
A Termination Analyser for Java Bytecode Based
on Path-Length

FAUSTO SPOTO
Dipartimento di Informatica, Università di Verona, Italy

FRED MESNARD
IREMIA, LIM, Université de la Réunion, France

ÉTIENNE PAYET
IREMIA, LIM, Université de la Réunion, France

It is important to prove that supposedly terminating programs actually terminate, particularly if those programs
must be run on critical systems or downloaded into a client such as a mobile phone. Although termination
of computer programs is generally undecidable, it is possible and useful to prove termination of a large, non-
trivial subset of the terminating programs. In this paper we present our termination analyser for sequential Java
bytecode, based on a program property calledpath-length. We describe the analyses which are needed before the
path-length can be computed, such as sharing, cyclicity and aliasing. Then we formally define the path-length
analysis and prove it correctw.r.t. a reference denotational semantics of the bytecode. We show that a constraint
logic programPCLP can be built from the result of the path-length analysis of a Java bytecode programP and
formally prove that ifPCLP terminates then alsoP terminates. Hence a termination prover for constraint logic
programs can be applied to prove the termination ofP . We conclude with some discussion of the possibilities
and limitations of our approach. Ours is the first existing termination analyser for Java bytecode dealing with any
kind of data structures dynamically allocated on the heap and which does not require any help or annotation on
the part of the user.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs—Mechanical Verification; F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages—Denotational Semantics; Program Analysis

General Terms: Languages, Theory, Verification

Additional Key Words and Phrases: Abstract interpretation, termination analysis, Java, Java bytecode

1. INTRODUCTION

It is well-known that a general procedure for determining which computer programs ter-
minate does not exist for Turing-complete programming languages [Turing 1936]. Nev-
ertheless, it is becoming ever more important to prove that programs terminate. This is
because software is used in critical systems where non-termination might lead to disaster.
Moreover, software is increasingly deployed in embedded tools such as mobile phones. If
a program downloaded into a mobile phone does not terminate, the phone might require
a tedious shutdown; worse, users might complain to the originator of the software or to
the phone company itself, which accounts for extra costs on their part, or might decide not
to download software anymore. The software industry is paying more and more attention
to software quality, and would like to issue acertificateattesting that quality. A proof of
termination about the programs in the software should definitely be part of the certificate.
Moreover, the compiler industry is interested in termination proofs. For instance, the latest

2 · F. Spoto and F. Mesnard and É. Payet

version of Sun’s Java compiler rejects non-terminating class initialisers; however, the test
for non-termination is so rudimentary that virtually all non-terminating initialisers escape
that test. For these reasons, termination is considered as a challenge for current software
verification [Leavens et al. 2007].

Programmers can often argue for the termination of the programs they write. This means
that termination of computer programs can be proved by humans, at least for a large class of
programs. However, programmers are often very erroneously convinced of the termination
of programs which are later found to diverge in some special or unexpected cases: almost
everyone has had the experience of having to stop a program which apparently was not
terminating. This means the human proofs of termination are error-prone and generally
unreliable. This problem becomes more acute for modern programming languages, such
as the object-oriented ones, especially if they are low-level languages with a very complex
semantics.

Java bytecode [Lindholm and Yellin 1999] is a low-level, object-oriented programming
language, usually resulting from the compilation of a source Java program. It can be seen
as a machine-independent, type-safe, object-oriented, imperative assembly language. Al-
though it was born both with and for Java, it is now also used as a compilation target for
other programming languages. The Java bytecode available on the Internet or downloaded
into mobile phones is often provided as a set of Java bytecode classes without the corre-
sponding source code. The source code is not made available for one or more reasons:
because of commercial choice, to shorten the download time, or because source code does
not even exist since the bytecode is the result of software transformations or specialisa-
tions. The above considerations entail that termination proofs for Java bytecode software
have real industrial interest. Moreover, one can prove the termination of a Java source
program by proving the termination of the derived Java bytecode (assuming the compiler
to be correct), while the converse is false: many Java bytecode programs do not directly
correspond to a Java program.

Previous research has developed automatic termination analyses i.e., formal techniques
for proving, automatically, the termination of large classes of computer programs: when
these analyses prove termination, then the analysed program actually terminates, while
the converse is generally false. Although there is a variety of proposed techniques, the
underlying common idea is that of finding some well-founded measure, called in turn norm,
ranking function or level mapping, that strictly decreases along loops or in recursive calls.

Most of the work on termination analysis has been applied to term rewriting systems,
functional and logic programming languages, whose semantics is typically simple and well
understood. Proofs of termination for imperative programs that use dynamic data structures
are much more complex than the corresponding proofs for functional or logical languages
which do not have destructive updates. In order to foresee the possible effects of destructive
updates, it is important to compute information about the shape of the heap of the system
at run-time. Namely, sharing and cyclicity of data structures play an important role in
imperative programs, while they are forbidden or practically never used in functional and
logical languages. Since cyclicity can lead to non-termination of some iterations over
the data structures, it must be taken into account for a correct termination analysis. It
has been proved that sharing adds to the power of LISP programs since it allows one to
write computationally cheaper algorithms [Pippenger 1997]. No similar result is known for
cyclicity. Nevertheless, the extensive use of sharing and cyclicity in current Java programs

A Termination Analyser for Java Bytecode Based on Path-Length · 3

entails that a realistic static analysis must take them into account.
Things become still more complex with object-oriented languages, where dynamic dis-

patch, inheritance, instance and class initialisations must be taken into account. Cyclicity
becomes omnipresent there; for instance, all exceptions are cyclical in Java. If we con-
sider the Java bytecode language, its low-level nature presents further challenges, such as
the unstructuredness of the code and the presence of an operand stack of variable height.
For instance, this requires the tracking of precise definite aliasing between local variables
and stack elements, which is not the case for high-level languages. Without such infor-
mation (or similar) abstract domains and static analyses which are sufficiently precise for
high-level languages might not be precise enough for a low-level language [Logozzo and
Fähndrich 2008].

It therefore follows that an automatic technique for proving the termination of Java byte-
code programs is a long way from being a simpleextensionof similar techniques already
existing for functional and logical languages. To the contrary, it requires a set of prelimi-
nary static analyses, such as sharing, cyclicity and aliasing analyses, and strict adherence
to all the details of the semantics of the language.

For this reason, we have recently defined an abstract analysis, calledpath-length, which
uses preliminary sharing, cyclicity and aliasing analyses to build an over-approximation
(hence, safe approximation) of the maximal length of a path of pointers that can be fol-
lowed from each program variable [Spoto et al. 2006]. This may be seen as an extension
to data structures of thelinear restraintsof [Cousot and Halbwachs 1978].

In this paper we make the following contributions:

(1) We define thepath-lengthanalysis for sequential Java bytecode, dealing with any kind
of data structures, and prove that it is formally correct using the abstract interpretation
framework [Cousot and Cousot 1977];

(2) We define how aCLP program is derived from the path-length analysis of a Java
bytecode program and prove that if the derivedCLP program terminates then also the
original Java bytecode program terminates;

(3) We describe our implementation of a termination analysis for sequential Java byte-
code, based on path-length, inside the JULIA analyser [Spoto 2008a], coupled with the
BINTERM termination prover. It is a fully automatic system able to scale up to pro-
grams of 1200 methods, including all the analyses necessary to build the path-length
constraints. This shows the potential of both JULIA and BINTERM.

In this paper we only consider a non-trivial subset of Java bytecode, so that for instance
point 2 above is limited to that subset. However, note that this is standard in the analy-
sis of Java bytecode, since the chosen bytecodes are representative of a large family of
bytecodes (namely, they include those manipulating the heap) and the missing bytecodes
perform tedious stack manipulations or deal with concurrency (that we do not handle). By
consideringall bytecodes, we would just make the paper clumsy.

We stress the fact that the implementation is not aprototypebut a robust and reliable
system, resulting from many years of programming work; it includes class,null pointer,
initialisation, sharing, cyclicity, aliasing and path-length analyses, deals with all constructs
of Java bytecode, including thejsr and ret instructions, deals with exceptions, has been
tested on very large programs (up to 10000 methods) and extensively debugged; it is also
used by a big industrial company in the USA for information flow analysis of very large

4 · F. Spoto and F. Mesnard and É. Payet

programs. To the best of our knowledge, it is the first fully automated implementation
of a termination analyser for full sequential Java bytecode, with no invention of ad-hoc
algorithms for dealing with specific complex programs; moreover, it is the first termination
analysis for imperative programs able to deal, automatically and with satisfying precision,
with any kind of data structures dynamically allocated in memory.

Two lines of works are strictly related to ours and deserve some discussion:

—In [Albert et al. 2007a; 2008] it has been shown how the results of the path-length
analysis can be used to translate the analysed imperative program into a constraint logic
program (CLP) which can then be fed to a termination prover for logic programs. In
the same spirit, path-length has also been used in [Albert et al. 2007b] to infer upward
approximations of the computational cost of Java bytecode methods. They use it to
translate imperative programs into constraint logic programs over which cost analysis
is performed. Our translation intoCLP programs is not identical to that used in these
papers, but [Albert et al. 2007a; 2008] remain the closest to our work. Note, in par-
ticular, that [Albert et al. 2007a] has been published before the first submission of our
paper. We have received the benchmarks analysed in [Albert et al. 2007a; 2008] from
the authors of those papers; their analysis with our tool is shown in Figure 16.

—The TERMINATOR system [Cook et al. 2006b] proves termination of C programs. A cru-
cial innovation w.r.t. termination consists in its use of transition invariants [Podelski and
Rybalchenko 2004b], which are computed using techniques for least fixpoint calcula-
tion and abstraction. Transition invariants enable the use of a ranking function generator
for simple-while programs, which can be implemented by constraint solving [Podelski
and Rybalchenko 2004a]. Termination is proved over primitive types, without dynamic
data structures. This is the main difference from our work, which is in principle able
to deal with any data structure dynamically allocated in the heap. TERMINATOR uses
model-checking to explore the set of reachable states of the program. The use of model-
checking allows one to test also concurrent programs. The distinguishing feature of
TERMINATOR is its ability to improve the analysis by exploiting counterexamples found
during the model-checking [Cook et al. 2005]. This feature, which is missing in our
work, can lead to very precise analyses, sometimes at the expense of efficiency. TER-
MINATOR can deal with pointers in the sense that it models dereferencing. However,
it does not deal with iterations over dynamic data structures (page 425 of [Cook et al.
2006a]). It has been successfully used for the verification of operating systems drivers
of non-trivial size [Cook et al. 2006a]. The weak modelling of the heap in TERMINA-
TOR has been overcome in [Berdine et al. 2006], where termination of C programs with
lists is proved by using the shape analysis in [Distefano et al. 2006], which is based
on separation logic [Reynolds 2000; Ishtiaq and O’Hearn 2001]. Their work has some
similarities with ours since they build a linear constraint from the program by using
the shape analysis to gather information about the size of the lists. However, they do
not support functions, as the underlying shape analysis; they claim that their work can
be applied to many data structures, but they only consider linked lists; the derivation
of linear constraints from the shape analysis is not proved correct. Note that they are
based on a separation logic for lists only and that also a more advanced version of that
logic [Berdine et al. 2007a] still considers flavours of lists only, as well as the inter-
procedural shape analysis in [Gotsman et al. 2006]. Their work has been generalised

in [Berdine et al. 2007b], so that termination with lists is an instance of a generic
frame-

A Termination Analyser for Java Bytecode Based on Path-Length · 5

work which proves well-founded variance of some variables at specific program point.
The generalisation does not affect the results about the data structures which can be mod-
elled in the heap during the shape analysis. Compared to our work, we remark that we
consider every kind of data structure in the heap. Although it is true that more advanced
shape analyses can determine the shape of any data structure in memory, not just lists,
there is no mention, in the works above, of the translation of the results of such shape
analyses into numerical constraints that can later be used to prove the termination of the
program. That is, those papers miss a formal definition of how the linear constraints are
built when a destructive update modifies some data structure, not just lists (seeputfield

in our Definition 37), as well as a formal definition of how the linear constraints are built
for method calls that might modify data structures in the heap (seeextend in our Def-
inition 44). Moreover, we provide formal proofs of the correctness of the construction
of those numerical constraints, while this is not the case in the papers above. This is far
from being a detail. As the reader can check, those two definitions are the most complex
in this paper and their correctness proof requires careful and non-trivial arguments. For
a pratical comparison with our tool, we have analysed three of the programs in [Cook
et al. 2006a]. Namely, programNumerical1 in Figure 16 is the program in Figure 3
of [Cook et al. 2006a], programNumerical2 is the program in Figure 11 of [Cook
et al. 2006a] and programNumerical3 is the diverging program in Figure 7 of [Cook
et al. 2006a]. The same paper contains a utility function of a Windows device driver
(Figure 1 of [Cook et al. 2006a]) and analyses a set of Windows device drivers (in its
Figure 12); we cannot analyse such drivers because there is no way of writing Windows
device drivers in Java. The same paper analyses the Ackermann function (also analysed
in our Figure 16) coupled with a program that uses pointers to integers, which do not
exist in Java (Figure 4 of [Cook et al. 2006a]). The benchmarks analysed in [Berdine
et al. 2006] are all loops of Windows device drivers which, again, we cannot analyse.
The simple iteration over a list in Figure 5 of [Berdine et al. 2006] is included in the
analysis ofList in our Figure 16.

The rest of this paper is organised as follows. Section 2 gives an overview of our analyser
through its application to some programs, hence showing how it deals correctly with some
of the subtlest aspects of the semantics of the language. Section 3 defines the syntax of a
small but non-trivial subset of the Java bytecode that we use in our definitions and proofs.
Section 4 describes all the preliminary analyses that we perform before the path-length
analysis. Section 5 defines an operational and an equivalent denotational semantics of
our subset of the Java bytecode. Section 6 defines the path-length analysis and proves it
correctw.r.t. the denotational semantics of Section 5. Section 7 defines the translation from
Java bytecode intoCLP over path-length and proves that, if theCLP program terminates,
then also the original Java bytecode terminates. Section 8 reports some experiments with
our analysis. Section 9 discusses related works. Section 10 discusses limitations, future
directions of research and then concludes. Most of the proofs are available in an electronic
appendix.

2. EXAMPLES OF OUR TERMINATION ANALYSIS

This section presents examples of termination analysis with our tool. All examples can be
tested on-line through a web interface [Spoto et al. 2008]. The input of the analysis is a
Java bytecode programP , its output is an enumeration of its methods, divided into those

6 · F. Spoto and F. Mesnard and É. Payet

public class Sharing { public void expand(Sharing);
0: aload_0

private Sharing next; 1: astore_2
2: aload_2

public Sharing(Sharing next) { 3: ifnull 31
this.next = next; 6: aload_1

} 7: new Sharing
10: dup

public void expand(Sharing other) { 11: aconst_null
Sharing cursor = this; 12: invokespecial
while (cursor != null) { Sharing.<init>(Sharing):void

other.next = new Sharing(null); 15: putfield next
other = other.next; 18: aload_1
cursor = cursor.next; 19: getfield next

} 22: astore_1
} 23: aload_2

} 24: getfield next
27: astore_2
28: goto 2
31: return

Fig. 1. An example where sharing is needed to model the effects of a destructive update.

whose calls inP definitely terminate; those whose calls inP might diverge because of a
loop inside their code (methods thatintroducenon-termination); and those whose calls in
P might diverge but only because they call one of the previous diverging methods (methods
that inherit non-termination).

Let us start from an example which shows the problems induced by the destructive
updates. The program on the left of Figure 1 implements a simple linked list with an
expandmethod that scans the list corresponding to thethis object and expands the first
node of the parameterother by as many nodes as the length of the list. Figure 1 shows,
on the right, the Java bytecode of theexpand method, where local variables 0, 1 and 2
stand, respectively, forthis, other andcursor. Thewhile loop has been compiled
into a non-null check forcursor (lines 2 and 3), which directs to the end of the loop, and
into agoto (line 28) which iterates the loop. This Java bytecode (contained in a.class
file) is what we really analyse but we report the source Java code for the convenience of
the reader, since it is easier to understand. In the rest of this section, we will only report
source code. It must be clear, however, that our analysis does not use the source code at
all.

Assume thatexpand is called as follows:

public static void main(String[] args) {
Sharing sh1 = new Sharing(new Sharing(new Sharing(null)));
Sharing sh2 = new Sharing(new Sharing(null));
sh1.expand(sh2);

}

The above call toexpand terminates. This is becausesh1 is finite, so that the iteration
inside thewhile loop ofexpand must eventually reach its end. Our analyser correctly
spots this behaviour (<init> is the name of a constructor in Java bytecode):

All calls to these methods terminate:
public static Sharing.main(java.lang.String[]):void

A Termination Analyser for Java Bytecode Based on Path-Length · 7

public Sharing.expand(Sharing):void
public Sharing.<init>(Sharing)

Let us now modify themain method a bit:

public static void main(String[] args) {
Sharing sh1 = new Sharing(new Sharing(new Sharing(null)));
sh1.expand(sh1.next);

}

The listsh1 is still finite, but we get a different answer this time:

All calls to these methods terminate:
public Sharing.<init>(Sharing)

Some calls to these methods might not terminate:
public static Sharing.main(java.lang.String[]):void [inherits]
public Sharing.expand(Sharing):void [introduces]

This means that JULIA identifies a possible divergence for the calls toexpand, which
induces divergence also formain, which callsexpand. The result is perfectly correct:
while expand expands the listsh1.next, it also expands the listsh1 initially bound
to cursor, so that the loop does not terminate. This is made possible by the destructive
update at line 15 of the bytecode in Figure 1: theputfield next bytecode adds new
nodes after the first two nodes ofsh1, unlinking everything which was previously there.

The behaviour above is not featured by logic programs, where data structures are not
mutable, so that the path-length constraints of the data structure bound to a variable cannot
be updated. For instance, the logical unification of

Sh1 = sharing(sharing(sharing(Sh2)))

constrains the length ofSh1 to be3 plus the length ofSh2 and this constraintcannot be
changed anymore: data structures are only created in pure logic or functional languages,
never destroyed. In imperative programs, instead, the binding

sh1 = new Sharing(new Sharing(new Sharing(sh2)))

constrains the length ofsh1 to be3 plus the length ofsh2, but this constraint can be
updated at any time, as soon as you updatesh1 or sh1.next or sh1.next.next or
sh1.next.next.next i.e., as soon as you update something that shares withsh1. In
theexpandmethod in Figure 1, the listsh1 (i.e.,this) gets expanded wheneverother
shares some data structure withsh1, as in the last example ofmain. This justifies the fact
that we need a preliminarysharing analysis[Secci and Spoto 2005] in order to perform a
precise termination analysis of Java bytecode programs.

Let us show now how cyclicity of data structures can affect the termination of Java
bytecode methods. Consider the followingmain method:

public static void main(String[] args) {
Sharing sh1 = new Sharing(new Sharing(new Sharing(null)));
Sharing sh2 = new Sharing(new Sharing(null));
sh1.next.next.next = sh1;
sh1.expand(sh2);

}

The analyser cannot prove the termination ofexpand:

8 · F. Spoto and F. Mesnard and É. Payet

public class List {
private Object head;
private List tail;

public List(Object head, List tail) {
this.head = head;
this.tail = tail;

}

private void iter() {
if (tail != null) tail.iter();

}

private List append(List other) {
if (tail == null) return new List(head,other);
else return new List(head,tail.append(other));

}

private List reverseAcc(List acc) {
if (tail == null) return new List(head,acc);
else return tail.reverseAcc(new List(head,acc));

}

private List reverse() {
if (tail == null) return this;
else return tail.reverse().append(new List(head,null));

}

private List alternate(List other) {
if (other == null) return this;
else return new List(head,other.alternate(tail));

}

public static void main(String[] args) {
List l1 = new List(new Object(),new List(new Object(),null));
List l2 = new List(new Object(),new List(new Object(),null));
l1.alternate(l2);
l2.tail.tail = l2;
l1.append(l2);
l1.iter();
l1.reverseAcc(null);
l1.reverse();

}
}

Fig. 2. A linked list ofObjects with a set of recursive methods that work over it.

