consider all matching clauses,

#»

d , but only
the clauses matching the concrete goal. This is a well known behavior in concolic execution: symbolic
execution is restricted to only mimic the steps of the corresponding concrete execution.

– Another relevant point here is that the steps with rules choice and choice fail are labeled with a
term of the form c(L1, L2), where L1 are the labels of the clauses matching the selected atom in the
concrete goal and L2 are the labels of the clauses matching the selected atom in the corresponding
symbolic goal. Note that L1 ⊆ L2 since the concrete goal is always an instance of the symbolic goal.
These labels are essential to compute alternative test cases during concolic testing, as we will see

4 We note that the semantics only considers the computation of the first solution for the initial goal. This is the
way most Prolog applications are used and, thus, the semantics models this behaviour in order to consider a
realistic scenario.
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〈p(f(X))id ][ p(N)id〉 ;choice
c({`1,`2},{`1,`2,`3}) 〈p(f(X))

p(f(a)).
id |p(f(X))

p(f(b)).
id ][ p(N)

p(f(a)).
id |p(N)

p(f(b)).
id 〉

;
unfold
� 〈true{X/a} |p(f(X))

p(f(b)).
id ][ true{N/f(a)} |p(N)

p(f(b)).
id 〉

;success
� 〈success{X/a} ][ success{N/f(a)}〉

Fig. 2. Concolic execution for 〈p(f(X))id ][ p(N)id〉

below. We note that, by collecting these labels, we get an information that shares some similarities
with the notion of characteristic tree [5].

Example 4. Consider the following logic program:

(`1) p(f(a)).
(`2) p(f(b)).
(`3) p(c).

and the initial concolic state 〈p(f(X))id ][ p(N)id〉. Concolic execution proceeds as shown in Figure 2.

Concolic testing aims at computing “test cases” (concrete atomic goals in our context) that cover all
execution paths. Of course, since the number of paths is often infinite, one should consider a timeout
or some other method to ensure the termination of the process. Note that concolic testing methods are
typically incomplete. A concolic testing algorithm should follow these steps:

1. Given a concrete goal, we construct the associated initial concolic state and run concolic execution.
We assume that concrete goals are terminating and, thus, this step is always finite too.

2. Then, we consider each application of rule choice in this concolic execution. Consider that the step
is labeled with c(L1, L2). Here, we are interested in looking for instances of the symbolic goal that
match the clauses of every set in P(L2) \ L1 since the set L1 is already considered by the current
execution.5

3. Checking the feasibility for each set in P(L2) \ L1 is done as follows. Let A be the selected atom in
the symbolic goal and let L ∈ P(L2) \ L1 be the considered set of clauses. Let H+ be the atoms in
the heads of the clauses in L (i.e., the clauses we want to unify with) and let H− be the atoms in the
heads of the clauses in L2 \ L (i.e., the clauses we do not want to unify with). Then, we are looking
for a substitution, θ, such that Aθ unifies with each atom in H+ but it does not unify with any
atom in H−. This is what we call a selective unification problem (see Section 4.1). Usually, we also
add another constraint: some variables must become ground by θ. This last requirement is needed
to ensure that Aθ is indeed a valid concrete (run time) goal where some (input) arguments become
ground and, thus, its execution terminates.

4. Finally, for each selective unification problem which is solvable, we have a new concrete goal (i.e., a
new test case) and the process starts again. Moreover, one should keep track of the concrete goals
already considered and the paths already explored in order to avoid computing the same test case
once and again.

Let us now illustrate the concolic testing procedure with a simple example.

Example 5. Consider again the program of Example 4, together with the initial goal p(f(X)). For simplic-
ity, we will not consider a groundness condition in this example. Let us start with the concolic execution
shown in Figure 2.

5 For simplicity, we often use the label of a clause to refer to the clause itself.
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Given the label c({`1, `2}, {`1, `2, `3}), we have to consider the sets in P({`1, `2, `3}) \ {`1, `2} =, i.e.,

{∅, {`1}, {`2}, {`3}, {`1, `3}, {`2, `3}, {`1, `2, `3}}

Thefore, our first selective unification problem, associated to the empty set, considers the atom p(N) and
the sets H+ = ∅ and H− = {p(f(a)), p(f(b)), p(c)}. A solution is, e.g., {N/a} and, thus, p(N){N/a} =
p(a) is another test case to consider.

As for the second set, {`1}, the selective unification problem considers the atom p(N) and the sets
H+ = {p(f(a))} and H− = {p(f(b)), p(c)}. Here, the only solution is {N/f(a)} and, thus, the atom
p(N){X/f(a)} = p(f(a)) is the next test case to consider.

The process goes on producing the test cases p(f(b)) (for the set {`2}), p(c) (for the set {`3}), and
p(N) (for the set {`1, `2, `3}), being the remaining problems unfeasible.

3.2 Concolic Testing in CLP

Extending the concolic testing framework from logic programs to CLP is not difficult. In this section, we
will focus on the main differences, and will also show an example that illustrates the technique in this
setting.

First, the concolic execution semantics for the CLP case is basically equivalent to that in Figure 1
by replacing goals with states of the form 〈c | #»

B〉 and by considering the usual unfolding rule for CLP
programs. Furthermore, the function clauses is now redefined as follows. Given a state 〈d | p( #»u )〉 and a
set of rules P , we have

clauses(〈d | p( #»u )〉, P )

= {p( #»s )← c ∧ #»

B ∈ P | solv( #»s = #»u ∧ c ∧ d) = true}

Concolic testing then proceeds basically as in the logic programming case. The main difference, though,
is that the selective unification problems now deal with states and CLP programs rather than goals and
logic programs. Let us consider a choice step labeled with c(L1, L2). Here, given a set L ∈ P(L2) \ L1,
the sets H+ and H− are built as follows:

H+ = {〈c |H〉 | H ← c ∧ #»

B ∈ L}
H− = {〈c |H〉 | H ← c ∧ #»

B ∈ L2 \ L}

The groundness condition, if any, will now require some variables to have a fixed value in a given constraint
(see Section 4.2).

Example 6. Consider the following CLP(Qlin) program:

(`1) p(X)← X ≤ 0.
(`2) p(X)← X ≥ 0 ∧X < 10.

and a choice step labeled with c({`1}, {`1, `2}), where the symbolic state is 〈true | p(N)〉. Hence, we have
to consider the sets in P({`1, `2}) \ {`1} =, i.e.,

{∅, {`2}, {`1, `2}}

7



Thefore, our first selective unification problem, associated to the empty set, considers the state 〈true | p(N)〉
and the sets

H+ = ∅
H− = {〈X ≤ 0 | p(X)〉, 〈X ≥ 0 ∧X < 10 | p(X)〉}

A solution is, e.g., N ≥ 10 and, thus, 〈N ≥ 10 | p(N)〉 is another test case to consider.
As for the second set, {`2}, the selective unification problem considers the state 〈true | p(N)〉 and the

sets

H+ = {〈X ≥ 0 ∧X < 10 | p(X)〉}
H− = {〈X ≤ 0 | p(X)〉}

Here, a possible solution is N > 0∧N < 10 and, thus, the state 〈N > 0 ∧N < 10 | p(N)〉 is the next test
case to consider.

Finally, for the set {`1, `2}, the selective unification problem considers the state 〈true | p(N)〉 and the
sets

H+ = {〈X ≤ 0 | p(X)〉, 〈X ≥ 0 ∧X < 10 | p(X)〉}
H− = ∅

where the only solution is N = 0 and, thus, our final test case is the state 〈N = 0 | p(N)〉.

4 The Selective Unification Problem

In this section, we consider the selective unification problem, first in the logic programming (LP) frame-
work [14], as we introduced it in [16, 17], and then in the CLP framework.

4.1 The LP Definition

Let us recall the selective unification problem from the LP setting, together with a few examples. We
write A1 ≈ A2 to denote that the atoms A1 and A2 unify for some substitution. The restriction θ |̀V of a
substitution θ to a set of variables V is defined as follows: xθ |̀V = xθ if x ∈ V and xθ |̀V = x otherwise.

Definition 1 (selective unification problem). Let A be an atom, with G ⊆ Var(A) a set of variables,
and let H+ and H− be finite sets of atoms such that all atoms are pairwise variable disjoint and A ≈ B
for all B ∈ H+ ∪ H−. Then, the selective unification problem for A w.r.t. H+, H− and G is defined as
follows:

P(A,H+,H−, G) =

σ|̀Var(A)

∀H ∈ H+ : Aσ ≈ H
∧ ∀H ∈ H− : ¬(Aσ ≈ H)
∧ Gσ is ground


Example 7. We illustrate the notion of selective unification with several examples:

– Let A = p(X), H+ = {p(a), p(b)}, H− = ∅ and G = ∅. The empty substitution is a solution, as p(X)
unifies with p(a) and p(b).

– Let A = p(X), H+ = {p(a), p(b)}, H− = {p(f(Z))} and G = ∅. This problem has no solution. One
cannot find an instance of A that unifies with both atoms in H+ and does not unify with p(f(Z)).
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– Let A = p(X), H+ = {p(s(Y ))}, H− = {p(s(0))} and G = {X}. There are infinitely many solutions,
among them we find {X/sn+2(0)} for n ∈ N. For instance, let us check that σ = {X/s(s(0))} is a
solution. We have Aσ = p(s(s(0))). Aσ and p(s(Y )) unify while Aσ and p(s(0)) do not unify, and Xσ
is ground.

– Let A = p(X,Y ), H+ = {p(a, b), p(Z,Z)}, and H− = ∅ = G. There are two solutions, {X/a} and
{Y/b}. Let us check that σ = {X/a} is a solution. We have Aσ = p(a, Y ). Aσ and p(a, b) unify,
and Aσ and p(Z,Z) unify. H− and G are empty so the last two conditions of P(A,H+,H−, G) are
trivially true.

4.2 The CLP Definition

In this section, we generalize Definition 1 to CLP. Let A1 = 〈c1 | p( #»u )〉 and A2 = 〈c2 | p( #»s )〉 be two
constraint atoms with no common variable. We write A1 ≈ A2 or A1 unifies with A2 to denote that
D |= ∃( #»u = #»s ∧ c1 ∧ c2).

For simplicity, in the following definition, we consider that the constraint atom has the form 〈cA | p(
#»

X)〉.
There is no loss of generality since any arbitrary constraint atom 〈c | p( #»u )〉 can be trivially transformed

into 〈 #»u =
#»

X ∧ c | p( #»

X)〉.

Definition 2 (constraint selective unification problem (CSUP)). Let A be a constraint atom of

the form 〈cA | p(
#»

X)〉 with G ⊆ Var(A). Let H+ and H− be finite sets of constraint atoms such that all
constraint atoms, including A, are pairwise variable disjoint and A ≈ B for all B ∈ H+ ∪H−. Then, the
constraint selective unification problem for A w.r.t. H+, H− and G is defined as follows:
P(A,H+,H−, G) =cA ∧ c

cA ∧ c is satisfiable
∧ c is variable disjoint with H+ ∪H−
∧ ∀H ∈ H+ : 〈cA ∧ c | p(

#»

X)〉 ≈ H
∧ ∀H ∈ H− : ¬(〈cA ∧ c | p(

#»

X)〉 ≈ H)
∧ each X ∈ G is fixed within cA ∧ c


Intuitively, to solve a CSUP, we consider any constraint c such that 〈cA ∧ c | p(

#»

X)〉 still unifies with
all the positive constraint atoms while preventing any unification with the negative constraint atoms and
ensuring that the variables in G have a fixed value.

Note that X ∈ G is fixed within cA ∧ c is the equivalent of the groundness condition of the LP
case and we keep calling it the groundness condition in the CLP case. Some constraint solvers might
give to X the required value, but it is not mandatory as it can be expressed in first order logic by
stating that, within cA ∧ c, X has exactly one value. E.g., X is fixed within c(X,

#»

X) is equivalent to

D |= ∃X[∃ #»

Xc(X,
#»

X) ∧ [∀Y ∀ #»

Y (c(Y,
#»

Y )→ X = Y ]].