All calls to these methods terminate:
public Sharing.<init>(Sharing)

Some calls to these methods might not terminate:
public static Sharing.main(java.lang.String[]):void [inherits]
public Sharing.expand(Sharing):void [introduces]

This is correct since the statement sh1.next.next.next = sh1makes sh1 a cycli-

A Termination Analyser for Java Bytecode Based on Path-Length · 9

public class Exc {
private int f;

public static void main(String[] args) {
Exc exc = new Exc();
int i = 0;
while (i < 20) {

try {
if (i > 10) exc.f = 5;
i += 2;

}
catch (NullPointerException e) {}

}
}

}

Fig. 3. An example of termination in the presence of exceptions.

cal list. Therefeore, thewhile loop insideexpand does not terminate. This justifies why
we need a preliminarycyclicity analysis[Rossignoli and Spoto 2006] as an ingredient of
our termination analysis of Java programs.

One might be tempted to postulate that the analysed programs do not use cyclical data
structures. This hypothesis is sensible for functional or logical programming languages,
where cyclicity is forbidden by the so-called occur-check of pattern-matching and unifi-
cation, or it is allowed but typically never used by the programmers. This hypothesis is
instead non-sense for imperative programs, where cyclicity is extensively used: graphs
are often used in imperative programs and graphs are typically cyclical; all exceptions are
cyclical in Java, because of theircause field which points to the exception itself; data
structures used by compilers are typically cyclical. Our experiments with cyclicity analy-
sis suggest that, on the average, around one third of the data structures created by a Java
bytecode program are cyclical.

It must be clear, however, that taking cyclicity into account does not mean that, as soon
as a method works over cyclical data structures, its termination cannot be proved. Consider
for instance the class in Figure 2, which implements a linked list ofObjects and a set
of recursive methods over such a list. Our analyser finds out thatall calls inside this class
terminate. Nevertheless, cyclicity is created by the statementl2.tail.tail = l2
insidemain andl2 is subsequently passed as an argument toappend. However, the
call l1.append(l2) is not affected by the cyclicity of itsl2 argument but only by the
cyclicity of its implicit l1 argument. Sincel1 is not cyclical, termination is proved.

The latter example shows that our analysis works correctly also in the presence of recur-
sion, as well as for methods, such asalternate, whose termination depends on alternate
progression along their arguments.

Let us show some examples now where a termination analysis must take into account
the complex semantics of Java bytecode. The class in Figure 3 has amain method which
contains a loop over an integer variablei. This loop terminates since the statementi +=
2 inside its body increasesi, which is bound from above by20. Our analyser proves the
termination ofmain but only if we perform a preliminarynull pointer analysisof the
code. This is because, without such analysis, it is impossible to know if theexc.f =
5 assignment will raise aNullPointerException or not. If the exception is raised,

10 · F. Spoto and F. Mesnard and É. Payet

public class Init {
public void m() {
new A();

}

public void n() {
A.f = 13;

}
}

Fig. 4. An example dealing with instance and class initialisation.

the catcher would catch it and reenter the loop without executing the statementi += 2.
Hence the program would diverge. This example shows that our analyser deals faithfully
with the semantics of this exception.

Figure 4 shows a very simple classInit. ClassA is not shown yet on purpose. Many
programmers would conclude that both methodsm andn terminate, regardless of the way
you call them. We can have JULIA prove this by running our termination analysis inlibrary
mode, which means that the public methods of some class(es) are analysed, without making
any hypothesis on their calling context. For instance, the analyser does not assume any
order about which ofm andn is called before the other; it does not assume that any class
has been already instantiated before callingm orn, unless forInit itself and some system
classes. The results of this analysis might look surprising (<clinit> is the name of a
class initialiser in Java bytecode):

All calls to these methods terminate:
public Init.<init>()

Some calls to these methods might not terminate:
public Init.m():void [inherits]
public Init.n():void [inherits]
public A.<init>() [introduces]
package static A.<clinit>():void [introduces]

Only the (implicit) constructor ofInit is found to terminate. Methodsm andn inherit
non-termination because they call some other method that may not terminate. This is
correct, since classA is defined as follows:

public class A {
public static int f;

public A() {
while (true) {}

}

static {
int a = 0;
while (a == 0) {}

}
}

The instance initialiser of A diverges, and it is (implicitly) called by method m. The class

A Termination Analyser for Java Bytecode Based on Path-Length · 11

initialiser of A diverges also, and it is (implicitly) called by both methodsm andn. We
recall that the static initialiser of classA is called, in Java bytecode, onlythe first time
that a class is instantiated, or one of its static fields is read or written, or one of its static
methods is called.

Assume now that we have the followingmain method inside classInit, which fixes
the calling contexts of methodsm andn:

public static void main(String[] args) {
new Init().m();
new Init().n();

}

Reverting to a traditional analysis frommain instead of the library mode, JULIA yields
the following result:

All calls to these methods terminate:
public Init.<init>()
public Init.n():void

Some calls to these methods might not terminate:
public Init.m():void [inherits]
public static Init.main(java.lang.String[]):void [inherits]
public A.<init>() [introduces]
package static A.<clinit>():void [introduces]

but only if a preliminaryclass initialisation analysisis performed. This analysis finds
out that, inside methodn, classA has been already initialised by thenew A() statement
inside methodm, so that no call to the static initialiser ofA happens insiden and that the
method terminates. It is true, however, that that method is never reached since the call tom
diverges. This example shows that the subtle aspects of the semantics of instance and class
initialisation of Java are faithfully respected by our analysis.

We conclude with an example that shows that our analyser deals correctly with the dy-
namic dispatch mechanism of object-oriented languages and with non-linear data struc-
tures. Figure 5 shows a program dealing with a binary tree, implemented as a sequence
of Nodes of several kinds:Internal nodes have two successor nodes, whileNil and
Div nodes have no successor. Note that this data structure is not a list nor a one selec-
tor data structure. Theheight method is expected to yield the height of the tree but it
diverges forDiv nodes since it calls itself recursively indefinitely. Correctly, our anal-
yser concludes thatall calls inside this program terminate. This is because, although a
Div object is created by the first statement ofmain, that object does not flow inton, so
that the calln.height(), and those recursively activated by the redefinition of method
height insideInternal, never lead to the redefinition ofheight insideDiv. Hence
the program terminates.

If we modify the second statement ofmain intoNode n = new Div(), we get the
following (correct) result:

All calls to these methods terminate:
public Div.<init>()
public Internal.<init>(Node,Node)
public Node.<init>()

12 · F. Spoto and F. Mesnard and É. Payet

public class Virtual {
public static void main(String[] args) {
Node d = new Div();
Node n = new Nil();
int l = Integer.parseInt(args[0]);
while (l-- > 0) n = new Internal(n,n);
System.out.println(n.height());

}
}

public abstract class Node {
public abstract int height();

}

public class Internal extends Node {
private Node next1;
private Node next2;
public Internal(Node next1, Node next2) {
this.next1 = next1;
this.next2 = next2;

}

public int height() {
return 1 + Math.max(next1.height(),next2.height());

}
}

public class Nil extends Node {
public int height() {
return 0;

}
}

public class Div extends Node {
public int height() {
// this goes into an infinite recursive loop
return height();

}
}

Fig. 5. An example dealing with the dynamic dispatch mechanism over non-linear data structures.

Some calls to these methods might not terminate:
public Internal.height():int [inherits]
public Div.height():int [introduces]
public static Virtual.main(java.lang.String[]):void [inherits]

This time, the redefinition of height inside Div is reached by the computation and it in-
troduces divergence. As a consequence, also the redefinition of height inside Internal
inherits divergence, while the redefinition of height inside Nil is never called.

The results above are possible because JULIA determines precisely the set of methods
that might be called at run-time by each call to a virtual method, such as n.height() (the
set of its possible dynamic targets). This information is computed through a preliminary
class analysis [Palsberg and Schwartzbach 1991; Spoto and Jensen 2003].

A Termination Analyser for Java Bytecode Based on Path-Length · 13

3. OUR SIMPLIFIED JAVA BYTECODE

In this section we introduce a simplification of the Java bytecode, that we will consider in
our examples and proofs.

In the following, a total functionf is denoted by7→ and a partial function by→. The
domainandcodomainof a functionf aredom(f) andrng(f), respectively. We denote
by [v1 7→ t1, . . . , vn 7→ tn] the functionf wheredom(f) = {v1, . . . , vn} andf(vi) = ti
for i = 1, . . . , n. Its updateis f [w1 7→ d1, . . . , wm 7→ dm], where the domain may be
enlarged (it is never reduced).

The Java Virtual Machine runs a Java bytecode program by keeping an activation stack
of states. Each state is created by a method call and survives until the end of the call.

DEFINITION 1. The set ofvaluesis Z ∪ L ∪ {null}, whereL is the set ofmemory
locations. A stateof the Java Virtual Machine is a triple〈l || s ||µ〉 wherel is an array of
values, calledlocal variablesand numbered from0 upwards,s is a stack of values, called
operand stack(in the following, juststack), which grows leftwards, andµ is a memory,
or heap, which mapslocationsinto objects. An object is a function that maps its fields
(identifiers) into values and that embeds a class tagκ; we say that itbelongs toclassκ or
is an instance ofclassκ or has classκ. We require that there are no dangling pointers i.e.,
l ∩ L ⊆ dom(µ), s ∩ L ⊆ dom(µ) andrng(µ(ℓ)) ∩ L ⊆ dom(µ) for everyℓ ∈ dom(µ).
We writelk for the value of thekth local variable; we writesk for the value of thekth stack
element (s0 is the base of the stack,s1 is the element above and so on); we writeo(f) for
the value of the fieldf of an objecto. The set of all classes is denoted byK. The set of all
states is denoted byΣ. When we want to fix the exact number#l ∈ N of local variables
and#s ∈ N of stack elements allowed in a state, we writeΣ#l,#s.

We will often write the stack in the formx :: y :: z :: s, meaning thatx is the topmost
value on the stack,y is the underlying element andz the element still below it;s is the
remaining portion of the stack and might be empty. The empty stack is writtenε, as well
as an empty array of local variables. Whens is empty, we often omit it and writex :: y :: z

instead ofx :: y :: z :: ε. Note that stacks are recursive data structures built from the empty
stackε by pushing elements on top. Hence we should writex :: y :: z :: s :: ε instead of
x :: y :: z :: s. We use the second notation for simplicity.

EXAMPLE 2. Consider a memoryµ = [ℓ1 7→ o1, ℓ2 7→ o2, ℓ3 7→ o3] whereo1 = [f 7→
ℓ2], o2 = [f 7→ ℓ1] ando3 = [g 7→ null, h 7→ 3]. Then a state is

σ = 〈[5, ℓ2] || ℓ2 :: ℓ3 ||µ〉 ,

shown in Figure 6. Local variable 0 holds integer 5; local variable 1 holdsℓ2 and is hence
bound to the objecto2. The topmost element of the stack also holdsℓ2 and is hence bound
to the objecto2; the underlying element, which is the base of the stack, holdsℓ3 and is
hence bound to the objecto3. We haveσ ∈ Σ2,2 sinceσ has2 local variables and2 stack
elements.

EXAMPLE 3. We have

σ = 〈[ℓ1, ℓ2, ℓ4] || ℓ3 :: ℓ2 ||[ℓ1 7→ o1, ℓ2 7→ o2, ℓ3 7→ o3, ℓ4 7→ o4, ℓ5 7→ o5]〉 ∈ Σ3,2

whereo1 = [next 7→ ℓ4], o2 = [next 7→ null], o3 = [next 7→ ℓ5], o4 = [next 7→ null]
ando5 = [next 7→ null]. This state is shown in Figure 7.

14 · F. Spoto and F. Mesnard and É. Payet

1 2 3

ff

g

h 3

null

o o o1 32

5

local variables stack elements

Fig. 6. The state of the Java Virtual Machine considered in Example 2.

1 2 3

o1 2

stack elements

o o oo3 4 5

4 5

next next next next nextnull null null

local variables

Fig. 7. The state of the Java Virtual Machine considered in Example 3.

In Definition 1 we have assumed, for simplicity, that values can only be integers, loca-
tions or null. The Java Virtual Machine deals with other primitive types, as well as with
arrays. This simplification is useful for our presentation, but our analyser considers all
primitive types and arrays.

DEFINITION 4. The set of types of our simplified Java Virtual Machine is T = K ∪
{int, void}. The void type can only be used as the return type of methods. A method
signature is denoted by κ.m(t1, . . . , tp) : t standing for a method named m, defined in
class κ, expecting p explicit parameters of type, respectively, t1, . . . , tp and returning a
value of type t, or returning no value when t = void.

We recall that, in object-oriented languages, a method κ.m(t1, . . . , tp) : t has also an

A Termination Analyser for Java Bytecode Based on Path-Length · 15

implicit parameter of typeκ calledthis inside the code of the method. Hence the actual
number of parameters isp + 1.

We do not distinguish between methods and constructors. A constructor is just a method
named<init> and returningvoid. Moreover, there are no static methods in our simpli-
fied Java bytecode, although the extension of our definitions to deal with static methods is
not difficult and our implementation considers them.

In order to keep the notation reasonably low, we do not formalise the notion of class and
the fact that an object of classκ has exactly the fields required byκ; we do not formalise
the subclass relation, nor the lookup procedure for a method from a class. We will talk
about thetype of a field, meaning the static type required by the class that defines the field,
as well as about thetype of a local variableor stack element, meaning the static type for
that local variable or stack element, as computed by the type inference algorithm described
in [Lindholm and Yellin 1999]; but will give no formal definition of them.

Java bytecode instructions work over states, by affecting their operand stack, local vari-
ables or memory. There are more than100 Java bytecode instructions [Lindholm and Yellin
1999]. However, many of them are similar and only differ in the type of their operands.
Others are not relevant in this paper, such as those that perform tedious but useful stack
manipulations. Hence we concentrate here on a very restricted set of11 instructions only,
which exemplify the operations that the Java Virtual Machine performs: stack manipula-
tion, arithmetics, interaction between the stack and the local variables set, object creation
and access and method call. Our implementation considers of course the whole set of Java
bytecode instructions.

DEFINITION 5. The set of instructions of our simplified Java bytecode is the following
(a formalisation of their semantics will be given in Section 5):

const c. Pushes on top of the stack the constantc, which can be an integer ornull;

dup. Pushes on top of the stack its topmost element, which hence gets duplicated;

new κ. Pushes on top of the stack a reference to a new object of classκ (which is
properly initialised);

load i. Pushes on top of the stack the value of local variablei;

store i. Pops the topmost value from the stack and writes it into local variablei;

add. Pops the topmost two values from the stack and pushes their sum instead;

getfield f . Pops the topmost valueℓ of the stack, which must be a reference to an object
o or null, and pushes at its placeo(f). If ℓ is null, the computation stops;

putfield f . Pops the topmost two valuesv (the top) andℓ (underv) from the stack. The
valueℓ must be a reference to an objecto or null. Valuev is stored intoo(f). If ℓ is null,
the computation stops;

ifeq of type t. Pops the topmost element of the stack and checks if it is0 (whent is int)
or null (whent ∈ K). If this is not the case, the computation stops;

ifne of type t. Pops the topmost element of the stack and checks if it is0 (whent is int)
or null (whent ∈ K). If this is the case, the computation stops;

call κ1.m(t1, . . . , tp) : t, . . . , κn.m(t1, . . . , tp) : t. Pops the topmostp + 1 values (the
actual parameters) a0, a1, . . . , ap from the stack. Valuea0 is called receiverof the call
and must be a reference to an objecto or null. In the latter case, the computation stops.
Otherwise, a lookup procedure is started from the classκ ofo upwards along the superclass

16 · F. Spoto and F. Mesnard and É. Payet

chain, looking for a method calledm, expectingp formal parametersof typet1, . . . , tp,
respectively, and returning a value1 of typet. It is guaranteed that such a method is found
in a class belonging to the set{κ1, . . . , κn}. That method is run from a state having an
empty stack and a set of local variables bound toa0, a1, . . . , ap.

The above description of bytecode instructions deserves some comments. First of all,
we silently assume that the instructions are used correctly, that is, that they are applied to
states where they can work. For instance, thedup instruction requires at least an element on
the operand stack, or otherwise there is nothing to duplicate; thegetfield f andputfield f

instructions need a reference to an objecto or null, but not an integer; they require thato

actually contains a field namedf ; putfield requires that that field has a static type consistent
with the value that it is going to write inside. We assume that all these constraints are
true, as well as all otherstructural constraintsenumerated in [Lindholm and Yellin 1999].
Among those constraints, a very important one is that, however you reach a Java bytecode
instruction in a program, the number and types of the stack elements and the number
and types of the local variables are the same. These constraints are checked by the Java
bytecode verifier of the Java Virtual Machine. Java bytecode that does not pass those
checks is rejected and cannot be run.

The ifeq and ifne instructions stop the computation when the condition they embed is
false. This corresponds to the fact that we are going to use those instructions asfilters at
the beginning of the two branches of a conditional. Only one branch will actually continue
the execution.

In thecall instruction, the setκ1.m(t1, . . . , tp) : t, . . . , κn.m(t1, . . . , tp) : t is an over-
approximation of the set of itsdynamic targets, that is, of those methods that might be
called at run-time, depending on the run-time class of the receiver. This overapproxima-
tion is always computable by looking at the class hierarchy [Dean et al. 1995]. A better one
is provided byrapid type analysis[Bacon and Sweeney 1996]. A still better approximation
is provided by other examples ofclass analysis, such as that in [Palsberg and Schwartzbach
1991]. The latter, formalised in [Spoto and Jensen 2003] as an abstract interpretation of
the set of states, is the one used by our implementation.

Method return is implicit in our language, as we will see soon.
Our 11 Java bytecode instructions can be used to write Java bytecode programs. In

order to reason about the control flow in the code, we assume thatflat code, as the one
in Figure 1, is given a structure in terms of blocks of code linked by arrows expressing
how the flow of control passes from one to another. These might be for instance thebasic
blocksof [Aho et al. 1986], but we also require that acall instruction can only occur at the
beginning of a block. For instance, Figure 8 shows the blocks derived from the code of the
methodexpand in Figure 1. The numbers on the right of each instruction are the number
of local variables and stack elements at the beginning of the instruction. Note that at the
beginning of the methods the local variables hold the parameters of the method.

The construction of the blocks can be done also in the presence of complex control
flows as those arising from switches, exceptions and subroutines (the infamousjsr andret

instructions of the Java bytecode), although we do not show it here.
From now on, aJava bytecode programwill be a graph of blocks, such as that in Fig-

1Differently from Java, the return type of the method is used in the lookup procedure of the Java bytecode [Lind-

holm and Yellin 1999].

A Termination Analyser for Java Bytecode Based on Path-Length · 17

load 0 2,0
store 2 2,1

load 2 3,0

ifeq of type Sharing 3,1

ifne of type Sharing 3,1
load 1 3,0
new Sharing 3,1
dup 3,2
const null 3,3

call Sharing.<init>(Sharing):void 3,4
putfield next 3,2
load 1 3,0
getfield next 3,1
store 1 3,1
load 2 3,0
getfield next 3,1
store 2 3,1

Fig. 8. Our simplified Java bytecode for the methodexpand in Figure 1. On the right of each instruction we
report the number of local variables and stack elements at that program point, just before executing the instruction.

ure 8; inside each block there is one or more instructions among the11 described before.
This graph typically contains many disjoint subgraphs, each corresponding to a different
method or constructor. The ends of a method or constructor, where the control flow returns
to the caller, are the end of every block with no successor, such as the leftmost one in
Figure 8. For simplicity, we assume that the stack there contains exactly as many elements
as are needed to hold the return value (normally1 element, but0 elements in the case of
methods returningvoid, such as all the constructors).

DEFINITION 6. We write a block containingw bytecode instructions and havingm
immediate successor blocksb1, . . . , bm, with m ≥ 0 andw > 0, as

ins1
ins2
···

insw

⇉
b1
···
bm

or just as
ins1
ins2
···

insw

whenm = 0.

A Java bytecode programP is a graph of such blocks.

In the following,P will always stand for the program under analysis.