Example 8 (CLP(Qlin)). We illustrate the notion of selective unification in the context of CLP(Qlin)
with several examples:

– Let A := 〈0 ≤ X ∧X ≤ 5 | p(X)〉, H+ := {〈4 ≤ Y | p(Y )〉}, H− := {〈Z < 2 | p(Z)〉}, and G = {X}.
There is an infinite number of solutions to P(A,H+,H−, G), among which one finds the constraint
X = 9/2. It is equivalent to the satisfiable constraint 0 ≤ X ∧ X ≤ 5 ∧ X = 9/2, the constraint
X = Y, 4 ≤ Y,X = 9/2 is satisfiable while X = Z,Z < 2, X = 9/2 is unsatisfiable, and it entails that
X is ground.
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– LetA := 〈0 ≤ X ∧X ≤ 5 | p(X)〉,H+ := {〈4 ≤ Y1 | p(Y1)〉, 〈Y2 ≤ 1 | p(Y2)〉},H− := {〈2 < Z ∧ Z < 3 | p(Z)〉},
and G = ∅. There is no solution to P(A,H+,H−, G). Intuitively, if there is a solution on the left of 2,
then it excludes the first positive atom or if there is a solution to the right of 3, then it excludes the
second positive atom. So one cannot find a conjunction of atomic constraints that include the elements
of H+ and exclude the element of H− because the set of points described by such a conjunction is
convex.

5 Undecidability of the CSUP

In this section, we show that solving the constraint selective unification problem in CLP is generally
undecidable. We consider any Turing machine M and any word w. We define an instance PM,w of the
generic CSUP in a constraint logic programming language CLP(A), the class of constraints of which is
a strict subclass of the array property fragment introduced in [1]. We encode the tape of M as an array
and we define PM,w so that M accepts w if and only if PM,w has a solution. Section 5.1 gives the exact
definition of CLP(A). Section 5.2 introduces notations and definitions about Turing machines. Section 5.3
describes the reduction of the CSUP to the acceptance problem for Turing machines.

5.1 CLP(A)

In order to show the undecidability of the CSUP, we consider a strict subclass of the array property
fragment: we do not use array writes and we only handle arrays, the indices and elements of which are
naturals (indices in [1] are integers). Therefore, our constraint logic programming language CLP(A) is
defined as follows.

– ΣA := ΣN∪{+,=,≤}∪{·[·]} is the constraint domain signature where ΣN consists of all the sequences
of digits and ·[·] is the array read. The read a[i] returns the value stored at position i of the array a.
For multidimensional arrays, we abbreviate a[i] · · · [j] with a[i, . . . , j].

– The class of constraints LA consists of all existentially-closed Boolean combinations of index atoms,
element atoms and array properties, defined as follows. Index and element terms have sort N. Index
terms are constructed from ΣN ∪ {+} and index variables. Array terms have functional sorts:
• One-dimensional sort: N→ N
• Multidimensional sort: N→ · · · → N;

e.g., a two-dimensional array has sort N→ N→ N.
For array term a and index term i, a[i] is either an element term if a has sort N → N, or an array
term if a has a multidimensional sort. The only element terms we consider are the constant symbols
in ΣN and those terms that have the form a[i] where a is an array term of sort N → N and i is an
index term. An index atom has the form i = i′ or i ≤ i′ where i and i′ are index terms. An element
atom has the form t = t′ or t ≤ t′ where t and t′ are element terms. Our array properties are simpler
than in [1]: they have the form

(∀I)(ϕi(I)→ ϕv(I))

where I is an index variable and ϕi(I) and ϕv(I) are the index guard and the value constraint,
respectively. The index guard follows the grammar:

iguard : iterm ≤ iterm
iterm : I | an index term in which I does not occur
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The value constraint ϕv(I) is a disjunction of element atoms where I can only be used in array read
expressions of the form a[I]. Array reads cannot be nested; e.g., a[a′[I]] is not allowed.

Example 9. Let T, T ′ be some array variables and I be an index variable. Then, T [0] = 1 and
T [0] = T ′[0] are element atoms. The formula (∀I)(2 ≤ I → T [I] = T ′[I]) is an array property
expressing that arrays T and T ′ are equal from index 2. The formula (∃T, T ′)ϕ where

ϕ :=
(
T [0] = 1 ∧¬(T [0] = T ′[0])

∧(∀I)(2 ≤ I → T [I] = T ′[I])
)

is a constraint in LA.

We use · 6= · as a shorthand for ¬(· = ·). Observe that equality between arrays is not permitted.
Equality between a and a′ of sort N→ N can be written as the array property (∀I)(a[I] = a′[I]), the
index guard of which is the always satisfiable formula true.

– DA is the ΣA-structure whose domain DA consists of the naturals and of the arrays of naturals of any
dimension, and where the symbols in ΣN ∪ {+,=,≤} are interpreted as usual over the naturals and
the function symbol ·[·] is interpreted as the array read as indicated above. We use the [·] notation
for denoting arrays in DA; e.g., [4, 0, 3] denotes the array which consists of the natural 4 at index 0,
the natural 0 at index 1 and the natural 3 at index 2.

Example 10 (Example 9 continued). Let a := [1, 0, 5, 5], a′ := [6, 9, 5, 5] and a′′ := [6, 9, 5, 4]. Let v be
a valuation with v(T ) = a and v(T ′) = a′. Then, we have A |=v ϕ. But A |=v′ ¬ϕ for any valuation
v′ with v′(T ) = a and v′(T ′) = a′′.

– A constraint solver solvA for LA always returning either true or false can be built from the decision
procedure presented in [1].

The signature used for writing constraint atoms is ΣA ∪ {p} where p is a single-argument predicate
symbol.

5.2 Turing Machines

We adhere to the notations and definitions presented in [8].
Let M := (Q,Σ, Γ, δ, q0,�, F ) be a (deterministic) Turing machine:

– Q is the finite set of states,
– Γ is the finite set of allowable tape symbols, with Q ∩ Γ = ∅,
– �, a symbol of Γ , is the blank,
– Σ, a subset of Γ not including �, is the set of input symbols,
– δ : (Q \ F ) × Γ → Q × Γ × {L,R} is a partial function called the next move function (L stands for

left and R for right),
– q0 in Q \ F is the start state,
– F ⊆ Q is the set of final states.

Elements of Q are denoted by q, q0, . . . , elements of Σ by e, e0, . . . and elements of Γ by x, y, x0, y0, . . .
We assume that M consists of a single input tape that is divided into cells and that is infinite to the left
and to the right. An instantaneous description (ID) of M has the form α1qα2. Here q, the current state
of M , is in Q; α1α2 is the string in Γ ∗ that is the current content of the tape from the leftmost nonblank
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symbol up to the rightmost nonblank symbol (observe that the blank may occur in α1α2). The tape head
is assumed to be scanning the leftmost symbol of α2, or if α2 = ε, the head is scanning a blank. A move
of M has the form id1 ` id2 where id1 and id2 are ID’s of M and ` is the transition relation of M derived
from δ. A sequence id0, . . . , idm of ID’s is a computation of M if id i ` id i+1 holds for every i in [0,m−1].
It is an invalid computation of M if an invalid move occurs in it, i.e., m ≥ 1 and id i 6` id i+1 holds for
some i in [0,m − 1]. We say that M accepts an input w ∈ Σ∗ when there exists a finite computation
id0, . . . , idm of M where id0 = q0w and the state in idm is final. Note that δ is undefined for any (q, x)
with q ∈ F . Hence M halts, i.e., has no next move, whenever the input is accepted. Moreover, the start
state is not final.

5.3 Reduction to the Acceptance Problem

Let w := e0 · · · el be a word in Σ∗. From M and w we construct an instance PM,w of the generic CSUP
P in the language CLP(A). Without loss of generality, we suppose that Q ∪ Γ ⊆ N. We represent an ID
x0 . . . xnqy0 . . . ym by arrays a satisfying the following constraints: a[0] is an array that starts with q; a[1]
is an array that represents the portion of the tape to the left of the head: it starts with xn, . . . , x0 (the
word x0 . . . xn in reverse order), followed by blanks (possibly none); a[2] is an array that represents the
portion of the tape to the right of the head: it starts with y0, . . . , ym, followed by blanks (possibly none).
We represent a sequence id0, . . . , idm of ID’s by any array that starts with a0, . . . , am, where for each i
in [0,m], ai is an array representing id i.

Example 11. Let us consider Q := {q0, q1, q2, q3, q4}, Σ := {0, 1}, Γ := {0, 1, x, y,�}, F := {q4} and the
next move function δ:

δ 0 1 x y �

q0 (q1, x,R) (q3, y, R)
q1 (q1, 0, R) (q2, y, L) (q1, y, R)
q2 (q2, 0, L) (q0, x,R) (q2, y, L)
q3 (q3, y, R) (q4,�, R)

Then M accepts the language L = {0n1n | n ≥ 1}. The array[
[[q0], [], [0, 1,�]], [[q1], [x], [1,�]], [[q2], [], [x, y,�]],
[[q0], [x], [y,�]], [[q3], [y, x], [�]], [[q4], [�, y, x], []]

]
represents the computation

q001 ` xq11 ` q2xy ` xq0y ` xyq3 ` xy�q4

while[
[[q0], [], [0, 0]], [[q1], [x], [0]], [[q1], [0, x], []]

]
represents the computation q000 ` xq10 ` x0q1.

Definition 3. Let a be an array term and i, j be some index terms. We define the following constraints.

– Empty(a, i) := (∀I)(i ≤ I → a[I] = �), where I is a fresh index variable, expresses that the tape
represented by a is empty from index i.
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– Start(a) expresses that the computation represented by a starts with the ID q0w, i.e., at index 0 of a
there is an array representing q0w:

Start(a) :=


a[0, 0, 0] = q0

∧ Empty(a[0, 1], 0)
∧ (∧k∈[0,l]a[0, 2, k] = ek)
∧ Empty(a[0, 2], l + 1)


– Fin(a, i) := (∨q∈Fa[i, 0, 0] = q) denotes that there is a final state at index i in the computation

represented by a.
– NoFin(a, i) := (∀I)

(
I ≤ i→ (∨q∈Q\Fa[I, 0, 0] = q)

)
, with I a fresh index variable, denotes that in

the computation represented by a there is no final state before index i.
– Inv(a, i, j) denotes that in the computation represented by a there is an invalid move at index i:

Inv(a, i, j) :=

(
(cR(a, i) ∨ dR(a, i, j))

∧ (cL(a, i) ∨ dL(a, i, j))

)
A move to the right α1qxα2 ` α′1yq′α′2 is valid when α1 = α′1 and α2 = α′2 and δ(q, x) = (q′, y, R).
So, it is invalid when

α1 6= α′1 or α2 6= α′2 (1)

or ∀((q1, x1), (q′1, y1, R)) ∈ δ :


q1 6= q

or x1 6= x
or q′1 6= q′

or y1 6= y

(2)

The formula cR(a, i) expresses condition (2):

cR(a, i) :=
∧

δ(q,x)=(q′,y,R)


a[i, 0, 0] 6= q

∨ a[i, 2, 0] 6= x
∨ a[i+ 1, 0, 0] 6= q′

∨ a[i+ 1, 1, 0] 6= y


Note that α1 is represented by a[i, 1] (in reverse order) and that α′1y is represented by a[i+ 1, 1] (in
reverse order). Moreover, xα2 is represented by a[i, 2] and α′2 is represented by a[i + 1, 2]. So, the
formula

dR(a, i, j) :=

(
a[i, 1, j] 6= a[i+ 1, 1, j + 1]

∨ a[i, 2, j + 1] 6= a[i+ 1, 2, j]

)
denotes that, for some index j, the j-th symbol of α1 is different from that of α′1 or the j-th symbol
of α2 is different from that of α′2. Therefore, it expresses that α1 6= α′1 or α2 6= α′2, i.e., it expresses
condition (1). Formulas cL(a, i) and dL(a, i, j) are constructed similarly for the moves to the left:

cL(a, i) :=
∧

δ(q,x)=(q′,y,L)


a[i, 0, 0] 6= q

∨ a[i, 2, 0] 6= x
∨ a[i+ 1, 0, 0] 6= q′

∨ a[i+ 1, 2, 1] 6= y


dL(a, i, j) :=

 a[i, 1, 0] 6= a[i+ 1, 2, 0]
∨ a[i, 1, j + 1] 6= a[i+ 1, 1, j]
∨ a[i, 2, j + 1] 6= a[i+ 1, 2, j + 2]


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Definition 4. Let T, T+, T− be array variables and K, I1, I2 be index variables. We define PM,w as
follows:

A := 〈cA | p(T )〉 with cA := Start(T )
G := ∅
H+ := {H+}
H− := {H−}

with

H+ := 〈(∃K)Fin(T+,K) | p(T+)〉
H− := 〈(∃I1, I2)(Inv(T−, I1, I2) ∧NoFin(T−, I1)) | p(T−)〉

The atom H+ (resp. H−) represents all the sequences of ID’s that contain a final state (resp. all the
invalid computations of M).