18 · F. Spoto and F. Mesnard and É. Payet

4. PRELIMINARY ANALYSES

Before defining thepath-lengthanalysis in Section 6, we introduce here somepreliminary
analyses which we assume already performed when the path-length analysis is applied.
This is because the path-length analysis uses the information computed by such prelim-
inary analyses and would be extremely imprecise without it: no termination proof could
realistically be obtained.

As we mentioned in Section 1, the proofs of termination for imperative programs need
information about the possible sharing of data structures between program variables, as
well as about the possible cyclicity of the data structures bound to the variables. As a
consequence, the first two preliminary analyses are apossible pair-sharinganalysis (Sub-
section 4.1) and apossible cyclicityanalysis (Subsection 4.2). We also use a further analy-
sis, which is a definitealiasinganalysis (Subsection 4.3). The latter is needed due to way
that Java bytecode works, by copying values between local variables and stack elements.
Namely, a lot of aliasing is present between the local variables and the stack elements (due
to the instructionsload andstore) as well as between the stack elements (due to the instruc-
tion dup). Knowledge about such aliasing is important for the precision of the path-length
analysis.

Other preliminary static analyses can contribute to the precision of a subsequent path-
length analysis (and hence of termination analysis) although they are not so essential as
pair-sharing, cyclicity and aliasing. Those analyses are discussed in Subsection 4.4.

4.1 Possible Pair-Sharing

In Section 2 we have seen a callsh1.expand(sh2) that terminates whensh1 andsh2
are bound to disjoint data structures, but does not terminate whensh2 == sh1.next.
We have said that the different behaviour is a consequence of the differentsharingbetween
sh1 andsh2 in the two situations. Namely, two variablesshare if they both reach a
common location, possibly transitively [Secci and Spoto 2005].

The precision of our pair-sharing analysis can be improved if it is computed together
with possible updateor, equivalently, definitepurity or constancyinformation [Salcianu
and Rinard 2005; Genaim and Spoto 2008], with a reduced product operation [Cousot and
Cousot 1979]. Update means that for each method we know which parameters might be
affected by the call, in the sense that some object reachable from those parameters might
be modified during the call. Note that this property is much stronger than theconst
annotation of C++, which is a simple syntactical constraint that does not prevent from
modifying the objects reachable from aconst parameter. The reduced product of pair-
sharing (as in [Secci and Spoto 2005]) with update is what we have implemented inside our
analyser, by using the abstract domain in [Genaim and Spoto 2008]. The update component
improves the precision of pair-sharing and cyclicity (Subsection 4.2). Assume for instance
that the following method

void foo(C a, C b) {
a = b;

}

is called as foo(x,y) and that at the calling place variables x and y do not share with
each other. Since, at the end of method foo, variables a and b share, our pair-sharing
analysis concludes, conservatively, that variables x and y are made to share by the call,
which is not the case. The update component prevents this, since it knows that no object

A Termination Analyser for Java Bytecode Based on Path-Length · 19

load 0 {}
store 2 {(s0,l0)}

load 2 {(l0,l2)}

ifeq of type Sharing {(l0,l2),(s0,l0),(s0,l2)}

ifne of type Sharing {(l0,l2),(s0,l0),(s0,l2)}
load 1 {(l0,l2)}
new Sharing {(l0,l2),(s0,l1)}
dup {(l0,l2),(s0,l1)}
const null {(l0,l2),(s0,l1),(s1,s2)}

call Sharing.<init>(Sharing):void {(l0,l2),(s0,l1),(s1,s2)}
putfield next {(l0,l2),(s0,l1)}
load 1 {(l0,l2)}
getfield next {(l0,l2),(s0,l1)}
store 1 {(l0,l2),(s0,l1)}
load 2 {(l0,l2)}
getfield next {(l0,l2),(s0,l0),(s0,l2)}
store 2 {(l0,l2),(s0,l0),(s0,l2)}

Fig. 9. A pair-sharing analysis of the methodexpand in Figure 8.

reachable froma or b at the moment of the call is modified during the execution offoo.
Hence, variablesx andy cannot be made to share by the call. The example also works
for cyclicity: assume thaty is cyclical whilex is not cyclical. The cyclicity analysis
in [Rossignoli and Spoto 2006] concludes thata and hencex are cyclical after the call
foo(x,y), which is not the case forx. The update component knows that no object
reachable fromx is modified during the call and hencex cannot become cyclical. The
update component improves the precision of path-length also, as we show in Section 6.

As we said above, our pair-sharing analysis is completely context-sensitive, which means
that the analysis of a method is a function from the input context for the method to the re-
sulting sharing information at its internal and final program points. In this sense, it is a
denotational static analysis. The advantage of being context-sensitive is that the approx-
imation of the result of a method can be different for every input context for the call.
Consider for instance the method

public Sharing m(Sharing x) {
return x;

}

If one callsthis.m(x) in a program point (acontext) wherethis andx share, then its
result andthis share after the call, while they do not share if one calls it in a program
point wherethis andx do not share. A context-sensitive analysis supports this kind
of reasoning since the approximation of a method is functional (denotational). A non-
context-sensitive analysis, instead, provides an approximation for the output of the method
which is consistent withall possible calls to the method. In the previous example, a non-

20 · F. Spoto and F. Mesnard and É. Payet

context-sensitive analysis assumes that this and x share after the call, with no regard to
the input context. All our preliminary analyses and the path-length analysis that we will
define in Section 6 are context-sensitive since they are based on denotational semantics so
that they denote methods with relational, functional approximations.

The implementation of a context-sensitive analysis depends on the specific analysis.
In general, one distinguishes between properties of the input and properties of the out-
put of a denotation, such as pairs sharing in the input and pairs sharing in the output.
Then one builds constraints between those properties. These constraints are often logical
implications implemented as binary decision diagrams [Bryant 1986], as it is explained
in [Rossignoli and Spoto 2006; Spoto 2008b]. This is the case of our pair-sharing anal-
ysis also. In other cases, they are numerical constraints. For instance, in Section 6, the
approximation of a method is a polyhedron over input (v̌) and output (v̂) variables, hence
expressing a relation between the input and the output context of a method (in general, of
a piece of code).

In order to show our pair-sharing analysis on a concrete example, we fix a specific input
context and show the resulting approximations. Namely, Figure 9 shows the result of our
pair-sharing analysis applied to the method expand in Figure 8, under the hypothesis that
the method is called in a context where its parameters do not share with each other. For
instance, we can assume that it is called as sh1.expand(sh2) where sh1 and sh2 do
not share. On the right of each instruction we report the set of pairs of variables which
might share, according to the analysis, just before the instruction is executed. We refer to
the ith local variable as li and to the ith stack element, from the base, as si. Figure 9
has been obtained by first computing the denotation for method expand and then fixing
the input context of the denotation to compute the resulting abstract information at the
output of the method. Information about internal program points (those that are not at the
end of a method) has been recovered through magic-sets [Payet and Spoto 2007]. Since
this is a possible pair-sharing analysis, correctness is to be understood in the sense that
if two variables v1 and v2 actually share at run-time in a given program point, then the
(unordered) pair (v1, v2) belongs to the approximation at that program point. The converse
does not necessarily hold. For simplicity, we do not report information about reflexive
sharing, that is, pairs (v, v), since all variables of reference type share with themselves
when they are not null. We do not report the update component either.

In many cases, sharing is actually aliasing, but this is not always the case: for instance,
before the first getfield next instruction, the sharing information computed by the analysis
is {(l0,l2),(s0,l1)}: the top of the stack s0 shares with l1. After reading the
next field of s0, the approximation does not change, because the value of the field next
of s0 is conservatively assumed to share with l1. This would not be the case for aliasing.

4.2 Possible Cyclicity

In Section 2 we have said that it is important, for termination analysis, to spot those vari-
ables that might be bound to cyclical data structures, since iterations over such structures
might diverge. Namely, a cyclical variable is one that reaches a loop of locations. With-
out cyclicity information, the only possible conservative hypothesis is that all variables are
cyclical, so that often no proof of termination can be built.

Some aliasing and shape analyses are able to provide cyclicity information. However,
also in this case, it is possible to define a more abstract domain, which is just made of
sets of variables which might be bound to cyclical data structures. This abstract domain,

A Termination Analyser for Java Bytecode Based on Path-Length · 21

load 0 {l1}
store 2 {l1}

load 2 {l1}

ifeq of type Sharing {l1}

ifne of type Sharing {l1}
load 1 {l1}
new Sharing {s0,l1}
dup {s0,l1}
const null {s0,l1}

call Sharing.<init>(Sharing):void {s0,l1}
putfield next {s0,l1}
load 1 {l1}
getfield next {s0,l1}
store 1 {s0,l1}
load 2 {l1}
getfield next {l1}
store 2 {l1}

Fig. 10. A cyclicity analysis of the methodexpand in Figure 8.

defined and proved correct in [Rossignoli and Spoto 2006], can be implemented through
Boolean formulas in a completely context and flow sensitive way, and is extremely fast in
practice. It requires a preliminary sharing analysis to achieve a good level of precision. It
exploits purity information, when available, to improve its precision further.

Let us fix again a specific calling context for methodexpand in Figure 1. Namely, let
us assume that that method is called assh1.expand(sh2) with sh1 andsh2 which
do not share and are not cyclical. Our cyclicity analysis builds the empty approximation at
every program point insideexpand, meaning that no local variable and no stack element
can be bound to a cyclical data structure inside that method.

Let us fix another calling context forexpand. Namely, let us assume that it is called
assh1.expand(sh2) with sh1 andsh2 which do not share and withsh2 bound to
a possibly cyclical data structure (but notsh1). The result of the analysis is shown in
Figure 10, where on the right of every instruction we have written the set of variables
which might be bound to cyclical data structures, according to the analysis. Since this
is apossible cyclicityanalysis, correctness means that if a variable is actually bound to a
cyclical data structure at a given program point at run-time, then that variable belongs to
the approximation computed by the analysis at that program point. The converse is not true
in general.

Figure 10 shows that local variable 1, which holdssh2 in our example, is everywhere
potentially bound to a cyclical data structure. When aload 1 instruction pushes its value

22 · F. Spoto and F. Mesnard and É. Payet

load 0 {}
store 2 {(s0,l0)}

load 2 {}

ifeq of type Sharing {(s0,l2)}

ifne of type Sharing {(s0,l2)}
load 1 {}
new Sharing {(s0,l1)}
dup {(s0,l1)}
const null {(s0,l1),(s1,s2)}

call Sharing.<init>(Sharing):void {(s0,l1),(s1,s2)}
putfield next {(s0,l1)}
load 1 {}
getfield next {(s0,l1)}
store 1 {(s0,l1)}
load 2 {}
getfield next {(s0,l2)}
store 2 {}

Fig. 11. A definite aliasing analysis of the method expand in Figure 8.

on the stack, also the top of the stack, which is s0 there, becomes potentially bound to a
cyclical data structure. This is true until that element is popped from the stack.

4.3 Definite Aliasing

Two variables are aliases when they are bound to the same value. If this value is a location,
then they must be bound to the same data structure (and hence they share); if it is an
integer, then this integer must be the same. In both cases, many properties of the two
variables are the same, as for instance their path-length of Section 6. Hence we want
to track definite aliasing of variables since their path-length must be the same and this
information improves the path-length analysis. It is important to remark that we need
definite aliasing, introduced by Java bytecodes such as load, store and dup, rather than
possible aliasing.

We have developed a very simple domain for definite aliasing. It tracks the set of pairs of
variables which are definitely aliases. The load, store and dup bytecodes introduce aliasing
into the set. When a variable is modified, the pairs where it occurs are removed from the
set. Also this analysis is completely context and flow sensitive.

Figure 11 shows the aliasing information computed for the expand method in Figure 8
for a calling context such as sh1.expand(sh2) where sh1 and sh2 are not aliases.
On the right of each instruction we report the set of pairs of variables which are definitely
aliases, according to the analysis. Reflexive aliasing is not reported since a variable is
always an alias of itself. This is a definite aliasing analysis. Hence correctness means that
if two variables are reported to be aliases in the approximation computed by the analysis at
a given program point, then those two variables are actually, always aliases at that program

A Termination Analyser for Java Bytecode Based on Path-Length · 23

point at run-time. The converse is not true in general.
You can see that the analysis finds out that, when thedup instruction is executed, the

base of the stack,s0, is definitely an alias ofl1. After the dup, also the two topmost
elements on the stack are definitely aliases, so that the pair(s1,s2) is present in the
approximation of the subsequentconst null instruction.

If two variables are definitely aliases in a program point, then they are also possibly
sharing there. This is why the sets in Figure 11 are always included in the corresponding
sets in Figure 9.

4.4 Other Preliminary Analyses

In Section 2, we have seen that some analyses can improve the precision of a subsequent
path-length analysis (and then of a termination analysis based on path-length) if they are
able to cut away spurious execution paths from the control-flow of the program. We have
seen examples related tonull pointer analysis (Figure 3),class initialisationanalysis (Fig-
ure 4) andclassanalysis (Figure 5).

Our JULIA analyser is able to perform all such analyses. Thenull pointer analysis
uses an abstract domain implemented through Boolean functions [Spoto 2008b]. It is a
rather traditional analysis that we implement in a completely flow and control sensitive
way. It is true thatnull pointer information is subsumed by the path-length information
that we describe in Section 6: a variable containsnull if and only if its path-length is 0.
Nevertheless, our preliminary, very cheapnull pointer analysis simplifies the code which
is then used for the path-length analysis. Hence it is useful for the efficiency of the overall
termination analysis. Moreover, it determines the non-null fields more precisely than our
path-length analysis and hence it is also useful for precision. Class initialisation analysis
uses a set of classes which are considered as already initialised. This set can be different in
different program points since, again, we implement the analysis in a completely flow and
control sensitive way. Class analysis is a traditional analysis for object-oriented programs,
that we implement in the style of [Palsberg and Schwartzbach 1991], by using a flow
sensitive abstract interpretation [Spoto and Jensen 2003].

5. SEMANTICS OF THE JAVA BYTECODE

In this section we define an operational and an equivalent denotational semantics for the
Java bytecode. This means that we first define, formally, how each of our11 instructions
modifies the state of the Java Virtual Machine. Then we lift this definition to blocks of
instructions. Anoperationalsemantics is closer to the implementation of an interpreter
of the language and it is usually better understood. Adenotationalsemantics is important
for our purposes since we will use it later to define arelational abstract domain that we
will call path-length(Section 6). For this reason we present both semantics, which are,
however, equivalent, as proved in [Payet and Spoto 2007].

We definestate transformerswith theλ-notation: δ = λσ.σ′ is a state transformer such
that δ(σ) = σ′ for everyσ. In the following Definition 7 we often require a specific
structure forσ; it is understood that whenσ has no such structure, thenδ(σ) is undefined.
Definition 7 defines the semantics of the bytecode instructions different fromcall.

DEFINITION 7. Each instructionins different fromcall, occurring at a program point
q, is associated with itssemanticsinsq : Σli,si

→ Σlo,so
at q, whereli, si, lo, so are the

number of local variables and stack elements defined atq and at the subsequent program

24 · F. Spoto and F. Mesnard and É. Payet

point(s), respectively (this information is statically known [Lindholm and Yellin 1999], see
for instance Figure 8). We assume thatinsq(σ) is undefined on everyσ where the pairs
of variables which are not computed atq by our possible pair-sharing analysis share; or
where the variables which are not computed atq by our possible cyclicity analysis are
cyclical; or where the pairs of variables computed atq by our definite aliasing analysis
are not aliases. Otherwise,insq is defined as follows.

constq c = λ〈l || s ||µ〉.〈l || c :: s ||µ〉

dupq = λ〈l || top :: s ||µ〉.〈l || top :: top :: s ||µ〉

newq κ = λ〈l || s ||µ〉.〈l || ℓ :: s ||µ[ℓ 7→ o]〉

whereℓ is a fresh location

ando is an object of classκ whose fields hold0 or null

load q i = λ〈l || s ||µ〉.〈l || li :: s ||µ〉

storeq i = λ〈l || top :: s ||µ〉.〈l[i 7→ top] || s ||µ〉

addq = λ〈l ||x :: y :: s ||µ〉.〈l ||(x + y) :: s ||µ〉

getfieldq f = λ〈l || ℓ :: s ||µ〉.

{

〈l ||µ(ℓ)(f) :: s ||µ〉 if ℓ 6= null

undefined otherwise

putfieldq f = λ〈l || v :: ℓ :: s ||µ〉.

{

〈l || s ||µ[ℓ 7→ µ(ℓ)[f 7→ v]]〉 if ℓ 6= null

undefined otherwise

ifeq of typeq t = λ〈l || top :: s ||µ〉.

{

〈l || s ||µ〉 if top = 0 or top = null

undefined otherwise

ifne of typeq t = λ〈l || top :: s ||µ〉.

{

〈l || s ||µ〉 if top 6= 0 andtop 6= null

undefined otherwise.

The fact that these transformers are undefined when the input state does not satisfy the
definite information computed by our static analyses is not restrictive, since an instruction
at program point q must receive an input state where that information is true. For instance,
the input state for the dup instruction in Figure 8 must receive an input state where l0 does
not share with l1 (Figure 9), where l0 is non-cyclical (Figure 10) and where s0 and l1 are
aliases (Figure 11).

Note that the store i operation might write into a local variable which was not yet used
before the same instruction. In such a case, the number of local variables used in the output
of the instruction is larger than the number of local variables used in its input.

EXAMPLE 8. Let q be the program point where the instruction dup of Figure 8 occurs.
There are 3 local variables and 2 stack elements there. Hence

dupq = λ〈[l0, s0, l2] || s1 :: s0 || µ〉.〈[l0, s0, l2] || s1 :: s1 :: s0 || µ〉 ∈ Σ3,2 → Σ3,3 .

Note that, because of the alias information in Figure 11, we require that the base of the
stack is an alias of local variable 1. Moreover, µ must be such that the pairs of variables not
in {(l0, l2), (s0, l1)} (Figure 9) do not share and the variables not in {s0, l1} (Figure 10)
are not cyclical.

A Termination Analyser for Java Bytecode Based on Path-Length · 25

EXAMPLE 9. Consider the state

σ = 〈[ℓ1, ℓ2, ℓ4] || ℓ3 :: ℓ2 || [ℓ1 7→ o1, ℓ2 7→ o2, ℓ3 7→ o3, ℓ4 7→ o4, ℓ5 7→ o5]
︸ ︷︷ ︸

µ

〉 ∈ Σ3,2

of Example 3. Assume thatli = 3 and si = 2 and that the pair-sharing, cyclicity and
aliasing analyses give empty definite information at some program pointsq and r. We
have

(dupq)(σ) = 〈[ℓ1, ℓ2, ℓ4] || ℓ3 :: ℓ3 :: ℓ2 ||µ〉 ∈ Σ3,3

(load q 1)(σ) = 〈[ℓ1, ℓ2, ℓ4] || ℓ2 :: ℓ3 :: ℓ2 ||µ〉 ∈ Σ3,3

(storeq 2)(σ) = 〈[ℓ1, ℓ2, ℓ3] || ℓ2 ||µ〉 ∈ Σ3,1

(getfieldq next)(σ) = 〈[ℓ1, ℓ2, ℓ4] || ℓ5 :: ℓ2 ||µ〉 ∈ Σ3,2

((getfieldq next); (putfieldr next))(σ) = (putfieldr next)((getfield q next)(σ))

= 〈[ℓ1, ℓ2, ℓ4] || ε ||µ
′〉 ∈ Σ3,0

whereµ′ = [ℓ1 7→ o1, ℓ2 7→ o′2, ℓ3 7→ o3, ℓ4 7→ o4, ℓ5 7→ o5] ando′2 = o2[next 7→ ℓ5] =
[next 7→ ℓ5].

5.1 Operational Semantics

The state transformers of Definition 7 define the operational semantics of each single byte-
code different fromcall. The semantics of the latter is more difficult to define, since it
performs many operations:

(1) creation of a new state for the callee with no local variables and containing only the
stack elements of the caller used to hold the actual arguments of the call;

(2) lookup of the dynamic target method on the basis of the run-time class of the receiver;
(3) parameter passing, that is, copying the actual arguments from the stack elements to

the local variables of the callee;
(4) execution of the dynamic target method and return.