Lemma 1. PM,w is a valid instance of the generic CSUP P.

Proof. A is a constraint atom of the form 〈cA | p(T )〉 with G ⊆ Var(A). Moreover, H+ and H− are
finite sets of constraint atoms such that all the constraint atoms in {A} ∪H+ ∪H− are pairwise variable
disjoint. Let

a0 :=
[
[q0], [], [e0, . . . , el,�]

]
and

a1 :=
[
[qf ], [x], [e1, . . . , el,�]

]
with qf a final state of M and δ(q0, e0) 6= (qf , x,R) and δ(q0, e0) 6= (qf , x, L) (if w = ε then replace e0
with �). Let v be a valuation with v(T ) = v(T+) = v(T−) = [a0, a1]. Then, the formula c+ :=

(
T =

T+ ∧ cA ∧ (∃K)Fin(T+,K)
)

is such that A |=v c
+, hence we have A |= ∃c+, i.e., A ≈ H+. Let

c− :=
(
T = T− ∧ cA ∧ (∃I1, I2) (Inv(T−, I1, I2) ∧NoFin(T−, I1))︸ ︷︷ ︸

ϕ

)
.

Let v′ be a valuation with v′(I1) = v′(I2) = 0 and v′(X) = v(X) for any variable X different from I1
and I2. Then we have A |=v′ Inv(T−, I1, I2) because [a0, a1] represents an invalid move of M . Moreover,
A |=v′ NoFin(T−, I1) because the state in a0 is q0, i.e., is not final. Consequently, we have A |=v′ ϕ so
A |=v (∃I1, I2)ϕ. As we also have A |=v (T = T− ∧ cA), then A |=v c

−, i.e., A |= ∃c−. So, we have
A ≈ H−.

Proposition 1. If M accepts w then PM,w has a solution.

Proof. Suppose that M accepts w. Then, there exists a finite computation of M of the form id0, . . . , idm
where id0 = q0w and the state in idm is final. For each i in [0,m], suppose that id i has the form
xi0 . . . x

i
ni
qiyi0 . . . y

i
mi

and let

ci :=

 T [i, 0, 0] = qi

∧ (∧j∈[0,ni]T [i, 1, j] = xini−j) ∧ Empty(T [i, 1], ni + 1)
∧ (∧j∈[0,mi]T [i, 2, j] = yij) ∧ Empty(T [i, 2],mi + 1)


Note that we have c0 = cA. Let c := (c1 ∧ · · · ∧ cm).
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– cA ∧ c is satisfiable because it is a conjunction of atomic constraints, each of them “assigns” a value
to a distinct cell of T . Moreover, by definition of the ci’s, for any valuation v such that A |=v cA ∧ c,
we have that v(T ) is an array that starts with a0, . . . , am where for each each i in [0,m], ai is an
array that represents id i.

– c is variable disjoint with H+ and H−.
– As qm is a final state of M , we have

A |= ∃[T = T+ ∧ (cA ∧ c) ∧ (∃K)Fin(T+,K)]

hence 〈cA ∧ c | p(T )〉 ≈ H+.
– Suppose that A |= ∃c− where

c− :=

[
T = T− ∧ (cA ∧ c)

∧ (∃I1, I2)(Inv(T−, I1, I2) ∧NoFin(T−, I1))

]
(3)

Then, there is a valuation v which is such that A |=v c
−. By (3), we have A |=v (T = T− ∧ (cA ∧ c)),

hence v(T−) is an array that starts with a0, . . . , am where for each each i in [0,m], ai is an array
that represents id i. By (3), we have A |=v (∃I1, I2)(Inv(T−, I1, I2) ∧ NoFin(T−, I1)), so there exists
a valuation v′ which is such that v′(X) = v(X) for any variable X different from I1 and I2, and

A |=v′ (Inv(T−, I1, I2) ∧NoFin(T−, I1)) . (4)

So, A |=v′ NoFin(T−, I1) and as qm is a final state of M , we necessarily have v′(I1) < m. As
id0, . . . , idm is a computation of M , we have idv′(I1) ` idv′(I1)+1, so A |=v′ ¬Inv(T−, I1, I2) and we
have a contradiction with (4). Therefore, we have A |= ¬∃c−, i.e., 〈cA ∧ c | p(T )〉 6≈ H−.

– As G is the empty set, each X ∈ G is fixed within cA ∧ c.

Consequently, cA ∧ c ∈ PM,w.

Proposition 2. If PM,w has a solution then M accepts w.

Proof. Suppose that PM,w has a solution cA ∧ c. Then, we have 〈cA ∧ c | p(T )〉 ≈ H+, i.e., A |= ∃c+
where

c+ :=
[
T = T+ ∧ (cA ∧ c) ∧ (∃K)Fin(T+,K)

]
. (5)

So, there exists a valuation v which is such that A |=v c
+. Note that we have T− 6∈ Var(c+) because

Var(cA) = {T} and c is variable disjoint with H− (because cA ∧ c ∈ PM,w). Let v′ be a valuation with
v′(X) = v(X) for all variable X of c+ and v′(T−) = v′(T ). Then, A |=v′ c

+ and, by (5), A |=v′ cA ∧ c.
Let a := v′(T ).

– We have A |=v′ cA so, by definition of cA, a is an array and a[0] is an array that represents the ID
q0w.

– By (5), v′(T+) = v′(T ) = a and A |=v′ (∃K)Fin(T+,K). So, there exists an index k which is such
that a[k, 0, 0] ∈ F . Let m be the least such index, i.e.,

a[m, 0, 0] ∈ F and ∀i < m, a[i, 0, 0] 6∈ F . (6)
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– As cA ∧ c ∈ PM,w, we have 〈cA ∧ c | p(T )〉 6≈ H−. Hence, A |= ¬∃c−, i.e., A |= ∀¬c−, where

c− := [ T = T− ∧ (cA ∧ c)
∧(∃I1, I2)(Inv(T−, I1, I2) ∧NoFin(T−, I1))] .