We model (1), (2) and (3) as state transformers, and (4) as the creation of a new configura-
tion for the callee and, finally, the rehabilitation of the configuration of the caller. Figure 12
shows how each of these operations affects the stack and the local variables.

The first operation is formalised as the following state transformer.

DEFINITION 10. Letq be a program point where a call to a methodκ.m(t1, . . . , tp) : t

occurs. Letlq andsq be the number of local variables and stack elements atq, respectively.
We define

argsq,κ.m(t1,...,tp):t ∈ Σlq,sq
→ Σ0,p+1

as

argsq,κ.m(t1,...,tp) = λ〈l || ap :: · · · :: a0 :: s ||µ〉.〈ε || ap :: · · · :: a0 ||µ〉 .

The second operation is formalised as afilter state transformer that checks, for each
possible dynamic target methodκi.m(t1, . . . , tp) : t, with 1 ≤ i ≤ n, if it is actually
selected at run-time. We assume that the stack holds only the actual arguments and that the
local variables of the callee are not yet initialised.

26 · F. Spoto and F. Mesnard and É. Payet

��
��
��

��
��
��

��
��
��

��
��
������
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
������
��
��

��
��
��
��

���
���
���

���
���
������
���
���

���
���
���

��
��
��

��
��
������
��

��
��
��

������

��
��
��

��
��
��
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��

������

���
���
���

���
���
���
��
��
��
��

���
���
���

���
���
���

����������������

st
ac

k
lo

ca
l v

ar
ia

bl
es

l
>

=
 p

+
1

op
+

1

s
op

+
1

p
+

1s
l q

q

args select returnof
execution

the callee
makescope

Fig. 12. The execution of a call to a method.

DEFINITION 11. Letκ.m(t1, . . . , tp) : t be a method. We define

selectκ.m(t1,...,tp):t : ∆0,p+1→0,p+1

as

λ 〈ε || ap :: · · · :: a1 :: ℓ ||µ〉
︸ ︷︷ ︸

σ

.

σ if ℓ 6= null and the lookup procedure

of a methodm(t1, . . . , tp) : t

from the class ofµ(ℓ)

selects its implementation in classκ

undefined otherwise.

The third operation is formalised by a state transformer thatcopies the stack elements
into the corresponding local variables and clears the stack.

DEFINITION 12. Letκ.m(t1, . . . , tp) : t be a method. We define

makescopeκ.m(t1,...,tp):t : ∆0,p+1→p+1,0

as

λ〈ε || ap :: · · · :: a1 :: a0 ||µ〉.〈[i 7→ ai | 0 ≤ i ≤ p] || ε ||µ〉.

Definition 12 formalises the fact that theith local variable of the callee is a copy of the
elementp− i positions down the top of the stack of the caller.

We define now the activation stack which tracks the sequence of calls to methods.

DEFINITION 13. A configurationis a pair 〈b ||σ〉 of a blockb of the program and a
stateσ. It represents the fact that the Java Virtual Machine is going to executeb in stateσ.
Anactivation stackis a stackc1 :: c2 :: · · · :: cn of configurations, wherec1 is the topmost,
currentor activeconfiguration.

We can define now theoperational semanticsof a Java bytecode program.

A Termination Analyser for Java Bytecode Based on Path-Length · 27

DEFINITION 14. The (small step) operational semantics of a Java bytecode program
P is a relationa′ ⇒P a′′ providing the immediate successor activation stacka′′ of an
activation stacka′. It is defined by the rules:

ins is not acall

〈 ins
rest ⇉

b1
···
bm

||σ〉 :: a⇒ 〈 rest ⇉
b1
···
bm

|| ins(σ)〉 :: a
(1)

bmi
is the block where methodmi = κi.m(t1, . . . , tp) : t starts

σ = 〈l || ap :: · · · :: a0 :: s ||µ〉, thecall occurs at program pointq
σ′ = makescopemi

(selectmi
(argsq,mi

(σ)))

〈 call m1,...,mn

rest
⇉

b1
···
bm

||σ〉 :: a⇒ 〈bmi
||σ′〉 :: 〈 rest ⇉

b1
···
bm

||〈l || s ||µ〉〉 :: a
(2)

〈 ||〈l || vs ||µ〉〉 :: 〈b ||〈l′ || s′ ||µ′〉〉 :: a⇒ 〈 b ||〈l′ || vs :: s′ ||µ〉〉 :: a
(3)

1 ≤ i ≤ m

〈 ⇉
b1
···
bm

||σ〉 :: a⇒ 〈bi || σ〉 :: a
(4)

We definea′ 6⇒P a′′ as nota′ ⇒P a′′. We also define⇒∗
P as the reflexive and transitive

closure of⇒P .

Rule (1) executes an instructionins, different fromcall, by using its semanticsins . The
Java Virtual Machine moves then forward to run the rest of the instructions. Rule (2) calls
a method. It chooses one of the possible callees, looks for the blockbmi

where the latter
starts and builds its initial stateσ′, by usingargs , select andmakescope . It creates a new
current configuration containingbmi

andσ′. It removes the actual arguments from the old
current configuration and the call from the instructions still to be executed at return time.
Note that the choice of the possible callee is only apparently non-deterministic, since only
one callee will be selected by theselect function. For all the others,σ′ does not exist
(select is a partial function). Control returns to the caller by rule (3), which rehabilitates
the configuration of the caller but forces the memory to be that at the end of the execution
of the callee. The return value of the callee is pushed on the stack of the caller. Rule (4)
applies when all instructions inside a block have been executed; it runs one of its immediate
successors, if any. This rule is normally deterministic, since if a block of the Java bytecode
has two or more immediate successors then they start with mutually exclusive conditional
instructions and only one thread of control is actually followed.

5.2 Denotational Semantics

In denotational semantics, a state transformer takes traditionally the name ofdenotation.
Denotations can besequentiallycomposed, hence modelling the sequential execution of
more instructions.

DEFINITION 15. A denotation is a partial functionΣ → Σ from an input state to
an outputor final state. The set of denotations is denoted by∆. When we want to fix
the number of local variables and stack elements in the input and output states, we write
∆li,si→lo,so

, standing forΣli,si
→ Σlo,so

. Let δ1, δ2 ∈ ∆. Their sequential composition
is δ1; δ2 = λσ.δ2(δ1(σ)), which is undefined whenδ1(σ) is undefined or whenδ2(δ1(σ))
is undefined.

28 · F. Spoto and F. Mesnard and É. Payet

Since denotations are state transformers, Definition 7 gives the denotation of all byte-
codes different fromcall. The denotational semantics of the latter is modelled, in a denota-
tional fashion, by assuming that we already know the functional behaviour of the selected
dynamic target. As specified by the official documentation [Lindholm and Yellin 1999],
it must be the case that at the beginning of the callee the operand stack is empty and the
p + 1 lowest local variables hold the actual arguments of the call. At its end, the operand
stack holds only the return value of the callee, if any, for the simplifying hypothesis of
Section 3. Hence it has heightso = 1 if a return value exists andso = 0 if the callee re-
turnsvoid. New local variables might exist at the end of the execution of the callee, used
inside its code. Hence at the end we havelo ≥ p + 1 local variables. Note that the initial
local variables, used to store the actual parameters, might have been modified during the
execution of the callee. The execution of the callee is hence a denotationδ ∈ ∆0,p+1→lo,so

whereso ∈ {0, 1} depending on the return type of the callee andlo ≥ p + 1 (Figure 12).
We canplug this δ into each calling point to the callee. It is enough to observe that the
local variables of the caller do not change during the call. Its stack must have the form
ap :: · · · :: a0 :: s whereap :: · · · :: a0 are the actual arguments of the call ands are the
x ≥ 0 underlying stack elements, if any. The stack elements ins do not change during
the call. Theap :: · · · :: a0 actual arguments get popped off the stack and replaced with
the return value of the callee, if any. The final memory is that reached at the end of the
execution of the callee. These considerations let usextendthe denotationδ of a callee into
that of a call to that callee.

DEFINITION 16. Let κ.m(t1, . . . , tp) : t be a method andso = 0 if t = void, so = 1
otherwise. Letlo ≥ p + 1. Let q be a program point where a call toκ.m(t1, . . . , tp) : t

occurs. Letlq, sq be the number of local variables and stack elements used atq, with
sq = p + 1 + x (at least thep + 1 actual arguments of the call must be on the stack when
we call a method). We define

extendκ.m(t1,...,tp):t : ∆0,p+1→lo,so
7→ ∆lq,sq→lq,x+so

such as, lettingδ(〈ε || ap :: · · · :: a1 :: a0 ||µ〉) = 〈l′ || v ||µ′〉, extendκ.m(t1,...,tp):t(δ) is

λ〈l || ap :: · · · :: a1 :: a0 :: s ||µ〉.

〈l || v :: s ||µ′〉 if dom(µ) ⊆ dom(µ′);

everyℓ ∈ dom(µ)

which is not reachable

fromap :: · · · :: a1 :: a0

is such thatµ(ℓ) = µ′(ℓ);

and if thekth formal

argument is not modified

byκ.m(t1, . . . , tp) : t

thenak = (l′)k

undefined otherwise.

Here, v stands for the return value of the callee, if any, or otherwise v = ε.

Note that extend plays the same role here as args and the rule for returning from a method,
used in the operational semantics.

A Termination Analyser for Java Bytecode Based on Path-Length · 29

In Definition 16 we require thatδ, which must be thought of as the current interpretation
of κ.m(t1, . . . , tp) : t, does not erase locations:dom(µ) ⊆ dom(µ′). This constraint
would be too strong in the presence of garbage collection (which we do not model in our
formalisation). In that case, that constraint should be refined by saying that reachable lo-
cations cannot be erased byδ. We also require thatδ does not modify the objects which
are not reachable from the actual parameters of the call. Moreover, if thekth formal pa-
rameter is not modified by methodκ.m(t1, . . . , tp) : t, then its value is not affected by
δ. Note that the latter is a syntactical property: we just look for astore k instruction in
the body ofκ.m(t1, . . . , tp) : t. If no such instruction is found, then we assert that the
kth argument is not modified. All these hypotheses are sensible for our language. Making
extendκ.m(t1,...,tp):t(δ) undefined when they do not hold is a reasonable definition. These
constraints are needed in order to prove the correctness of the abstractextend operation of
Section 6.

An interpretationprovides a set of denotations for each blockb of the program. Those
denotations represent the possible runs of the program from the beginning ofb until the end
of the method whereb occur (that is, until a block with no successors).Setscan express
non-deterministic behaviours, which is not the case in our concrete semantics, but is useful
in view of the definition of the abstract semantics in Section 6. By using sets, our concrete
semantics is already acollecting semantics[Cousot and Cousot 1977]. The operations;
andextend over denotations are consequently extended to sets of denotations.

DEFINITION 17. An interpretationι for a programP is a mapping fromP ’s blocks
into ℘(∆). More precisely, ifb is a block such that at its beginning there arel local
variables ands stack elements andb is part of the body of a methodκ.m(t1, . . . , tp) : t,
thenι(b) ⊆ ∆l,s→lo,so

wherelo ≥ l (new local variables might be declared in the body of
the method),so = 0 if t = void andso = 1 otherwise. The set of all interpretations is
written I and is ordered by pointwise set-inclusion.

EXAMPLE 18. The interpretation of the topmost block in Figure 8 must be a subset of
∆2,0→3,1 since, at the end of methodexpand, there are three local variables and one
stack element only. For the same reason, the interpretation of the block containing the
load 2 instruction, in the same figure, must be a subset of∆3,0→3,1.

Given an interpretationι providing an approximation of the functional behaviour of the
blocks ofP , we can define an improved interpretation denoted by[[]]ι.

DEFINITION 19. Let ι ∈ I. We define thedenotations inι of an instructionins which is
notcall as

[[ins]]ι = {ins}

whereins is defined in Definition 7. Forcall, let mi = κi.m(t1, . . . , tp) : t for 1 ≤ i ≤ n.
We define

[[call m1, . . . , mn]]ι =
⋃

1≤i≤n

extendmi
({selectmi

}; {makescopemi
}; ι(bmi

))

wherebmi
is the block where methodmi starts. The function[[]]ι is extended to blocks as

[[
ins1
···

insw

⇉
b1
···
bm

]]

ι

=

{

[[ins1]]ι; · · · ; [[insw]]ι if m = 0

[[ins1]]ι; · · · ; [[insw]]ι; (ι(b1) ∪ · · · ∪ ι(bm)) if m > 0.

30 · F. Spoto and F. Mesnard and É. Payet

Note that the semantics ofcall is computed as the extension of the sequential composition
of denotations that select each given possible run-time target method, then pass the param-
eters and finally run the target method (Figure 12). Only one of those compositions will
be defined, that leading to the target method that is selected at run-time. Note also that the
semantics of a blockb takes all its followersb1, . . . , bm into account, so that it represents
all runs of the method whereb occurs fromb itself until its end.

The blocks ofP are in general interdependent, because of loops and recursion, and
a denotational semantics must be built through a fixpoint computation. Given an empty
approximationι ∈ I of the denotational semantics, one improves it intoTP (ι) ∈ I and
iterates the application ofTP until a fixpoint i.e., a ι such thatTP (ι) = ι. That fixpoint
will be the denotational semantics ofP , since it corresponds to the minimal solution of
the set of equations expressed byTP . Our analyser actually performs smaller fixpoints on
each strongly-connected component of blocks rather than a huge fixpoint over all blocks.
This is important for efficiency reasons but irrelevant here for our theoretical results.

DEFINITION 20. ThetransformerTP : I 7→ I for P is defined as

TP (ι)(b) = [[b]]ι

for everyι ∈ I and blockb of P .

PROPOSITION 21. TP is additive, that isTP (∪j∈J ιj) = ∪j∈JTP (ιj), so its least
fixpoint exists and is equal to⊔i≥0T

i
P , whereT 0

P (b) = ∅ for every blockb of P and
T i+1

P = TP (T i
P) for everyi ≥ 0 [Tarski 1955].

DEFINITION 22. The denotational semantics DP of P is the least fixpoint of TP , as
computed in Proposition 21.

Our denotational semantics is defined over the concrete domain ℘(∆), uses the deno-
tations of Definitions 7, 11 and 12 which are singleton sets in ℘(∆). It also uses the
operators ;, ∪ and extend over ℘(∆) of Definitions 15 and 16 (∪ is just set union). In
order to define an abstract denotational semantics, we have to provide an abstract domain,
abstract domain elements correctly approximating the singleton sets of denotations and
abstract operators correct w.r.t. the concrete ones. In the next section we will apply this
technique to the definition of an abstract domain for path-length of data structures.

As we said at the beginning of this section, our operational and denotational semantics
are provably equivalent, as stated by the following result.

THEOREM 23. Let b a block of a program P and σin an initial state for b. The func-
tional behaviour of b, as modelled by the operational semantics of Subsection 5.1, coin-
cides with its denotational semantics of Subsection 5.2:

{σout | 〈b || σin 〉 ⇒∗
P 〈b

′ || σout 〉 6⇒P } = {δ(σin) | δ ∈ [[b]]DP , δ(σin) is defined }.

5.3 Dealing with Exceptions

We describe here how we deal with exceptions in our semantical framework.
Figure 13 shows the transformation into basic blocks of the method main of the program
in Figure 3. There are instructions that have not been considered in our simplification of

A Termination Analyser for Java Bytecode Based on Path-Length · 31

new Exc

catch
throw

dup
call Exc.<init>():void

store 1
const 0
store 2

load 2
const 20

if_cmpge
if_cmplt
load 2
const 10

if_cmple

if_cmpgt
load 1
const 5
putfield f

increment 2 by 2catch

top_is_instance_of java.lang.NullPointerException
store 3

top_is_not_instance_of java.lang.NullPointerException
throw

Fig. 13. Our simplified Java bytecode for the methodmain in Figure 3.

the Java bytecode. The conditionalsif cmpXX are similar to theifeq andifne instructions
but they work on the topmosttwo values on the stack. The instructioncatch is more
interesting. It is put after each instruction that might throw an exception. The idea is that
it catchessuch exceptions. Hence it represents the entry point to the exception handlers of
the method. The instructionthrow throws back an exception to the caller of the method.

In order to formalise the semantics ofcatch andthrow, we start by expanding the se-
mantics of the other instructions. The state is split into anormalstate and anexceptional
state. For instance, the semantics of thedup instruction (Definition 7) becomes

dupq = λ〈〈l || top :: s ||µ〉, σe〉.〈〈l || top :: top :: s ||µ〉, undefined〉

which means thatdup does not use the stateσe resulting from an exception that is thrown
before it and does not throw any exception (the output exceptional state isundefined).
Instructions that can throw an exception are modelled as in the following example

getfieldq f = λ〈〈l || ℓ :: s ||µ〉, σe〉.

{

〈〈l ||µ(ℓ)(f) :: s ||µ〉, undefined〉 if ℓ 6= null

〈undefined , 〈l || ℓ′ ||µ[ℓ′ 7→ npe]〉〉 otherwise

32 · F. Spoto and F. Mesnard and É. Payet

whereℓ′ is a fresh location andnpe is aNullPointerException object. This means
that the input exceptional state is not used but there might be an output exceptional state,
when the object whose field is read is actuallynull. In the latter case, the exceptional
state has a stack of one element only, which is a pointer to the exception object; the output
normal state is undefined.

On the same line, we can define the semantics of thethrow instruction:

throwq = λ〈〈l || ℓ :: s ||µ〉, σe〉.

{

〈undefined , 〈l || ℓ ||µ〉〉 if ℓ 6= null

〈undefined , 〈l || ℓ′ ||µ[ℓ′ 7→ npe]〉〉

whereℓ′ is a fresh location andnpe is aNullPointerException object. This means
that the input exceptional state is not used and that this instruction always throws an ex-
ception, so that there is no output normal state. The output exceptional state is built
from the original input normal state, by throwing away all stack elements but the top-
most, which must be a pointer to an exception object. If that pointer is actuallynull, a
NullPointerException is thrown instead.

The catch instruction catches an exceptione which has been thrown just before that
instruction. This is modelled by using the input exceptional state to finde. This is the only
instruction which uses the input exceptional state and discards the input normal state:

catchq = λ〈σn, σe〉.〈σe, undefined〉.

Since some instructions might throw more than one type of exception (for instance,calls
might throw all exceptions thrown by the method that they call), we need to select the right
exception handler on the basis of the run-time type of the exception. This is done through
top is instance of and top is not instance of instructions. They check the class tag of the
exception object on top of the stack:

top is instance of q κ = λ〈〈l || ℓ ||µ〉, σe〉.

{

〈〈〈l || ℓ ||µ〉, undefined〉 if µ(ℓ) is aκ

〈undefined , undefined〉 otherwise.

With the use of split states and of the instructions catch, throw, top is instance of and
top is not instance of, one can define the operational and denotational semantics of Java
bytecode exactly as we already did in this section. No other change is required. It is only
for simplicity that, in the next sections, we do not consider exceptions in the formalisation.

We conclude this section by observing that if null pointer analysis is applied to the
method in Figure 3 then the lowest two blocks rooted at catch and the block containing
catch are removed since the putfield is found to never throw any exception. Without this
analysis, there is instead an (apparent) infinite loop passing through the lower catch in-
struction and termination is not proved.

6. PATH-LENGTH ANALYSIS

In this section we define an abstraction of the denotations of Section 5. Namely, their
variables v are abstracted into an integer path-length: if v is bound to a location then the
path-length of v is the maximal length of a chain of locations that one can follow from v; if
v is bound to an integer i, then the path-length of v is i itself2. Since the exact determination
of the possible path-lengths of a variable at each given program point is undecidable, we

2In our implementation we also consider variables bound to arrays. Their path-length is the length of the array.

A Termination Analyser for Java Bytecode Based on Path-Length · 33

must content ourselves with an approximation of the possible range for the path-lengths.
This leads to the use of numerical constraints which are closed polyhedra [Cousot and
Halbwachs 1978].

The above definition of path-length is formalised below. We first define an auxiliary
function lenj which follows the chains of locations up toj steps of dereference. This
function is then used in the definition of the path-length functionlen .

DEFINITION 24. Letµ be a memory (Definition 1). Let

lenj(null, µ) = 0

lenj(i, µ) = i if i ∈ Z

len0(ℓ, µ) = 0 if ℓ ∈ dom(µ)

lenj+1(ℓ, µ) = 1 + max
{
lenj(ℓ′, µ) | ℓ′ ∈ rng(µ(ℓ)) ∩ L

}
if ℓ ∈ dom(µ)

for everyj ≥ 0. We assume that the maximum of an empty set is0. Thepath-length of a
valuev in µ is len(v, µ) = lim

j→∞
lenj(v, µ).

In the last case of the definition oflenj , the intersection withL is needed in order to
consider only the values of the fields of the objectµ(ℓ) which are locationsℓ′. The fields
of type integer of the objects are not used in the definition of the path-length.

Note that if i ∈ Z then len(i, µ) = lenj(i, µ) = i for everyj ≥ 0 and memoryµ.
Similarly, len(null, µ) = lenj(null, µ) = 0 for every memoryµ. Moreover, ifℓ is a
location bound inµ to a cyclical data-structure, thenlen(ℓ, µ) =∞.

EXAMPLE 25. Consider the memory

µ = [ℓ1 7→ o1, ℓ2 7→ o2, ℓ3 7→ o3, ℓ4 7→ o4, ℓ5 7→ o5]

whereo1 = [next 7→ ℓ4], o2 = [next 7→ null], o3 = [next 7→ ℓ5], o4 = [next 7→
null] ando5 = [next 7→ null] (Example 3). We havelen(ℓ1, µ) = 2, len(ℓ2, µ) = 1,
len(ℓ3, µ) = 2 andlen(ℓ4, µ) = 1.

We can now map a state into apath-length assignment, that is, a function specifying the
path-length of its variables. This comes in two versions: in theinput version ˇlen , the state
is considered as the input state of a denotation. In theoutput version ˆlen , it is considered
as the output state of a denotation. We recall thatlk is the value of thekth local variable in
l andsk is the value of thekth stack element from the base ofs (Definition 1).

DEFINITION 26. Let 〈l || s ||µ〉 ∈ Σ#l,#s. Its input path-length assignmentis

ˇlen(〈l || s ||µ〉) = [ľk 7→ len(lk, µ) | 0 ≤ k < #l] ∪ [šk 7→ len(sk, µ) | 0 ≤ k < #s]

and, similarly, itsoutput path-length assignmentis

ˆlen(〈l || s ||µ〉) = [l̂k 7→ len(lk, µ) | 0 ≤ k < #l] ∪ [ŝk 7→ len(sk, µ) | 0 ≤ k < #s] .

EXAMPLE 27. Consider the state

σ = 〈[ℓ1, ℓ2, ℓ4] || ℓ3 :: ℓ2 || [ℓ1 7→ o1, ℓ2 7→ o2, ℓ3 7→ o3, ℓ4 7→ o4, ℓ5 7→ o5]
︸ ︷︷ ︸

〉

µ

34 · F. Spoto and F. Mesnard and É. Payet

of Example 3. By using the results of Example 25 we conclude that

ˇlen(σ) =

[
ľ0 7→ len(ℓ1, µ), ľ1 7→ len(ℓ2, µ), ľ2 7→ len(ℓ4, µ)
š1 7→ len(ℓ3, µ), š0 7→ len(ℓ2, µ)

]

= [ľ0 7→ 2, ľ1 7→ 1, ľ2 7→ 1, š1 7→ 2, š0 7→ 1] .

Similarly, we have

ˆlen(σ) = [l̂0 7→ 2, l̂1 7→ 1, l̂2 7→ 1, ŝ1 7→ 2, ŝ0 7→ 1] .

EXAMPLE 28. Consider the stateσ of Example 3 and the state

dupq(σ) = 〈[ℓ1, ℓ2, ℓ4] || ℓ3 :: ℓ3 :: ℓ2 || [ℓ1 7→ o1, ℓ2 7→ o2, ℓ3 7→ o3, ℓ4 7→ o4, ℓ5 7→ o5]
︸ ︷︷ ︸

µ

〉

of Example 9. By Example 25 we have

ˆlen(dupq(σ)) = [l̂0 7→ 2, l̂1 7→ 1, l̂2 7→ 1, ŝ2 7→ 2, ŝ1 7→ 2, ŝ0 7→ 1] .

DEFINITION 29. Let li, si, lo, so ∈ N. The setPLli,si→lo,so
of thepath-length polyhe-

dracontains all finite sets of integer linear constraints over the variables{ľk | 0 ≤ k <

li} ∪ {š
k | 0 ≤ k < si} ∪ {l̂

k | 0 ≤ k < lo} ∪ {ŝ
k | 0 ≤ k < so}, using only the≤

comparison operator.

Although only≤ is allowed in a path-length constraint, we will also write constraints such
asx = y, standing for bothx ≤ y andy ≤ x.

EXAMPLE 30. The following polyhedron belongs toPL3,2→3,3:

pl =

ľ0 = l̂0, ľ1 = l̂1, ľ2 = l̂2, š0 = ŝ0, š1 = ŝ1

š0 = ľ1, ľ0 ≥ 0, ľ1 ≥ 0, ľ2 ≥ 0, š0 ≥ 0, š1 ≥ 0
š1 = ŝ2

.

A path-length assignment fixes the values of the variables. When those values satisfy a
path-length constraint, we say that they are amodelof that constraint.

DEFINITION 31. Letpl ∈ PLli,si→lo,so
andρ be an assignment from a superset of the

variables ofpl into Z ∪ {∞}. We say thatρ is a modelof pl and we writeρ |= pl when
plρ is true, that is, by substituting, inpl , the variables with their values provided byρ, we
get a tautological set of ground constraints.

EXAMPLE 32. Consider the path-length constraintpl of Example 30 and the stateσ
of Example 3. By Examples 27 and 28 we have that

ρ = ˇlen(σ) ∪ ˆlen(dupq(σ)) =

[
ľ0 7→ 2, ľ1 7→ 1, ľ2 7→ 1, š1 7→ 2, š0 7→ 1

l̂0 7→ 2, l̂1 7→ 1, l̂2 7→ 1, ŝ2 7→ 2, ŝ1 7→ 2, ŝ0 7→ 1

]

is such that

plρ =

2 = 2, 1 = 1, 1 = 1, 1 = 1, 2 = 2
1 = 1, 2 ≥ 0, 1 ≥ 0, 1 ≥ 0, 1 ≥ 0, 2 ≥ 0

2 = 2

.

A Termination Analyser for Java Bytecode Based on Path-Length · 35

Henceρ is a model ofpl .

We can now define theconcretisationof a path-length constraint. It is the set of de-
notations that induce input and output assignments that, together, form a model of the
constraint.

DEFINITION 33. Letpl ∈ PLli,si→lo,so
. Its concretisationis

γ(pl) =

{

δ ∈ ∆li,si→lo,so

∣
∣
∣
∣
∣

for all σ ∈ Σli,si
such thatδ(σ) is defined

we have
(

ˇlen(σ) ∪ ˆlen(δ(σ))
)

|= pl

}

.

EXAMPLE 34. Consider the path-length constraintpl of Example 30. In Example 32
we have seen that the stateσ of Example 3 is such that(ˇlen(σ) ∪ ˆlen(dupq(σ))) |= pl ,
wheredupq is the denotation of thedup instruction in Figure 8, given in Example 8. How-
ever, this is true forevery input stateσ such thatdupq(σ) is defined. This is because
every suchσ has the form〈[l0, s0, l2] || s1 :: s0 ||µ〉 and satisfies the static information of
Figures 9, 10 and 11. Hence

ρ = ˇlen(σ) ∪ ˆlen(dupq(σ))

= ˇlen
(
〈[l0, s0, l2] || s1 :: s0 ||µ〉

)
∪ ˆlen

(
〈[l0, s0, l2] || s1 :: s1 :: s0 ||µ〉

)

=

ľ0 7→ len(l0, µ), ľ1 7→ len(s0, µ), ľ2 7→ len(l2, µ)
š1 7→ len(s1, µ), š0 7→ len(s0, µ)

l̂0 7→ len(l0, µ), l̂1 7→ len(s0, µ), l̂2 7→ len(l2, µ)
ŝ2 7→ len(s1, µ), ŝ1 7→ len(s1, µ), ŝ0 7→ len(s0, µ)

.

It follows that

plρ =

len(l0, µ) = len(l0, µ), len(s0, µ) = len(s0, µ)
len(l2, µ) = len(l2, µ), len(s0, µ) = len(s0, µ), len(s1, µ) = len(s1, µ)

len(s0, µ) = len(s0, µ), len(l0, µ) ≥ 0, len(s0, µ) ≥ 0
len(l2, µ) ≥ 0, len(s0, µ) ≥ 0, len(s1, µ) ≥ 0, len(s1, µ) = len(s1, µ)

which is true since variablesl0, s0, l2 ands1 do not have integer type at the beginning of
the execution of thedup instruction in Figure 8 and hence their path-length is non-negative
(Definition 24). In conclusion, we have

dupq ∈ γ(pl) .

We want to order our path-length constraints on the basis of their concretisation:pl1 ≤
pl2 if and only if γ(pl1) ⊆ γ(pl2). This results in a poset of polyhedra. The⊓ operation
over sets of constraints is the union of the constraintsi.e., the intersection of the polyhedra
that they represent, and the⊔ operation is thepolyhedral hull[Stoer and Witzgall 1970] of
the polyhedra that they representi.e., the smallest closed polyhedron which includes both.

In the following, we identify in the same equivalence class all elements having the same
concretisation. For instance,{x ≤ y + 1} and{x + 2 ≤ y + 3} are the same abstract
element sinceγ({x ≤ y + 1}) = γ({x + 2 ≤ y + 3}).

36 · F. Spoto and F. Mesnard and É. Payet

DEFINITION 35. Thepath-length polyhedraPLli,si→lo,so
are ordered aspl1 ≤ pl2

if and only if γ(pl1) ⊆ γ(pl2). They form aposeti.e., ≤ is reflexive, transitive and
antisymmetric. Their elements silently stand for their equivalence class. Their top element
is the tautological constrainttrue (which stands for an empty set of linear constraints).
Their least element is the constraintfalse (which stands for a constraint such as1 ≤ 0).

By the theory of abstract interpretation, we get a correct abstract denotational semantics
DPL

P for path-length as soon as we substitute the concrete denotations of Definition 7 with
elements ofPL which include them in their concretisation. Moreover, we must provide the
abstract counterparts overPL of the operations;, ∪ andextend over℘(∆).

We first define a constraint stating that no local variable and no stack element is modified,
that if two variables are definitely aliases, then they must have the same path-length and
that all variables of reference (non-integer) type have non-negative path-length.

DEFINITION 36. Let L, S ⊆ N and q be a program point where there arelq local
variables andsq stack elements. We define

Unchangedq (L,S) = {ľi = l̂i | i ∈ L}

∪ {ši = ŝi | i ∈ S}

∪

{

ši = šj

∣
∣
∣
∣

0 ≤ i, j < sq andsi is an alias ofsj at q
according to our definite aliasing analysis

}

∪

{

ši = ľj
∣
∣
∣
∣

0 ≤ i < sq, 0 ≤ j < lq andsi is an alias oflj at q
according to our definite aliasing analysis

}

∪

{

ľi = ľj
∣
∣
∣
∣

0 ≤ i, j < lq andli is an alias oflj at q
according to our definite aliasing analysis

}

∪ {ši ≥ 0 | 0 ≤ i < sq andsi does not have integer type atq}

∪ {ľi ≥ 0 | 0 ≤ i < lq andli does not have integer type atq} .

Let l, s ∈ N. ThenUnchangedq(l, s) = Unchanged q({0, . . . , l− 1}, {0, . . . , s− 1}).

Let us define the abstract counterparts of theins denotations now.

DEFINITION 37. Let #l, #s be the number of local variables and stack elements at
a program point q. The abstract counterparts of the denotations of Definition 7 are the

A Termination Analyser for Java Bytecode Based on Path-Length · 37

following:

constPL

q c =

{

Unchangedq(#l, #s) ∪ {c = ŝ#s} if c ∈ Z

Unchangedq(#l, #s) ∪ {0 = ŝ#s} if c = null

dupPL

q = Unchangedq(#l, #s) ∪ {š#s−1 = ŝ#s}

newPL

q κ = Unchangedq(#l, #s) ∪ {1 = ŝ#s}

loadPL

q i = Unchangedq(#l, #s) ∪ {ľi = ŝ#s}

storePL

q i = Unchangedq({0, . . . , #l − 1} \ i, {0, . . . , #s− 2}) ∪ {š#s−1 = l̂i}

addPL

q = Unchangedq(#l, #s− 2) ∪ {š#s−2 + š#s−1 = ŝ#s−2}

getfieldPL

q f =

Unchangedq(#l, #s− 1)

if f has integer type

Unchangedq(#l, #s− 1) ∪ {š#s−1 ≥ ŝ#s−1}

if f does not have integer type ands#s−1 might be cyclical atq

Unchangedq(#l, #s− 1) ∪ {š#s−1 ≥ 1 + ŝ#s−1}

if f does not have integer type ands#s−1 cannot be cyclical atq

putfieldPL

q f =

Unchangedq(#l, #s− 2)

if f has integer type

Unchangedq(L, S)

if s#s−2 might share withs#s−1 at q

Unchangedq(L, S) ∪ {ľi + š#s−1 ≥ l̂i | 0 ≤ i < #l, i 6∈ L}

∪{ši + š#s−1 ≥ ŝi | 0 ≤ i < #s− 2, i 6∈ S}

otherwise

whereL are the indexes of the local variables which cannot share with

s#s−2 at q andS the indexesx of the stack elements, with0 ≤ x < #s− 2,

which cannot share withs#s−2 at q

ifeq of typePL

q t = Unchangedq(#l, #s− 1) ∪ {š#s−1 = 0}

ifne of typePL

q t =

{

Unchangedq(#l, #s− 1) ∪ {š#s−1 ≥ 1} if t 6= int

Unchangedq(#l, #s− 1) otherwise.

The abstract operations use theUnchanged constraint for the part of the state which
they do not modify. The part which is modified is modelled explicitly. For instance, the
constPL constraint says that the new top of the stacks#s has path-lengthc whenc is an
integer value and0 whenc is null. ThedupPL constraint copies the path-length of the old
top of the stacǩs#s−1 into the path-length of the new top of the stackŝ#s.

The definition ofgetfieldPL

q states that if we read the field of an object then we get a
value whose path-length is no larger than the path-lengthš#s−1 of the object. Moreover,
if the object cannot be cyclical, the path-length of its field is strictly smaller thanš#s−1.

38 · F. Spoto and F. Mesnard and É. Payet

For the definition ofputfieldPL

q , remember thats#s−2 holds the object whose fieldf is
going to be modified, and thats#s−1 holds the value which is going to be written insidef

(Definition 7). Definition 37 states that iff has integer type then no path-length changes.
Otherwise, the local variablesL and stack elementsS which do not share atq with the
object whose field is modified (i.e., with s#s−2), and that still exist in the output of the
instruction, do not change their path-length. The other variables are affected by theputfield

instruction. Namely, if theputfield might build a cycle, that is, if the variables#s−2

holding the object might share with the variables#s−1 holding the value which is going to
be written inside the fieldf of the object, then the path-length of the variables not inL and
not inS is not approximated (it might become infinite). Otherwise it can only grow by the
path-length of the values#s−1 which is stored inside the field.

EXAMPLE 38. Consider thedup instruction in Figure 8. We know thatl1 ands0 are
aliases at the program pointq where the instruction occurs (Figure 11). HencedupPL

q is
the constraintpl of Example 30.

EXAMPLE 39. Letq be now the program point at the beginning of the code in Figure 8.
Consider theload 0 instruction atq. There are 2 local variables atq (the parameters of
the method), both of non-integer type, and no stack elements. No variables are aliases atq

(Figure 11). Hence

loadPL

q 0 = Unchangedq(2, 0) ∪ {ľ0 = ŝ0}

= {ľ0 = l̂0, ľ1 = l̂1, ľ0 ≥ 0, ľ1 ≥ 0} ∪ {ľ0 = ŝ0}

= {ľ0 = l̂0, ľ1 = l̂1, ľ0 ≥ 0, ľ1 ≥ 0, ľ0 = ŝ0} .

EXAMPLE 40. Let r be the program point at the beginning of thestore 2 instruction
in the topmost block in Figure 8. There are 2 local variables atr (the parameters of the
method), both of non-integer type, and 1 stack element, of non-integer type. Variabless0

andl0 are aliases atr (Figure 11). Hence

storePL

r 2 = Unchangedr({0, 1}, ∅)∪ {š0 = l̂2}

= {ľ0 = l̂0, ľ1 = l̂1, š0 = ľ0, ľ0 ≥ 0, ľ1 ≥ 0, š0 ≥ 0} ∪ {š0 = l̂2}

= {ľ0 = l̂0, ľ1 = l̂1, š0 = ľ0, ľ0 ≥ 0, ľ1 ≥ 0, š0 ≥ 0, š0 = l̂2} .

EXAMPLE 41. Let r be the program point at the beginning of the first getfield next
instruction in the lowest block in Figure 8. Assume that the argument of the method might
be a cyclical list. There are 3 local variables at r, all of non-integer type, and 1 stack
element, of non-integer type. That stack element might be cyclical if the input argument of
the method might be cyclical (Figure 10). Variables s0 and l1 are aliases at r (Figure 11).

A Termination Analyser for Java Bytecode Based on Path-Length · 39

Hence

getfieldPL

r next = Unchangedr({0, 1, 2}, ∅)∪ {š0 ≥ ŝ0}

=

{

ľ0 = l̂0, ľ1 = l̂1, ľ2 = l̂2,

š0 = ľ1, ľ0 ≥ 0, ľ1 ≥ 0, ľ2 ≥ 0, š0 ≥ 0

}

∪ {š0 ≥ ŝ0}

=

{
ľ0 = l̂0, ľ1 = l̂1, ľ2 = l̂2,

š0 = ľ1, ľ0 ≥ 0, ľ1 ≥ 0, ľ2 ≥ 0, š0 ≥ 0, š0 ≥ ŝ0

}

.

EXAMPLE 42. Letr be the program point at the beginning of theputfield next instruc-
tion in the lowest block in Figure 8. Assume that the argument of the method might be a
cyclical list. There are 3 local variables atr, all of non-integer type, and 2 stack elements,
of non-integer type. Variabless0 andl1 are aliases atr (Figure 11). Only variabless0 and
l1 and variablesl0 and l1 might share atr (Figure 9). Hence we are in the third case for
putfieldPL

r in Definition 37. We haveL = {l0, l2} andS = ∅. Hence

putfieldPL

r next = Unchangedr(L, S) ∪ {ľ1 + š1 ≥ l̂1}

=

{
ľ0 = l̂0, ľ2 = l̂2,

š0 = ľ1, ľ0 ≥ 0, ľ1 ≥ 0, ľ2 ≥ 0, š0 ≥ 0

}

∪ {ľ1 + š1 ≥ l̂1}

=

{
ľ0 = l̂0, ľ2 = l̂2,

š0 = ľ1, ľ0 ≥ 0, ľ1 ≥ 0, ľ2 ≥ 0, š0 ≥ 0, ľ1 + š1 ≥ l̂1

}

.

The intuition of this result is that locals0 and 2 do not change their path-length, since
they are not affected by the modification of the field. Local1 (that is,other in Figure 1),
instead, might increase its path-length by as much as the path-length of the value which is
written inside the fieldnext.

We also provide correct approximations for the denotations used for a method call.

DEFINITION 43. Letκ.m(t1, . . . , tp) : t be a method. We define

argsPL

q,κ.m(t1,...,tp) = {šsq−(p+1)+i = ŝi | 0 ≤ i < p + 1}

selectPL

κ.m(t1,...,tp):t = Unchanged(0, p + 1)

makescopePL

κ.m(t1,...,tp):t = {ši = l̂i | 0 ≤ i < p + 1} .