Consequently, we have A |=v′ ¬c−. Note that

¬c−= [T 6= T− ∨ ¬(cA ∧ c)
∨ (∀I1, I2)(¬Inv(T−, I1, I2) ∨ ¬NoFin(T−, I1))︸ ︷︷ ︸

ϕ

] .

As A |=v′ (T = T− ∧ (cA ∧ c)), we have necessarily A |=v′ ϕ. Let i be a natural which is less
than m where m is defined in (6). Let v′′ be a valuation which is such that v′′(X) = v′(X) for all
variable X different from I1 and v′′(I1) = i. Then, we have v′′(T−) = v′(T−) = v′(T ) = a so, by (6),
A |=v′′ NoFin(T−, I1). We have A |=v′′ ¬Inv(T−, I1, I2) so a[i] represents an ID id i, a[i+1] represents
an ID id i+1 and id i ` id i+1 is a valid move of M .

Consequently, the array a represents a computation of M starting from q0w and ending in a final state,
so M accepts w.

It is undecidable whether an arbitrary Turing machine accepts an arbitrary word. Therefore, Propo-
sition 1 and Proposition 2 yield the following result.

Theorem 1. It is undecidable whether an arbitrary instance of the CSUP has a solution.

6 A Decidable Case for the CSUP

As Section 5 has shown the undecidability of the generic CSUP, let us introduce additional hypotheses
about the constraint structure D which will help solving the problem:

A1: The constraint structure admits variable elimination.
A2: The negation of any atomic constraint is equivalent to a finite disjunction of atomic constraints.

Example 12. Qlin verifies these assumptions. It admits variable elimination. The set of predefined atomic
constraints is {< /2,≤ /2,= /2,≥ /2, > /2}. The negation of each atomic constraint is an atomic
constraint, except for = /2 whose negation is defined by a disjunction of atomic constraints, i.e., ¬(X =
Y ) ≡ X < Y ∨X > Y .

The next subsection will show that assumptions A1 and A2 are sufficient conditions on the constraint
domain to solve the CSUP when G = ∅. Then, by relying on specific properties of Qlin , we present an
algorithm which has been implemented solving the CSUP when G 6= ∅.

6.1 CSUP without the Groundness Condition

In Figure 3, we present an algorithm which we call CSUP- for solving the constraint selective unification
without the groundness condition.

Note that assumption A1 is used in the preconditions of the algorithm as any constraint atom is
assumed to be projected. The computation of C ′ in step 1 is simply a renaming. Step 2 relies explicitly
on assumption A2 and implicitly on assumption A1, because each disjunct is a constraint involving only
#»

X.
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Preconditions: Let A be a projected constraint atom 〈cA | p(
#»
X)〉. Let H+ and H− be finite sets of constraint

atoms such that all constraint atoms, including A, are pairwise variable disjoint and A ≈ B for all B ∈ H+∪H−.

Postcondition: A finite set of constraints, each of them being a solution of P(A,H+,H−, ∅).

Algorithm:

(1) Intersect of all the complements of the atoms in H−:

I :=
∧
{¬C′|H = 〈c′|p( #»

Y )〉 ∈ H−, C′ ≡ ∃ #»
Y [

#»
X =

#»
Y ∧ c′]}

(2) Eliminate negation from I then distribute ∧ over ∨ :

J :=
∨

1≤j≤n

Cj(
#»
X)

(3) Intersect J with A. Let CAj (
#»
X) ≡ [Cj(

#»
X) ∧ cA]for 1 ≤ j ≤ n in:

K :=
∨

1≤j≤n

[CAj (
#»
X)]

(4) Collect the constraints from K which intersect each of H+:

S :=

CAj (
#»
X) ∈ K|

∧
〈c′|p(

# »

X′)〉∈H+

D |= ∃[
#  »

X ′ =
#»
X ∧ CAj (

#»
X) ∧ c′]


(5) Return S

Fig. 3. Algorithm CSUP-(A,H+,H−).
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Theorem 2. Algorithm CSUP- terminates, is correct and complete.

Proof.

– Each step 1–5 terminates, so termination is obvious.
– Correctness. Let CAj (

#»

X) be an element of S. We show that CAj (
#»

X) ∈ P(A,H+,H−, ∅). Let H denote

the constraint atom 〈CAj (
#»

X) | p( #»

X)〉.
• CAj (

#»

X) is a finite satisfiable conjunction of atomic constraints because of steps 2–4 of CSUP-.

• As defined in step 3, CAj (
#»

X) ≡ [Cj(
#»

X) ∧ cA].

• Var(Cj(
#»

X)) ⊆ #»

X, so the added constraint is variable disjoint with H+ ∪H−.
• H unifies with all constraint atom from H+ because of step 4.
• H does not unify with any constraint atom from H− because of step 1.

– Completeness. Let c be any element of P(A,H+,H−, ∅) and c(
#»

X) its projection onto
#»

X. As each of
the first four steps of the algorithm is required by the problem statement and is dealt with by logical
equivalence, c is covered by the union of CAj , i.e., D |= ∀ #»

X[c(
#»

X)→ ∪CA
j ∈SC

A
j (

#»

X)].

With respect to complexity, there are potential expensive steps in algorithm CSUP-. Projection is
required to meet the preconditions of the algorithm and also in step 2. Moreover in the worst case, step
2 of CSUP- can be exponential in the size of H− as it involves distribution of ∧ over ∨. In this case, step
4 requires an exponential number of calls to the constraint solver. However, note that the point of this
section is to present a decidable case for CSUP.

6.2 Decidability of CSUP for Qlin

In the preceding subsection, we have shown that the assumptions A1 and A2 are sufficient to encode
the definition of the CSUP without the groundness condition into the algorithm CSUP-. Now, to define
a procedure for solving the CSUP, we need to take advantage of specific properties of the constraint
structure. We present such a procedure for CLP(Qlin) in a bottom-up approach. First, given a variable X
and a satisfiable constraint C, the function FPS finds a value c for X such X = c∧C remains satisfiable.
Then given a constraint atom A, a set of positive atoms H+ and a set G of variables to be grounded,
the procedure GRND tries to ground G while ensuring that A remains unifiable with each atom of H+.
Finally we present the algorithm CSUP, which iterates calls to GRND to each subspace returned by
CSUP-.