We define now the abstract counterparts of the operators;, ∪ and extend over sets of
denotations. For;, we sequentially compose two path-length constraints by matching the
output variables of the first with the input variables of the second. This is accomplished
by renaming such variables into new overlined variablesT , which are then projected away
with the∃T operation. The∪PL operation is just the polyhedral hull operation. Forextend ,
recall that we assume already performed many preliminary static analyses (Section 4).
Namely, we assume that at the program point where acall instruction occurs we know:

(1) which stack elements or local variables of the caller might share;

(2) which stack elements or local variables of the caller must be aliases of each other;

40 · F. Spoto and F. Mesnard and É. Payet

(3) which formal parameters of the callee might be updated during the execution of the
callee (that is, some reachable object might change its fields);

(4) which formal parameters of the callee might be modified during the execution of the
callee. This is just a syntactical property: parameterk is modified if astore k instruc-
tion occurs inside the code of the callee.

DEFINITION 44. Let pl1 ∈ PLli,si→lt,st
andpl2 ∈ PLlt,st→lo,so

. Let us also define

T = {l
0
, . . . , l

lt−1
, s0, . . . , sst−1}. We definepl1;

PL pl2 ∈ PLli,si→lo,so
as

pl1;
PL pl2 = ∃T (pl1[v̂ 7→ v | v ∈ T] ∪ pl2[v̌ 7→ v | v ∈ T]) .

Letpl1, pl2 ∈ PLli,si→lo,so
. We define

pl1 ∪
PL pl2 = polyhedral hull ofpl1 andpl2 .

Let κ.m(t1, . . . , tp) : t be a method andso = 0 if t = void, so = 1 otherwise. Let
lo ≥ p + 1. Letq be a program point where a call toκ.m(t1, . . . , tp) : t occurs. Letlq, sq

be the number of local variables and stack elements used atq, with sq = p + 1 + x (at
least thep + 1 actual arguments of the call must be on the stack when you call a method).
The actual parameters of the call atq are held insx+k with 0 ≤ k < p + 1. We define

extendPL

κ.m(t1,...,tp):t : PL0,p+1→lo,so
7→ PLlq,sq→lq,x+so

as

extendPL

κ.m(t1,...,tp):t(pl) =

= ∃T

(
pl [v̂ 7→ v | v ∈ T][šk 7→ šk+x | 0 ≤ k < p + 1][ŝ0 7→ ŝx]

∪US ∪MSA ∪ UL ∪MLA

)

where

T = {l
0
, . . . , l

lo−1
}

US = {ši = ŝi | 0 ≤ i < x andsi cannot share with any possibly updated parameter}

MSA =

l
k

= ŝi

∣
∣
∣
∣
∣
∣

0 ≤ i < x, 0 ≤ k < p + 1,

si is a definite alias of thekth parameter
and the latter is not modified inside the callee

UL = {ľi = l̂i | 0 ≤ i < lq andli cannot share with any possibly updated parameter}

MLA =

l
k

= l̂i

∣
∣
∣
∣
∣
∣

0 ≤ i < lq, 0 ≤ k < p + 1,

li is a definite alias of thekth parameter
and the latter is not modified inside the callee

.

A Termination Analyser for Java Bytecode Based on Path-Length · 41

EXAMPLE 45. Consider the constraints of Examples 39 and 40. We have

(loadPL

q 0);PL (storePL

r 2)

= {ľ0 = l̂0, ľ1 = l̂1, ľ0 ≥ 0, ľ1 ≥ 0, ľ0 = ŝ0}

;PL {ľ0 = l̂0, ľ1 = l̂1, š0 = ľ0, ľ0 ≥ 0, š0 ≥ 0, š0 = l̂2}

= ∃
{l

0
,l

1
,s0}

{

ľ0 = l
0
, ľ1 = l

1
, ľ0 ≥ 0, ľ1 ≥ 0, ľ0 = s0

l
0

= l̂0, l
1

= l̂1, s0 = l
0
, l

0
≥ 0, s0 ≥ 0, s0 = l̂2

}

= {ľ0 = l̂0, ľ1 = l̂1, ľ0 ≥ 0, ľ1 ≥ 0, ľ0 = l̂2} .

TheextendPL operation is rather complex. Do not consider theMSA andMLA sets for
the moment. Then the definition says that if we know the path-length behaviourpl of the
called method(s), we just have tolift the input stack elements ofpl by x positions, since the
callee starts withp+1 stack elements which are copies of the highestp+1 stack elements
of the caller. The latter, however, hasx more underlying elements (Definition 16). The
same must be performed for the only output stack element which might be used by the
callee to yield its return value. The output local variables are renamed into new overlined
variables inT which are finally removed by∃T . This definition would be already correct,
but extremely imprecise. In fact, it does not say anything about the effect of the call on the
set of variablesY = {li | 0 ≤ i < lq} ∪ {s

i | 0 ≤ i < x} which contains all the local
variables of the caller and thex lower stack elements of the caller, those which are not
used to hold thep+1 parameters. This is the purpose of theUL andUS sets, respectively.
They say that the path-length of anyv ∈ Y is not modified by the call, but only ifv cannot
share with any of the parameters of the call which might be updated during the execution
of the callee. This is correct since in such a case the callee has no way of modifying the
objects reachable fromv and hence the path-length ofv cannot be affected by the call.

The definition in [Spoto et al. 2006] stopped here and actually did not even use the
update information, so that it only required non-sharing in the definition of the setsUS and
UL. Hence it was less precise. We improve it here further by using the sets of constraints
MSA andMLA. They consider the case when somev ∈ Y is well sharing with thekth
actual parameter, but is actually an alias of it. Furthermore, that parameter must not be
modified inside the callee. In such a case, it is enough to look at the final path-length of
that parameter, held inlk inside the callee, to determine the final path-length ofv.

Note that since integer variables cannot share, the path-length of anyv ∈ Y of integer
type is not affected by acall instruction (it will always be included in theUS or UL sets).

We can now state thecorrectnessresults for our path-length analysis. Namely, we prove
that the path-length constraints computed by our analysis include their concrete counter-
parts in their concretisation. We start with the instructions.

PROPOSITION 46. Let instructionins, different fromcall, occur at program pointq. We
have

insq ∈ γ(insPL

q) .

Then we consider the auxiliary path-length constraints for method call.

42 · F. Spoto and F. Mesnard and É. Payet

PROPOSITION 47. Letκ.m(t1, . . . , tp) : t be a method. We have

argsq,κ.m(t1,...,tp):t ∈ γ(argsPL

q,κ.m(t1,...,tp):t)

selectκ.m(t1,...,tp):t ∈ γ(selectPL

κ.m(t1,...,tp):t)

makescopeκ.m(t1,...,tp):t ∈ γ(makescopePL

κ.m(t1,...,tp):t) .

Hence we consider the operators over the path-length constraints.

PROPOSITION 48. In the conditions of Definition 44, we have

γ(pl1); γ(pl2) ⊆ γ(pl1;
PL pl2)

γ(pl1) ∪ γ(pl2) ⊆ γ(pl1 ∪
PL pl2)

extendκ.m(t1,...,tp):t(γ(pl)) ⊆ γ(extendPL

κ.m(t1,...,tp):t(pl)) .

We now lift to our path-length polyhedra the notion of interpretation of Definition 17.

DEFINITION 49. A path-length interpretationι for P is a map fromP ’s blocks into
PL. More precisely, ifb is a block such that at its beginning there arel local variables
and s stack elements andb is part of the body of a methodκ.m(t1, . . . , tp) : t, then
ι(b) ∈ PLl,s→lo,so

wherelo ≥ l (new local variables might be declared in the body of
the method),so = 0 if t = void and so = 1 otherwise. The set of all path-length
interpretations is writtenIPL and is ordered by the pointwise extension of≤.

Hence we lift the definition of denotation of an instruction orblock (Definition 19).

DEFINITION 50. Let ι ∈ I
PL. We define thepath-length denotations inι of an instruc-

tion ins which is notcall as

[[ins]]PL

ι = insPL .

For call, let mi = κi.m(t1, . . . , tp) : t for 1 ≤ i ≤ n. We define

[[call m1, . . . , mn]]PL

ι =
⋃PL

1≤i≤n
extendPL

mi

(

selectPL

mi
;PL makescopePL

mi
;PL ι(bmi

)
)

wherebmi
is the block where methodmi starts. The function[[]]PL

ι is extended to blocks as
[[

ins1
···

insw

⇉
b1
···
bm

]]PL

ι

=

{

[[ins1]]
PL

ι ;PL · · · ;PL [[insw]]PL

ι if m = 0

[[ins1]]
PL

ι ;PL · · · ;PL [[insw]]PL

ι ;
(
ι(b1) ∪

PL · · · ∪PL ι(bm)
)

if m > 0.

We can finally define apath-lengthdenotational semantics. A technical difficulty is that
we cannot define it as the least fixpoint of aT PL

P operator, since that fixpoint does not exist
in general (the union of an infinite set of polyhedra might not be a polyhedron). Hence
we content ourselves with a post-fixpoint of that operatori.e., an interpretationι such that
T PL

P (ι) ≤ ι. A postfixpoint can be computed in a finite number of iterations through
a widening operator over polyhedra, which forces the analysis to converge [Cousot and
Halbwachs 1978]. We actually use the more precise widening operator defined in [Bagnara
et al. 2005].

A Termination Analyser for Java Bytecode Based on Path-Length · 43

DEFINITION 51. ThetransformerT PL

P : I
PL 7→ I

PL for P is defined as

T PL

P (ι)(b) = [[b]]PL

ι

for everyι ∈ I
PL and blockb of P . We define apost-fixpointDPL

P of T PL

P , computable in
a finite number of iterations, by using the widening operator defined in [Bagnara et al.
2005]. Note that this widening operator keeps the polyhedra closed. Hence we can define
thepath-length semanticsof P asDPL

P .

THEOREM 52. The path-length semantics is correct w.r.t. the concrete denotational
semantics of Section 5 i.e.,

DP ≤ γ(DPL

P) .

In this section, for simplicity, we have not considered exceptions. If exceptions are taken
into account, as modelled in Subsection 5.3, then the path-length polyhedra are split into
pairs of two polyhedra: the first polyhedron relates the output normal state to the input nor-
mal state. The second polyhedron relates the output exceptional state to the input normal
state. Our implementation uses this technique to deal with programs with exceptions.

We have seen that the path-length might be infinite (Definition 24) and that∞ is allowed
in the models of a polyhedron (Definition 31). Nevertheless, the polyhedra build for each
bytecode do not mention∞ explicitly (Definitions 37 and 43) and the operators on such
polyhedra (Definition 44) are standard and easily implementable, for instance, in terms of
the operators available in the Parma Polyhedra Library [Bagnara et al. 2008]. Hence that
library or a similar one can safely be used to implement the path-length analysis.

7. COMPILATION INTO CONSTRAINT LOGIC PROGRAMS

In this section we prove that the result of a path-length analysis can be used to translate a
Java bytecode program into a constraint logic program [Jaffar and Maher 1994] over path-
length polyhedra (CLP(PL)), whose termination entails the termination of the original Java
bytecode program. It is important to remark that we assume a specialised semantics ofCLP
computations here, where variables are always bound to integer values [Spoto et al. 2008].
This means that we do not allowfreevariables in a call to a predicate. This is consistent
with the fact that we model the path-length of the variables in a state, which assigns an
integer value to all the variables in the state. For instance, in theCLP(PL) program:

p(x̌):-{ŷ ≥ 0},b(ŷ).

b(x̌):-{x̌ = ŷ + 1, ŷ ≥ 0},b(ŷ).

we assume that a call to predicatep leads to a call to predicateb with a given, non-negative
argument̂y. That is, a specific value for̂y is chosen, provided that it is non-negative, and
the computation continues withb. This entails that any call top terminates, while this
is not the case with the traditional semantics ofCLP, which allows partially constrained
variables [Jaffar and Maher 1994].

From now on, we assume that the blocks of code have been decorated with a unique
name, as in Figure 14. In that figure, we also report the names of some program points,
that we will use in the examples below.

44 · F. Spoto and F. Mesnard and É. Payet

b1 load_q 0
store_r 2

b2 load 2

b3 ifeq of type Sharing

b4 ifne of type Sharing
load 1

new Sharing
dup

const null

b5 call_s Sharing.<init>(Sharing):void
putfield_t next

load_u 1
getfield next

store 1
load 2

getfield next
store_z 2

Fig. 14. The program in Figure 8, where each block is decoratedwith a unique name.

DEFINITION 53. Let P be a Java bytecode program. The CLP(PL) programPCLP

derived fromP is built as follows. For each block

b
ins1
ins2
···

insw

⇉
b1
···
bm

in P , let c = [[ins1]]
PL

DPL

P

;PL · · · ;PL [[insw]]PL

DPL

P

. We generate the CLP clauses

b(ˇvars):- c, b1(ˆvars).
· · ·
b(ˇvars):- c, bm(ˆvars).

(5)

where ˇvars are the input local variables and stack elements at the beginning of blockb

and ˆvars are the output local variables and stack elements at the end of blockb (in some
fixed order). Moreover, ifins1 = callq m1, . . . , mn, wheremi = κi.m(t1, . . . , tp) : t, then
we also add a clause

b(ˇvars):-
(

argsPL

q,mi
;PL selectPL

mi
;PL makescopePL

mi

)

, bmi
(l̂0, . . . , l̂p). (6)

for each 1 ≤ i ≤ n, where bmi is the block where method mi begins.

The clauses (5) mimic the execution of block b, followed by the execution of one of its
followers. The relation between the input state of b and that of its followers is approximated
by the path-length constraint c of the code inside block b. Hence those clauses say that the
execution of b from an input state σ leads to the execution of b1, . . . , bm from a state σ′

where the variables in σ (seen as input variables) and those in σ′ (seen as output variables)
satisfy c. Note that no clause is generated in (5) for those blocks with no followers, since

A Termination Analyser for Java Bytecode Based on Path-Length · 45

they cannot be part of a loop, so that they are not relevant for our termination analysis. If
the first instructionins1 of block b is acall instruction (remember that we assume thatcall

instructions can only occur at the beginning of a block), the clauses (5) assume acomplete
execution of that call, that is, they express a computation in which control has come back
to the callee. This would not be enough to prove our correctness result (Theorem 56). This
is because non-termination very often occurs as a consequence of an infinite recursion, so
that we must also consider the case when acall does not complete its execution. To that
purpose, we introduce the clauses (6). They mimic, explicitly, the execution of the callee.
Namely, they single out from the stack the actual arguments of the call (argsPL) then they
check which dynamic target is selected (selectPL) then they move the actual arguments
from the stack to the lowest local variables (makescopePL) and they finally run the callee
from blockbmi

. The latter starts its execution in a state where the stack is empty and the
p + 1 lowest local variables hold the actual arguments of the call.

Our translation intoCLP(PL) is similar in spirit to that in [Albert et al. 2007a; 2008].
In both cases, aCLPprogram is constructed from the structure of the code, seen as a graph
of blocks of code. The main difference is that they use the clauses (5), but they do not use
the clauses (6). This second kind of clauses is meaningful for termination analysis, but not
for cost analysis.

EXAMPLE 54. Only one clause is generated for the blockb1 in Figure 14, whose in-
structions occur at program points that we callq andr, respectively:

b1(ľ0, ľ1):-
(

[[load q 0]]PL

DPL

P

;PL [[storer 2]]PL

DPL

P

)

,b2(l̂0, l̂1, l̂2).

which by Example 45 is:

b1(ľ0, ľ1):- {ľ0 = l̂0, ľ1 = l̂1, ľ0 ≥ 0, ľ1 ≥ 0, ľ0 = l̂2},b2(l̂0, l̂1, l̂2).

EXAMPLE 55. Consider blockb5 in Figure 14. At its beginning there are 3 local
variables and 4 stack elements (Figure 8). We build two clauses for it. The first belongs to
the set(5):

b5(ľ0, ľ1, ľ2, š0, š1, š2, š3):-
(
[[calls Sharing.〈init〉(Sharing) : void]]PL

DPL

P

;PL

[[putfieldt next]]
PL

DPL

P

;PL [[loadu 1]]PL

DPL

P

;PL · · ·

· · · ;PL [[storez 2]]PL

DPL

P

)
,b2(l̂0, l̂1, l̂2).

The second is built sinceb5 starts with acall instruction (with only one possible dynamic
target). It is

b5(ľ0, ľ1, ľ2, š0, š1, š2, š3):-
(
argsPL

s,Sharing.〈init〉(Sharing):void;
PL

selectPL

Sharing.〈init〉(Sharing):void;
PL

makescopePL

Sharing.〈init〉(Sharing):void

)
,

bSharing.〈init〉(Sharing):void(l̂
0, l̂1).

Figure 15 shows theCLP(PL) program generated from the blocks of methodexpand
in Figure 14. Since that method calls the constructor of classSharing, the last clause in

46 · F. Spoto and F. Mesnard and É. Payet

b1(ľ0, ľ1):- {ľ0 = l̂0, ľ1 = l̂1, ľ0 ≥ 0, ľ1 ≥ 0, ľ0 = l̂2}, b2(l̂0, l̂1, l̂2).

b2(ľ0, ľ1, ľ2):- {ŝ2
= l̂2, ŝ0

= ľ2, ľ1 = l̂1, ľ0 = l̂0, ŝ0 ≥ 0, ľ1 ≥ 0, š0 ≥ 0}, b3(l̂0, l̂1, l̂2, ŝ0).

b2(ľ0, ľ1, ľ2):- {ŝ2
= l̂2, ŝ0

= ľ2, ľ1 = l̂1, ľ0 = l̂0, ŝ0 ≥ 0, ľ1 ≥ 0, š0 ≥ 0}, b4(l̂0, l̂1, l̂2, ŝ0).

b4(ľ0, ľ1, ľ2, š0):-

8

<

:

ľ0 = l̂0, ľ1 = l̂1, ľ2 = l̂2, š0 ≥ 1, ľ0 ≥ 0

ľ1 ≥ 0, ľ2 ≥ 0, ŝ0 ≥ 0, š0 = l̂2

š0 ≥ 1, ľ1 = ŝ0, ŝ2 = 1, ŝ1 = 1, ŝ3 = 0

9

=

;

, b5(l̂0, l̂1, l̂2, ŝ0, ŝ1, ŝ2, ŝ3).

b5(ľ0, ľ1, ľ2, š0, š1, š2, š3):-

8

<

:

ľ0 = l̂0, l̂1 ≥ 1, ľ1 + š1 ≥ l̂1,

ľ2 − 1 ≥ l̂2, l̂2 ≥ 0, ľ0 ≥ 0, ľ1 ≥ 0

ľ2 ≥ 0, š0 ≥ 0, š1 = š2, š2 ≥ 1, š3 ≥ 0

9

=

;

, b2(l̂0, l̂1, l̂2).

b5(ľ0, ľ1, ľ2, š0, š1, š2, š3):-{š2
= l̂0, š3

= l̂1}, bSharing.〈init〉(Sharing):void(l̂0, l̂1).

Fig. 15. TheCLP(PL) program generated from the Java bytecode methodexpand in Figure 14. Block
bSharing.〈init〉(Sharing):void is the first block of the code of the constructor of classSharing.

Figure 15 links the code forexpandwith that for the constructor (not shown in the figure).
It is interesting to observe that the last but one clause contains the constraintľ2 − 1 ≥ l̂2

i.e., block b5 strictly decreases the path-length of local variable 2 (variablecursor in
Figure 1). Together with the fact that that variable has reference type and hence has non-
negative path-length, this is the key for a proof of termination for the methodexpand.

We can now state the correctness of our translation. Note that we assume that theCLP

predicates are called with concrete integer values for the variables, according to our spe-
cialised semantics.

THEOREM 56. Let P be a Java bytecode program andb a block ofP . If the query
b(vars) has only terminating computations inPCLP , for any fixed integer values forvars ,
then all executions of a Java Virtual Machine started at blockb terminate.

PROOF. We prove this result by contradiction. That is, we prove that if there is an exe-
cution of the Java Virtual Machine from blockb that diverges, according to the operational
semantics of Subsection 5.1, then the queryb(vars) has a divergent computation inPCLP

for some fixed integer values forvars .
Let hence

σ1
ins1→ σ2

ins2→ · · ·
insk−1

→ σk
insk→ · · · (7)

be an infinite operational execution of the Java Virtual Machine from blockb, starting at a
stateσ1. The states in the sequence are those that are, at each step, on top of the activation
stack of the Java Virtual Machine. Instructioninsk is the instruction which makes the
state on top of the activation stack evolve fromσk to σk+1. Note that in general we have
[[insk]]DP

(σk) 6= σk+1 since, wheninsk is the last instruction of a methodm, stateσk+1

is derived fromσh, which was on top of the activation stack at the moment of the last call
to m, by replacing the actual parameters with the return value (Definition 14). That call
was executed by somecall m1, . . . , mn instruction in the program, withm = mi for some
0 ≤ i ≤ n. In such a case, we can identify a portion of (7):

σh

argsm→ σh+1
selectm→ σh+2

makescopem→ σh+3 · · · · · ·σk
insk→ σk+1 (8)

where σh is the top of the activation stack at the moment of the last activation of m and
insk terminates that activation. By the equivalence of our denotational and operational

A Termination Analyser for Java Bytecode Based on Path-Length · 47

semantics (Theorem 23), we know that

σk+1 = extendm ({selectm}; {makescopem};DP (bm)) (σh)

and, since our language is deterministic, we have

σk+1 =
⋃

1≤i≤n

extendmi

(
{selectmi

}; {makescopemi
};DP (bmi

)
)
(σh)

that is[[call m1, · · · , mn]]DP
(σh) = σk+1. Hence we can systematically rewrite each such

subsequence in (7) into a subsequence

σh
call m1,··· ,mn
→ σk+1 .

Let

σ′
1

ins′
1→ σ′

2

ins′
2→ · · ·

ins′k−1

→ σ′
k

ins′k→ · · · (9)

be the resulting, still infinite sequence. We now have

[[ins′k]]DP
(σ′

k) = σ′
k+1 (10)

for everyk ≥ 0. This sequence can still contain instructionsargsm, but they must cor-
respond to activations of methodm that do not reach completion in (9). Since acall

instruction can only occur at the beginning of some blockb, the sequence (9) must have as
a prefix:

— σ′
1

ins1→ σ′
2 · · ·σ

′
w

insw→ σ′
w+1 · · · , whereb =

ins1
ins2
···

insw

;

— or σ′
1

argsmi→ σ′
2

selectmi→ σ′
3

makescopemi→ σ′
4, whereb = callm1,...,mn

··· and1 ≤ i ≤ n.

After that prefix, we will see another prefix. In the first case the new prefix will correspond
to a blockb′ among the successors ofb; in the second case, it will correspond to the
beginningbmi

of methodmi. By Definition 53, in the first casePCLP contains the clause

b(ˇvars):-
(

[[ins1]]
PL

DPL

P

;PL · · · ;PL [[insw]]PL

DPL

P

)

, b′(ˆvars).

and in the second case it contains the clause

b(ˇvars):-
(

[[argsmi
]]PL

DPL

P

;PL [[selectmi
]]PL

DPL

P

;PL [[makescopemi
]]PL

DPL

P

)

, bmi
(l̂0, . . . , l̂p).

If we continue unwinding the infinite sequence (9), we hence find an infinite sequence of
clauses ofPCLP :

b1(ˇvars1):-
(

[[ins′1]]
PL

DPL

P

;PL · · · ;PL [[ins′w1
]]PL

DPL

P

)

, b2(ˆvars2).

b2(ˇvars2):-
(

[[ins′w1+1]]
PL

DPL

P

;PL · · · ;PL [[ins′w2
]]PL

DPL

P

)

, b3(ˆvars3).

...

bt(ˇvarst):-
(

[[ins′wt−1+1]]
PL

DPL

P

;PL · · · ;PL [[ins′wt
]]PL

DPL

P

)

, bt+1(ˆvarst+1).

...

48 · F. Spoto and F. Mesnard and É. Payet

whereb(ˇvars) = b1(ˇvars1). This is not enough to conclude thatPCLP has a diver-
gent computation from the queryb(ˇvars), since aCLP computation stops when its con-
straint store is unsatisfiable. Since the unification of theCLPatombt(ˆvarst) with the atom
bt(ˇvarst) corresponds to the;PL operation (renaming of the variables into new overlined
variables and existential quantification), then we still have to prove that, for everyt ≥ 1,
the constraint store

cst = [[ins′1]]
PL

DPL

P

;PL · · · ;PL [[ins′w1
]]PL

DPL

P

;PL · · · ;PL [[ins′wt−1+1]]
PL

DPL

P

;PL · · · ;PL [[ins′wt
]]PL

DPL

P

is satisfiable. By the correctness of our path-length analysis (Theorem 52) and by Proposi-
tions 46, 47 and 48, we conclude that

[[ins′1]]DP
; · · · ; [[ins′w1

]]DP
; · · · ; [[ins′wt−1+1]]DP

; · · · ; [[ins′wt
]]DP
∈ γ(cst) (11)

and by Equation (10) we conclude that
(

[[ins′1]]DP
; · · · ; [[ins′w1

]]DP
; · · · ; [[ins′wt−1+1]]DP

; · · · ; [[ins′wt
]]DP

)

(σ′
1) = σ′

wt+1 .

By (11) and Definition 33 this entails that
(

ˇlen(σ′
1) ∪

ˆlen(σ′
wt+1)

)

|= cst

i.e., cst has a model and is hence satisfiable. Note that a model provides concrete integer
values to each input variable and the existential operator used by ;PL requires the existence
of concrete integer values for the variables at each predicate call. Hence we have found a
divergent computation according to our specialised semantics.

Let bstart be the initial block of our Java bytecode program P . Once the CLP(PL)
program PCLP is built from P , we can use a termination prover for (constraint) logic
programs to prove the termination of PCLP from bstart (vǎrs), and hence (Theorem 56)
that of P from bstart .

We use the BINTERM termination prover. Compared to traditional logic programming
termination provers, BINTERM deals with integer valued variables instead of non-negative
integer valued variables and takes advantage of the specialised operational semantics of
CLP(PL). The prover, see Algorithm 1 at page 50, relies on the two static analysis tech-
niques summarised below.

The first one combines closure computation with local ranking functions, as in [Codish
and Taboch 1999; Dershowitz et al. 2001; Lee et al. 2001; Codish et al. 2005; Avery
2006]. We use two abstract domains: convex polyhedra and monotonicity constraints [Brod-
sky and Sagiv 1989] augmented with bounds. For each domain, the binary unfoldings of
the abstraction of PCLP are computed. Then for each binary recursive rule in the unfold-
ings, we try to detect a local affine ranking function.

The second technique is a specialisation of that in [Mesnard and Serebrenik 2008].
The call graph of PCLP is decomposed into its maximal strongly connected components
(SCCs). For each predicate in each intra-component, a global parametric affine ranking
function is defined so that it takes non-negative values and decreases of a fixed amount
from the head of each clause to its body. Then the existence of such an affine ranking
function is decided by linear programming. The last part of Algorithm 1, from line 10,
could include the search for more sophisticated ranking functions as proposed for instance
in [Cousot 2005].

A Termination Analyser for Java Bytecode Based on Path-Length · 49

We have actually used an improvement of the first technique, which gives better results
in some cases. The idea is that, whenever predicateb in a binary recursive rule of the
form b(ˇvars):-c, b(ˆvars′) is called, some invariant might hold for the variablešvars, as
a consequence of the execution of the predicates of the program which have been called
beforeb. This invariant can be useful to prove the termination ofb. For this reason, we
compute acall contexts analysisinspired by [Gabbrielli and Giacobazzi 1994; Codish
and Taboch 1999] for the predicates in the binary unfolding of the program and use the
resulting invariants to improve the quality of the termination proof for the recursive rules.
As an example, consider the followingCLP(PL) program, already unfolded in its binary
form:

entry :- {ŷ ≥ 0},p(ŷ).

p(x̌) :- {x̌ = ŷ + 1, ŷ ≥ 0},p(ŷ).

p(x̌) :- {x̌ ≤ −1, ŷ = x̌},p(ŷ).

The entry point of the program is predicateentry. Predicatep does not terminate in
general, because of its second clause. However, any run from predicateentry terminates,
sincep(x̌) is invoked with a call contexťx ≥ 0 which disables its second clause. Situations
like this are found, for instance, inBubbleSort andDouble in Figure 16. As another
example, the first test of BINTERM (lines 1–2 of Algorithm 1) proves the termination of
the program:

entry :- {true},div2(x̂).

div2(x̌) :- {x̌ = 2 ∗ x̂, x̌ ≥ 1},div2(x̂).

while the second test of BINTERM (lines 5–7) fails, also by using call contexts. On the
other hand, the presence of that second test is crucial for proving the termination of a
predicate with two arguments, decreasingw.r.t. a lexicographical ordering:

entry :- {true},lex(x̂1, x̂2).

lex(x̌1, x̌2) :- {x̂1 ≥ 0, x̂2 ≥ 0, x̌2 ≥ 0, x̌1 ≥ 1 + x̂1},lex(x̂1, x̂2).

lex(x̌1, x̌2) :- {x̂1 ≥ 0, x̂2 ≥ 0, x̌1 = x̂1, x̌2 ≥ 1 + x̂2},lex(x̂1, x̂2).

Finally, the following example:

entry :- {true},gcd(x̂1, x̂2).

gcd(x̌1, x̌2) :- {x̌1 ≥ 1, x̌2 ≥ 1, x̂1 = x̌1, x̂2 = x̌2},gcd2(x̂1, x̂2).

gcd2(x̌1, x̌2) :- {x̌1 ≥ x̌2 + 1, x̂1 = x̌1 − x̌2, x̂2 = x̌2},gcd(x̂1, x̂2).

gcd2(x̌1, x̌2) :- {x̌2 ≥ x̌1 + 1, x̂1 = x̌1, x̂2 = x̌2 − x̌1},gcd(x̂1, x̂2).

is proved terminating thanks to the last test of BINTERM (line 10) and with the help of the
call contexťx1 ≥ 1, x̌2 ≥ 1 which holds for any internal call togcd2(x̌1, x̌2).

8. EXPERIMENTS

In this section we describe our implementation of the termination analyser for full Java
bytecode and report some experimental results.

The analyser [Spoto et al. 2008] is the combination of the JULIA generic static analyser
for Java bytecode [Spoto 2008a], written in Java, with the BINTERM termination prover for

50 · F. Spoto and F. Mesnard and É. Payet

Algorithm 1 BINTERM: a termination test
Require: aprogramPCLP

Ensure: if B INTERM returnstrue then we have a termination proof
1: P ∗

1 ← the binary unfoldings ofPCLP w.r.t. the polyhedral domain
2: if for each recursive rule ofP ∗

1 there is an affine ranking functionthen
3: return true
4: else
5: P2 ← the abstraction ofPCLP w.r.t. the bounded monotonicity domain
6: P ∗

2 ← the binary unfoldings ofP2

7: if for each recursive rule ofP ∗
2 there is an affine ranking functionthen

8: return true
9: else

10: if for eachSCCof PCLP , for each predicate in this component, there is an affine
ranking functionthen

11: return true
12: else
13: return unknown
14: end if
15: end if
16: end if

constraint logic programs over numerical constraints, written in Prolog. We now describe
the different phases of the analysis, in their order of application.

(1) The user specifies the.class file containing themain() method of the application
under analysis. Alternatively, inlibrary mode, the user specifies the set of.class
files whose public methods must be analysed. In both cases, JULIA also analyses all
reachable methods, which typically requires to load other classes than those specified
by the user. This phase is implemented through anapplication extractionalgorithm
based on [Palsberg and Schwartzbach 1991]. It is an instance ofclass analysisand is
hence used also to compute the set of possible run-time targets for each method call
(Section 3). The.class files are parsed using the BCEL library for bytecode ma-
nipulation (http://jakarta.apache.org/bcel). Most native methods are
replaced with handwritten code which simulates their behavior;

(2) Number and types of local variables and stack elements at each program point are
computed through the Kindall algorithm [Lindholm and Yellin 1999];

(3) Aliasing, pair-sharing and cyclicity analyses are computed using the corresponding
abstract domains implemented inside JULIA . Our pair-sharing analysis is described
in [Secci and Spoto 2005] and is computed in reduced product with purity information
(as in [Genaim and Spoto 2008]); our cyclicity analysis is described in [Rossignoli and
Spoto 2006]. All these analyses are computed using abstract versions of the denota-
tional semantics of Section 5. These denotational analyses are focused at internal pro-
gram points usingmagic-sets[Payet and Spoto 2007]. Pair-sharing and cyclicity ab-
stract domain elements are implemented through binary decision diagrams, using the
BUDDY library (http://sourceforge.net/projects/buddy). Thenull
pointer [Spoto 2008b] and class initialisation analyses are also performed since they
might be useful for the precision of the subsequent path-length analysis (Section 2);

A Termination Analyser for Java Bytecode Based on Path-Length · 51

program M B PR PA PL proof TE LP N S

Nested 4 724 158 55 60 179 4 1/1 1 0
Numerical1 5 635 144 65 90 445 5 1/1 1 0
Numerical3 5 852 154 61 83 212 4 0/1 0 0
Factorial 5 741 159 49 43 101 5 1/1 1 0
Ackermann 5 765 144 57 78 222 5 1/1 1 0
Diff 5 805 165 71 577 12118 5 1/1 1 1
BubbleSort 5 804 153 70 172 660 5 1/1 1 1
Double 5 749 147 53 49 218 5 1/1 1 0
Numerical2 6 675 170 64 185 140 6 1/1 1 0
Exc 6 762 150 75 108 132 6 1/1 1 0
FactSum 6 773 151 46 70 116 6 2/2 2 0
Hanoi 7 874 168 88 318 216 5 1/1 1 0
Sharing 7 855 161 112 169 115 7 1/1 0 1
BTree 7 845 162 85 150 135 7 2/2 1 1
FactSumList 8 844 164 78 84 156 8 2/2 1 1
Init 10 811 150 68 34 109 8 0/2 0 0
BinarySearchTree 10 921 173 120 158 137 10 1/1 0 1
Virtual 11 908 174 107 202 108 11 2/2 1 1
ListInt 11 981 189 178 359 292 11 5/5 0 5
List 11 1044 188 256 462 213 11 5/5 0 5

Fig. 16. The termination analyses of some programs. Times arein milliseconds.M is the number of methods of
the program;B is the number of its bytecodes.PR is the time for the preprocessing of the program;PA is the
time for the preliminary analyses;PL is the time for the path-length analysis;proof is the time to find a proof
with BINTERM; TE is the number of methods whose termination is proved;LP is the number of loops whose
termination is proved;N is the number of loops whose termination is proved by using numerical arguments;S

is the number of loops whose termination is proved by using arguments related to dynamic data-structures in
memory.

(4) Path-length analysis is computed with our domain described in Section 6. Abstract
domain elements are closed polyhedra and have been implemented through the PPL
(Parma Polyhedra Library) [Bagnara et al. 2008]. When the complexity of the op-
erations over the polyhedra explodes (for instance because of a high number of local
variables) a worst-case assumption is made, that is, the path-length of the highest vari-
ables is not approximated;

(5) A constraint logic program is generated from the Java bytecode program, by using the
result of our path-length analysis (Section 7), and is then sourced to the BINTERM

termination prover for constraint logic programs. The latter looks for appropriate ter-
mination proofs (Section 7). The results of the analysis are finally provided to the
user.

Our experiments have been performed on a Linux machine based on a 64 bits dual
core AMD Opteron processor 280 running at 2.4Ghz, with 2 gigabytes of RAM and 1
megabyte of cache, by using Sun Java Development Kit version 1.5 and SICStus Prolog
version 3.12.8.

Figure 16 reports the results of the termination analysis of some small programs, which
are distributed together withJulia. The source code of these programs is available, but we
have not used it for the analysis, which is performed over the compiled bytecode. Programs
Factorial, Diff, BubbleSort, FactSum, Hanoi, BTree, FactSumList and

52 · F. Spoto and F. Mesnard and É. Payet

BinarySearchTree are taken from [Albert et al. 2007a; 2008], while Numerical1,
Numerical2 and Numerical3 are taken from [Cook et al. 2006a] and contain numer-
ical loops only (that in Numerical3 can actually diverge). The others have been chosen
in order to test the practicability of the analysis, since their termination depends on cycles,
nested cycles, iterations over one or multiple data structures, exceptions. The standard
Java classes are not included in the analysis, which means that the calls to the libraries are
assumed to terminate. For each program we report the number of methods; the number of
bytecodes; the time spent for preprocessing (phases (1) and (2) above); the time spent for
the preliminary analyses (phase (3)); the time spent for path-length analysis (phase (4));
the time spent while looking for a termination proof through BINTERM (phase (5)). All
times are in milliseconds. Figure 16 reports how many methods have been proved to termi-
nate. In all these programs a proof of termination is found for every terminating method,
so that the analysis is actually optimal. For Init, there are 2 methods whose termination
could not be proved, since they actually diverge. They are the constructor and the static
initialiser of the class A shown in Section 2. Figure 16 then reports how many loops are
proved to terminate. By loop we mean a strongly-connected component of blocks of code
containing a cycle. Hence nested Java loops result in one loop only. Similarly, mutually
recursive methods form one loop only. Figure 16 reports also the number of such loops
whose termination has been proved by using numerical arguments and the number of loops
whose termination has been proved by reasoning over dynamic data structures. In the first
case, the ranking function for the loop uses variables of the program whose type is int; in
the second case, it uses variables of reference type. Since ranking functions in general use
more than one variable, it is possible for a loop to be proved by using both numerical and
structural arguments.

Figure 17 reports the results of the termination analysis of larger programs. We have
chosen such programs so that they do not use native methods of the standard Java library
beyond those that we have already specified, nor reflection, nor multithreading (these limi-
tations are discussed in Section 10). This figure shows that our analysis scales to programs
of up to 1000 methods, computing non-trivial calculations. RayTracer is a ray-tracing
program involving complex floating-point calculations. The source code of this program
is not available to us. NQueens is a solver of the n-queens problem, based on a library
for binary decision diagrams. This library is included in the analysis. Kitten is a di-
dactic compiler for a simple imperative object-oriented language, used by the first author
for his classes. It uses highly cyclical dynamic data structures, such as abstract trees (with
sharing subtrees) and graphs of basic blocks. In all these examples, the standard Java li-
braries have been included in the analysis. The number of methods whose termination is
not proved does not include the methods that are not proved to terminate only because they
call another method whose termination is not proved. That is, we only count the methods
that introduce possible non-termination according to our analyser.