Finding a Partial Solution As we do not include disequality into the set of predefined atomic con-
straints, the space of solutions described by a constraint is convex. Our procedure, see Figure 4, is based
on linear programming, hence its complexity is polynomial in theory. The main difficulty is dealing with
strict inequalities, e.g., the maximum of X within X < 0, denoted max

X<0
X is 0, but 0 is not a solution

for X in X < 0. Indeed, the interface predicates for the CLP(Q) library described in [7] are called inf/2

and sup/2 to emphasize that the minimum (resp. the maximum) of a linear expression over a constraint
possibly including strict inequalities is actually an infinum (resp. a supremum). The procedure projects
the current constraint C onto the variable X. This projection is a convex set, so even in the presence of
strict inequalities, one can easily find a value x0 for X. By definition of projection, we know that we can
extend the partial solution X = x0 to a full solution of C where X = x0. Hence C ∧X = x0 is satisfiable.
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Preconditions: Let X be a variable and C be a satisfiable constraint. There is no condition between X and
Var(C).

Postcondition: An equation X = x0, where x0 denotes a rational number, such that X = x0∧C is satisfiable.

Algorithm:

1. If X is bounded from below within C then
(a) Let min := min

C
Xi

(b) If Xi is bounded from above within C then
i. Let max := max

C
Xi

ii. S := X = (min+max)/2
(c) Else S := X = min+ 1

2. Elif X is bounded from above within C then
(a) Let max := max

C
X

(b) S := X = max− 1
3. Else S := X = 0
4. Return S

Fig. 4. Algorithm FPS(X,C).

Theorem 3. Algorithm FPS terminates and is correct.

Proof. Termination is obvious. FPS always returns an equation X = x0 where x0 denotes a rational
number. For correctness, let us show that X = x0 ∧ C is satisfiable. Given the variable X and following
the code of the algorithm, there are four cases.

1. X is bounded by min and max.
(a) If min = max, because the linear programming solver is correct, then min is the only possible

value for X within the constraint C. Hence X = min ∧ C is satisfiable, and this constraint is
equivalent to X = (min+max)/2 ∧ C.

(b) Otherwise, because of the convexity of C, the half sum (min+max)/2 is a possible value for X
within the constraint C. Hence X = (min+max)/2 ∧ C is satisfiable.

2. X is bounded by min but not bounded from above. Then because of the convexity of C, min+ 1 is
a possible value for X within the constraint C (while we don’t know for min). So X = min+ 1 ∧ C
is satisfiable.

3. X is bounded by max but not bounded from below. Then by convexity max− 1 is a possible value
for X. The constraint X = max− 1 ∧ C is satisfiable.

4. Otherwise, as C is satisfiable and X is not bounded within C, 0 is a possible value for X, and the
constraint X = 0 ∧ C is satisfiable.

So in all cases, the equation returned by the algorithm is indeed a solution for X of the input constraint
C.

Grounding In Figure 5, we present an algorithm that grounds some variables while ensuring that the
subspace it defines intersects with all positive atoms. First we need the projection of a constraint onto a
variable, which can be computed by linear programming.
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Definition 5. Let c be a satisfiable constraint and X be a variable. Then proj(c,X) denotes the constraint
c′(X) which is the projection of c onto X.

Preconditions: Let A be a projected constraint atom 〈cA|p(
#»
X)〉, let H+ be a finite set of projected constraint

atoms such that all of them are pairwise variable disjoint and A ≈ B for all B ∈ H+, and let {X1, . . . , Xn} ⊆
Var(A).

Postcondition: ⊥ or a conjunction of equations S ≡ ∧1≤i≤nXi = xi such that ∀H ∈ H+, 〈cA∧S|p(
#»
X)〉 ≈ H.

Algorithm:

1. i := 1
2. S := >
3. While i ≤ n do

(a) Pi := S ∧ cA ∧ [∧H∈H+proj(S ∧ cA ∧H(
#»
X), Xi)]

(b) If Pi is satisfiable then S := FPS(Xi, Pi) ∧ S
(c) Else Return ⊥
(d) i := i+ 1

4. Return S

Fig. 5. Algorithm GRND(A,H+, {X1, . . . , Xn}).

Theorem 4. Algorithm GRND terminates and is correct and complete.

Proof.

– Termination is readily checked.
– For correctness, if the algorithm returns ⊥, the answer is correct. Otherwise, let us show that I : (i ≤
n + 1)

∧
S ≡ ∧1≤j≤i−1Xj = xj

∧
∀H ∈ H+, 〈cA ∧ S|p(

#»

X)〉 ≈ H is an invariant at line 3. The first
time we arrive at line 3, i = 1, I is true thanks to the preconditions. Assume I is true line 3. Pi is
computed and assumed satisfiable. Algorithm FPS returns an equation Xi = xi such that Pi∧Xi = xi
is satisfiable. Hence, S ∧ cA ∧Xi = xi is satisfiable, and because it intersects the projection of each
H ∈ H+ onto Xi, any partial solution where X1 = x1, . . . , Xi = xi can be extended into a solution
satisfying cA ∧ S ∧Xi = xi ∧H(

#»

X) for any H ∈ H+. Then i is incremented and the invariant holds
again. Line 4, we know that i > n and I, hence the postcondition holds.

– For completeness, if the algorithm returns ⊥ then there does not exist a partial solution S fixing
{X1, . . . , Xn} such that ∀H ∈ H+, 〈cA ∧ S|p(

#»

X)〉 ≈ H.

CSUP with the Groundness Condition

Finally, algorithm CSUP defined in Figure 6 solves the constraint selective unification problem in
Qlin .

Theorem 5. Algorithm CSUP terminates. It correctly and completely solves the CSUP problem for
CLP(Qlin).
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Preconditions: Let A be a projected constraint atom 〈cA|p(
#»
X)〉, let H+ and H− be finite sets of projected

constraint atoms such that all of them, including A, are pairwise variable disjoint and A ≈ B for all B ∈
H+ ∪H−, and let G ⊆ Var(A).

Postcondition: A possibly empty finite set of constraints, each of them being a solution of P(A,H+,H−, G).

Algorithm:

1. S := CSUP−(A,H+,H−)
2. T := ∅
3. For each Cj ∈ S do

(a) U := GRND(〈Cj |p(
#»
X)〉,H+, G)

(b) If U 6= ⊥ then T := T ∪ {Cj ∧ U}
4. Return T

Fig. 6. Algorithm CSUP.

Proof.

– Termination. The call to CSUP- terminates and computes a finite set of constraints. The loop of line
3 goes along this finite set and each call to GRND terminates. So algorithm CSUP terminates.

– Correctness. If algorithm CSUP returns a non-empty set of constraints, each of them is a solution to
P(A,H+,H−, G).

– Completeness. If algorithm CSUP returns the empty set, ∅, then P(A,H+,H−, G) has no solution.

Example 13. Let

– A := 〈1 ≤ X ∧X ≤ 6 | p(X)〉,
– H+ := {〈2 < X1 | p(X1)〉, 〈X2 ≤ 5 | p(X2)〉},
– H− := {〈3 ≤ X3 ∧X3 ≤ 4 | p(X3)〉}.

We run the CSUP algorithm for different values of G:

– For G = ∅, we get two solutions: {1 ≤ X ∧ X < 3 ; 4 < X ∧ X ≤ 6}. For instance let us check
the first one. It is satisfiable and it results from the conjunction of cA: 1 ≤ X ∧ X ≤ 6 with the
constraint X < 3. The constraint atom 〈1 ≤ X ∧X < 3 | p(X)〉 is unifiable with the first positive
constraint atom of H+ as X = X1 ∧ 1 ≤ X ∧ X < 3 ∧ 2 < X1 is satisfiable and similarly for
the second positive constraint atom. It is not unifiable with the negative constraint atom of H− as
X = X3 ∧ 1 ≤ X ∧X < 3 ∧ 3 ≤ X3 ∧X3 ≤ 4 is unsatisfiable.

– For G = {X}, we get {X = 5/2 ; X = 9/2}. Again we have two solutions and X is ground as
required. Let us check for instance the first one. The satisfiable constraint X = 5/2 is equivalent to the
conjunction of cA: 1 ≤ X∧X ≤ 6 with the constraint X = 5/2. The constraint atom 〈X = 5/2 | p(X)〉
is unifiable with the first positive constraint atom of H+ as X = X1∧X = 5/2∧2 < X1 is satisfiable
and similarly for the second positive constraint atom. On the other hand, it is not unifiable with the
negative constraint atom of H− as X = X3 ∧X = 5/2 ∧ 3 ≤ X3 ∧X3 ≤ 4 is unsatisfiable.

Example 14. Let

– A := 〈0 ≤ X ∧ 0 ≤ Y | p(X,Y )〉,
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– H+ :=

{
〈Y 1 ≤ X1− 4 | p(X1, Y 1)〉,
〈X2 ≤ 8 ∧ 8 ≤ Y 2 | p(X2, Y 2)〉

}
,

– H− := {〈Y 3 ≤ 2 | p(X3, Y 3)〉, 〈X4 ≤ 4 | p(X4, Y 4)〉}.

We give a geometrical interpretation of this CSUP, see Figure 7. First, we have considered the first
quadrant of the plane (restricted to X < 15 and Y < 15) as the solutions has to lie inside the space of
solutions of the constraint atom A. In green (light grey if in B&W), we have the two positive spaces:
Y ≤ X − 4 in the lower right and X ≤ 8 ∧ 8 ≤ Y in the upper left. Above the positive spaces, we have
the two negative spaces Y ≤ 2 and X ≤ 4 in red (dark grey if in B&W). We run the CSUP algorithm
for different values of G:

– For G = ∅, we get {4 < X ∧ 2 < Y }. Let us check this solution geometrically. This space is the
union of the two green areas with the white one in between. It lies inside cA: 0 ≤ X ∧ 0 ≤ Y , has
a non-empty intersection with the two positive spaces and an empty intersection with the negative
spaces.

– For G = {Y }, we get {4 < X ∧ Y = 9}. Let us check that the half-line 4 < X ∧ Y = 9, drawn in
blue (black if B&W), is indeed a solution. We note that Y is ground as required. The half-line has a
non-empty intersection with both positive spaces and an empty intersection with the negative spaces.
Moreover, the half-line is included into the first quadrant.

– For G = {X}, we get {X = 7 ∧ 2 < Y }. A similar reasoning shows that this half-line is indeed a
solution. It intersects the positive spaces, does not intersect the negative spaces and lies inside the
first quadrant.

– For G = {X,Y }, there is no solution. Geometrically, G = {X,Y } means: can one find a point which
belongs to the green upper left space and at the same time to the green lower right space? No, as the
two spaces are disjoint. Hence there is no solution.

Fig. 7. A graphical representation of a CSUP.
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7 Related Work and Conclusion

Constructive negation in LP [2] and, more specifically, in CLP [20] is related to our work. The starting
point of constructive negation stems from the desire to extract constructive information from the proof
of a negative subgoal, in contrast to the usual negation as failure rule. This is precisely what we do
in algorithm CSUP- while processing the negative atoms of H−. In [20], Stuckey introduced admissible
closedness as a sufficient condition over constraint structures for a practical use of constructive negation.
This property is weaker than quantifier elimination. Stuckey showed that assumptions A1 and A2 of
section 6 imply admissible closedness. Moreover CLP(H), the constraint domain of finite trees with
equality and quantified disequality does not admit quantifier elimination but is admissible closed. More
recently, Dovier et al. proved that admissible closedness was also a necessary condition for constructive
negation in CLP [4]. So this concept could be a promising tool for studying concolic testing for logic
programming, as we have begun in [16, 17] but this time from a CLP perspective.

Other future work could investigate the idea of grabing specific values from the concrete component of
concolic execution in order to help solving difficult constraints. For instance, Qlin cannot deal with non-
linear constraints that can appear in the symbolic part of concolic testing. So linearizing such constraints
by introducing concrete data is an interesting possibility.

A third idea that seems appealing is the inclusion of interpolation. It has been previously shown that
interpolation [3] can improve concolic testing [12] in an imperative setting. CLP evaluation [13, 6] can
also benefit from interpolation. It remains to see if one can combine both approaches.

Summarizing this paper, we have considered concolic testing in the framework of constraint logic
programming. We have proved that the selective unification problem is generally undecidable for CLP.
For a restricted class of constraint structures, we have given a generic correct and complete algorithm
for selective unification without the groundness condition. Finally, we have presented a specific selective
unification with the groundness condition for CLP(Qlin).
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