Figure 18 shows the methods called by RayTracer and whose termination is not
proved by our analyser. We have investigated why our analyser fails to prove their ter-
mination. Method AbstractStringBuilder.stringSizeOfInt(int) iterates
over the elements of an array stored in a field of an object. However, instead of loading
that array on the stack once and then using that reference during the iteration, it reloads the
array at every iteration. As a consequence, our analyser does not understand that the length
of the array does not change across iterations and that the number of iterations is conse-

A Termination Analyser for Java Bytecode Based on Path-Length · 53

program M B PR PA PL proof TE LP N S

RayTracer 243 13680 1191 7209 17678 13309 232 8 over 19 5 4
NQueens 480 33533 1464 9232 42191 54910 412 33 over 80 33 14
Kitten 1201 66941 2664 34856 88909 105365 1168 44 over 98 38 15

Fig. 17. The termination analyses of some larger programs. Times are in milliseconds.M is the number of
methods of the program;B is the number of its bytecodes.PR is the time for the preprocessing of the program;
PA is the time for the preliminary analyses;PL is the time for the path-length analysis;proof is the time to
find a proof with BINTERM; TE is the number of methods whose termination is proved;LP is the number of
loops whose termination is proved;N is the number of loops whose termination is proved by using numerical
arguments;S is the number of loops whose termination is proved by using arguments related to dynamic data-
structures in memory.

int AbstractStringBuilder.stringSizeOfInt(int)
AbstractStringBuilder AbstractStringBuilder.append(int)
AbstractStringBuilder AbstractStringBuilder.append(String)
boolean Class.desiredAssertionStatus()
String(char[],int,int)
void String.getChars(int,int,char[],int)
StringBuffer StringBuffer.append(String)
StringBuilder StringBuilder.append(String)
String StringBuilder.toString()
RayTracingEngine.closestIntersection(Ray,Surface[]):Intersection
RayTracingEngine.render(Surface[],Camera,Light[],int,int,...):RGB[][]

Fig. 18. The methods called byRayTracer and whose termination is not proved by our analyser

quently bound from above. MethodClass.desiredAssertionStatus() contains
the following instructions:

43: astore_3
44: aload_2
45: monitorexit
46: aload_3
47: athrow
Exception table:
from to target type
18 42 43 any
43 46 43 any

Our analyser thinks that themonitorexit instruction at line 45 might throw an excep-
tion which leads back to line 43, hence entering an infinite loop. We do not know if this can
ever be the case. The proof is not easy sincemonitorexit can throw an exception when
it is invoked onnull (but this is already excluded by ournull pointer analysis here) but
also when the rules for correct bracketing withmonitorenter are not satisfied [Lind-
holm and Yellin 1999]. Our analyser does not include at the moment any analysis for this
correct bracketing. Such a recursive exception handler looks, however, very strange to us
and might actually be a bug in the standard Java libraries. The methods in Figure 18 deal-
ing with strings and related classes are not proved to terminate since they might throw a
StringIndexOutOfBoundsException, whose constructor calls back the methods
for creating and appending strings. Such call-backs might throw again an exception and

54 · F. Spoto and F. Mesnard and É. Payet

so on infinitely often. We suppose that such behaviour cannot happen in practice, but our
analyser fails to prove it. Method closestIntersection terminates because of some
geometrical reasoning about rays of light, as we have checked by decompiling the byte-
code. Our analyser has no hope of proving this. Method render contains a large number
of local variables. The complexity of our analysis explodes so that a worst-case assumption
is made for the method, whose termination is not proved.

Our analyser fails to prove the termination of some methods of the standard Java library
also for the other two test programs. Furthermore, it also fails to prove the termination
of some methods of the application. For NQueens, the methods which are not proved to
terminate are mainly those of the library for binary decision diagrams that perform bitwise
operations, since binary decision diagrams are efficiently represented through bitmaps. To
prove their termination, one needs a precise model of such bitwise operations, which our
analyser currently lacks (as well as other analysers, see the same limitation for Terminator
in [Cook et al. 2006a]). For the Kitten compiler, our analyser fails to prove that methods
dealing with the graph of basic blocks of code actually terminate. This is a limitation
of our analysis: those methods terminate since a block is never visited twice but this is
not captured by our analysis (Section 10). Other methods are not proved to terminate
because of some imprecision in the non-cyclicity analysis: the analyser fails to prove that
the hierarchy of classes in the compiled program is non-cyclical. Non-cyclicity of this
hierarchy is guaranteed by the semantical analysis phase of the compiler, but our analyser
is not clever enough to understand this.

9. RELATED WORK

There is a huge literature on termination analysis of computer programs and on the formal
specification of the semantics and of the analysis of Java or Java bytecode. Here we provide
a terse survey of the most relevant papers in those areas.

Termination Analysis for Logic and Functional Languages. Automatic termination of
logical rules was studied in [Ullman and Gelder 1988]. [Plümer 1990] describes an early
attempt to automate termination proofs for Prolog. The first results in this stream of re-
search are summarised in [De Schreye and Decorte 1994]. Termination of a logic program
has also been proved through the binary unfoldings of the program, a set of binary clauses
whose termination can be more easily assessed [Codish and Taboch 1999]. Techniques
exist that infer classes of input arguments for which termination is guaranteed, rather than
just proving termination for a class of inputs [Mesnard 1996; Genaim and Codish 2005;
Mesnard and Bagnara 2005]. In [Manolios and Vroon 2006b], static analysis and theo-
rem proving are used to approximate in a finite way all the concrete calls among functions
in a pure functional program. The result of this approximation is a set of calling context
graphs. Using these graphs, termination is proved by arguments relying on some decreas-
ing measures on the function parameters. This technique is improved in [Manolios and
Vroon 2006a] by issuing queries to a theorem prover. If the latter can solve the queries
in a fixed amount of time, the precision of the analysis is improved. The use of theorem
proving also allows one to get counterexamples when the analysis fails to prove termina-
tion. More recently, with the aim of improving the efficiency of the analysis, termination of
term rewrite systems has been encoded into a Boolean formula which is satisfiable if and
only if there exists a lexicographic path order or a multiset path order [Codish 2007]. The
experiments are very promising. APROVE [Giesl et al. 2006] is one of the most advanced

A Termination Analyser for Java Bytecode Based on Path-Length · 55

system for automated termination proofs of term rewrite systems, which can also analyse
Prolog and Haskell programs [Schneider-Kamp et al. 2006]. Other tools, specialised for
logic programs, areCTI by F. Mesnard, HASTA-LA-V ISTA by A. Serebrenik and D. De
Schreye, POLYTOOL by M. T. Nguyen and D. De Schreye, TALP by E. Ohlebusch, C.
Claves and C. Marché, TERMILOG by N. Lindenstrauss, Y. Sagiv, A. Serebrenik and T.
Reichert, TERMINWEB by M. Codish, C. Taboch, V. Lagoon and S. Genaim.

Termination Analysis for Imperative Programs.Automatic termination analysis of im-
perative programs goes back to Floyd’s seminal work [Floyd 1967]. After many years of
research, it is mature enough now to apply to Java bytecode [Albert et al. 2007a; 2008]
and large system code written in the C language, as the TERMINATOR system shows [Cook
et al. 2006b] (see the detailed discussion in Section 1). Termination of the imperative
reversal algorithm of some special kind of cyclic lists, calledpanhandlelists, is proved
in [Loginov et al. 2006]. A panhandle list is a cyclical list whose starting node is not
part of the cycle. This is normally considered a complex problem of termination analy-
sis and our analysis does not prove its termination. It must be noted that termination has
been proved in [Loginov et al. 2006] through very specific reasonings about the kind of
data structure at hand (addition of ad-hocinstrumentation relations), while we aim at a
generic and automatic termination analysis. In [Bouajjani et al. 2006] counters are used
to reason about the size of every region between two sharing points in one selector linked
data structures, that is, again, linked lists. Counter automata are used as abstract models
of the programs. This technique is used to prove termination of two sorting algorithms.
The use of counters might be similar to our use of path-lengths, but their counters measure
the distance between two sharing points in a list, while the path-length is the length of the
maximal chain of pointers for any possible kind of data structure. The limits of their work
is that only linked lists are considered. Moreover, function calls are not supported. The
problem with function calls is that one needs information about sharing andpurity [Sal-
cianu and Rinard 2005; Genaim and Spoto 2008] of their arguments in order to model the
effects of the calls on the heap [Chang and Leino 2005]. In Definition 44 we use such infor-
mation to approximate method calls. In [Brotherston et al. 2008], termination is proved by
looking for cyclicity in the Hoare-like proof tree of the program, constructed by suitable
execution rules over separation logic [Reynolds 2000; Ishtiaq and O’Hearn 2001]. The
only considered data structures are lists. Function calls are not considered. By a careful
choice of the predicates of separation logic, also this technique can prove the termination
of the panhandle list reversal. Note that we prove termination of the program in Figure 5,
which uses trees rather than flavours of lists, and that we support functions. Nevertheless,
the results in [Loginov et al. 2006; Berdine et al. 2006; Bouajjani et al. 2006; Brotherston
et al. 2008] show that termination analysis, tied to a specific data structure, leads to more
precise results than a general approach as ours. For instance, it proves the termination of
the panhandle list reversal, where our analysis fails.

Termination of Concurrent Programs.[Podelski and Rybalchenko 2007] prove termi-
nation of generic concurrent programs working over integers. It is not clear how this work
can be generalised to deal with dynamically allocated data structures in the heap, since
sharing allows one process to modify the data of another process and this effect should be
somehow modelled. The complexity of the concurrent update of memory should also be
modelled, by using the results of [Manson and Pugh 2001; Manson et al. 2005]. Analysis

56 · F. Spoto and F. Mesnard and É. Payet

of concurrent Java is also tackled in [Cook et al. 2007]. They prove the termination of
a thread by providing an abstraction of the behaviour of all other concurrent threads (the
environment). This abstraction can then be refined on the basis of counterexamples found
during the proof. The technique might not terminate in general. They only consider the
case of a finite and fixed number of threads. The generalisation to the case of an unbounded
number of dynamically created threads might be more difficult than it seems. Although all
examples only use primitive types, there is a small comment at the end of page 327 saying
that they have augmented their analysis with some data structures on the heap. We do not
know which data structures have been considered and how they have been modelled in the
analysis. There is no correctness proof nor example of this last augmented analysis.

Termination Proofs based on non-Linear Invariants. In some cases, programs terminate
because some non-linear quantity decreases over a well-founded domain. For that pur-
pose, recent research has developed new techniques that prove termination of loops using
non-linear expressions. [Bradley et al. 2005] build finite difference trees for expressions.
This only works when such expressions have finite trees. [Cousot 2005] builds polynomial
ranking functions of non-linear loops. It is limited to expressions that can be approximated
by sums of squares and it requires heavy floating point calculations. [Babic et al. 2007]
proves termination by checking for possible divergence to infinite of every variables inside
loops. The authors say that their technique proves termination in more cases than [Bradley
et al. 2005] and [Cousot 2005], without requiring heavy floating point calculations. While
non-linear expressions are important for the termination of program dealing with integer
variables, it is not clear to us that they also contribute to the proof of termination of pro-
grams dealing with dynamic data structures in the heap.

Termination of Floating Point Computations. While termination of loops over integers
has been largely studied, there are only a few results about termination of loops dealing
with floating point numbers. They make the analysis complex since, because of round-
ing errors, the expected behaviour might be different from the real behaviour of the pro-
gram [Monniaux 2008]. [Serebrenik and De Schreye 2002] prove termination of these
programs by modelling the official standardised implementation of floating point numbers.
They use level mappings over reals, but decreases must be bounded from below by some
positive constant. In this paper, we do not prove termination of loops over floating point
numbers.

Formalisations of the Semantics of Java. Our formalisation of the semantics of Java
bytecode is indebted to [Klein and Nipkow 2006], where Java and Java bytecode are math-
ematically formalised and the compilation of Java into bytecode and its type-safeness are
machine-proved. Our formalisation of the state of the Java Virtual Machine (Definition 1)
is similar to theirs, with the exception that we do not use a program counter nor keep the
name of the current method and class inside the state. This information is not relevant for
our abstraction into path-length and we avoid program counters by using blocks of code
linked by arrows as concrete representation of the structure of the bytecode. Also our
formalisation of the heap and of the objects inside the heap is identical to theirs. Their
mathematical formalisation has been coded inside the Isabelle/HOL theorem prover and
then used to prove the absence of overflows in a program [Wildmoser and Nipkow 2005]
with the help of code annotations (invariants) which have been later computed automati-
cally through interval analysis [Wildmoser et al. 2005]. Our formalisation is denotational

A Termination Analyser for Java Bytecode Based on Path-Length · 57

rather than operational since we use it to define an abstraction of a relational property of
the semantics of the commands (the path-length), that is, an abstraction of the denotations.
The same abstraction, based on an operational semantics, would be awkward. Another
formalisation of the semantics of the Java bytecode is presented in [Bannwart and Müller
2005] but it is relatively different from ours in the definition of the heap and in the use of
weakest preconditions rather than denotational semantics.

Abstract Domains for the Static Analysis of Java.Our abstract domain forpath-length
(Section 6) abstracts a property of the heap, namely, the maximal length of a chain of
pointers reachable from each variable in the program. From this point of view, it is re-
lated to a traditionalnormused to prove termination of logic programs, which measures
the height of a term, seen as a tree. The main difference is that, for its definition, we
need precise information about the shape of the heap at run-time at each program point.
Namely, we need information about sharing and cyclicity of data structures. Determining
an over-approximation of the pairs of program variables that share at each program point
is an extensively studied problem. There is a huge literature aboutpointer or aliasing
analysis [Choi et al. 1993; Steensgaard 1996] and aboutshapeanalysis [Wilhelm et al.
2002; Distefano et al. 2006] of data structures. Many flavours of such analyses are fully
qualified for computing possible sharing pairs of variables. More generally, separation
logic [Reynolds 2000; Ishtiaq and O’Hearn 2001] is a framework which allows one to de-
fine analyses of properties of the heap and can express properties like sharing and cyclicity
of data structures. It is known, however, that a static analysis for sharing can be much
more abstract than aliasing or shape analysis, which justifies the development of abstract
domains which track those properties explicitly, rather than as a side-effect [Pollet et al.
2001]. Namely, the abstract domain, defined and proved correct in [Secci and Spoto 2005],
is just made of sets of pairs of possibly sharing variables. This results in a static analysis
which can be implemented in a completely context and flow sensitive way and still requires
one or two orders of magnitude less time than, for instance, aliasing analysis [Payet and
Spoto 2007]. It must be clear, however, that sharing is too abstract if possible aliasing is
what is needed, but this is not the case in this paper.

Tools for the Static Analysis of Java.Many tools have been devoted to the analysis or
verification of Java or Java bytecode programs. Although such systems have not been used
for termination analysis, we think that they could be instantiated for that purpose. They
should be enriched with analyses computing information about the shape of the memory,
such as our sharing and cyclicity analyses; hence some measure similar to our path-length
information could be computed and termination proved by showing that, along loops and
recursion, this measure is decreasing over a well-founded order. BANDERA [Corbett et al.
2000] takes a source Java program and extracts compact finite-state models of the program
which can then be sourced to a model checker. It also performs some static analyses. It
includes a program slicer for better efficiency and uses abstract interpretation for the finite
representation of the states. JAVA PATHFINDER [Visser et al. 2003] uses model-checking
to explore the states of a Java program and its scheduling sequences. As a consequence,
it has shown to be effective to prove properties of real-time Java [Lindstrom et al. 2005].
JMOPED[Suwimonteerabuth et al. 2007] is a test environment for a subset of Java. It uses
model-checking to explore the set of states reachable from some input states taken from a
testing set. It signals bugs or problems such as assertion violations,null pointer excep-

58 · F. Spoto and F. Mesnard and É. Payet

tions and array bound violations. Testing is not in general complete, so it is hard to foresee
an application of this tool to termination analysis, where termination must be proved for all
input states. Moreover, only a subset of Java is considered, with strong limitations such as
a ban of negative numbers. JMOPED has also been used for testing Java bytecode [Suwi-
monteerabuth et al. 2005], with strong limitations such as a bound on the heap size which
prevents a new bytecode from occurring inside a loop. KEY [Ahrendt et al. 2005] is a
tool for the design, implementation, specification and verification of object-oriented pro-
grams. It verifies properties expressed in the Object Constraint Language or in JML. It is
a semi-automatic tool, based on theorem proving. Programs must first be annotated with
the properties to prove and a theorem prover then attempts their proof with possible human
interaction. BOOGIE [Barnett et al. 2005] is a program verifier for Spec# programs in the
.NET framework. It has been recently applied to Java bytecode [Lehner and Müller 2007],
by translating it into BOOGIEPL, the input language of BOOGIE. It includes a framework
for abstract interpretation to build loop invariants that it uses to instrument the code. Invari-
ants about the heap can be constructed through the abstract domain defined in [Chang and
Leino 2005]. Namely, this allows one to track which parts of the heap are preserved across
updates and get information about purity of function arguments. Proofs are built through
theorem-proving. The goal of this tool is the proof of object invariants [Leino and Wal-
lenburg 2008], that is, data consistency properties about the objects of a program. Those
invariants might be violated within a small scope but must hold after that each call from the
external environment has completed. Object invariants are specified by the user and ver-
ified by the system. The use of ownership [Leino and Müller 2004; Müller 2007] allows
one to model invariants which must hold of data structures as a whole rather than for single
component objects. It is also possible to prove class invariants, which are related to static
fields [Leino and Müller 2005]. A distinguishing feature of these works is the modularity
of the verification, which we currently lack. These works based on theorem proving cannot
be considered fully automatic since the user has to provide a specification of the property
to prove and the theorem prover will likely require human intervention to reach the proof.
Moreover, although it is possible, in principle, to prove termination with such techniques,
we are not aware of any general technique for that purpose. In object-oriented programs
the set of classes to analyse must be extracted from the starting class, containing the main
method, by using some form of application extraction. This extraction is important in or-
der to avoid the analysis of all classes, even those that are not relevant for the analysis. Our
JULIA tool uses a sophisticated algorithm based on [Palsberg and Schwartzbach 1991],
rephrased for the Java bytecode. We are not aware of other tools implementing similar,
very precise application extraction techniques.

Previous Publications of this Material. The material presented in this paper is partially
based on our previous work. [Secci and Spoto 2005] and [Rossignoli and Spoto 2006]
present the sharing and cyclicity analyses that we use in Section 4. The path-length abstract
domain has been defined in [Spoto et al. 2006]. The last three papers are presented for
Java, while we rephrase their analyses here for Java bytecode and embed them into the
semantic framework of [Payet and Spoto 2007], where the operational and denotational
semantics of Section 5 are presented and their equivalence is shown.

A Termination Analyser for Java Bytecode Based on Path-Length · 59

10. DISCUSSION

We have shown that our analyser proves, automatically, termination of programs using
non-trivial forms of loops and recursion (Section 2 and Figure 16). However, as the larger
analyses in Section 8 show, it cannot of course decide termination in all cases. Many
terminating methods are not proved to terminate. We consider some of them here.

A first example are methods that work over graphs. Since graphs are typically cyclical,
it is not possible for us to prove termination of such methods. Methods over graphs often
terminate because visited nodes getcoloured. The set of coloured nodes is typically held
in aSet, as in the following method defined on the node of a graph:

void visit(Set<Node> coloured) {
if (coloured.contains(this)) return;
else coloured.add(this);

... visit this node and its successors, recursively ...
}

Here,coloured avoids repeated visits since a node cannot be coloured twice. Termina-
tion of this (very frequent) programming pattern would follow from a proof that a node
cannot be put twice in the set, that the setcoloured does not shrink and that the set of
nodes does not grow. Note that this proof cannot be obtained by simply using the size of
the set as the path-length ofcoloured.

Another notable example are those methods whose termination depends on computa-
tions over real numbers, such as some approximation algorithms. In our implementation,
the path-length offloat anddouble variables is not computed, so that all such methods
cannot be proved to terminate. The problem here is that numerical rounding must be taken
into account for a faithful approximation of the values of real variables [Monniaux 2008].
Moreover, the set of real numbers is not well-founded even if a lower bound is considered.
It might be possible here to use techniques which prove strict decrease by some positive
constant [Serebrenik and De Schreye 2002].

The precision of our termination analysis is also limited by the fact that arithmetic byte-
codes such asimul or idiv have no linear approximation that we can use for their path-length
analysis. For the moment, we provide no path-length approximation for their result. This
situation might be improved with some preliminary constant propagation, since in many
cases those operations involve a variable and a constant, so that their path-length can be
approximated by a linear constraint. A more general solution is to use non-linear approx-
imations of the path-length, such as in [Bradley et al. 2005; Cousot 2005; Babic et al.
2007]. This will increase the cost of the analysis, though.

The precision of the preliminary analyses is important for the precision of the termina-
tion analysis. For instance, our analyser does not prove the termination of the method

public void expand(Sharing other) {
Sharing cursor = this;
while (cursor != null) {
try {

other.next = new Sharing(null);
other = other.next;
cursor = cursor.next;

60 · F. Spoto and F. Mesnard and É. Payet

}
catch (NullPointerException e) {
}

}
}

when it is called with a non-null argument other. This is because our preliminary null
pointer analysis is not able to prove that other remains non-null inside the while loop.
In order to prove that result, we would need a more precise null pointer analysis and we
should include the java.lang. hierarchy in the analysis, so that the analyser can prove
that the OutOfMemoryError which might be thrown by new Sharing(null) is
not a subclass of NullPointerException.

In general, better information about the fields of the objects is needed in our analyses.
Sharing, cyclicity and path-length are by definition properties that involve some informa-
tion about the fields. But this is not always true. For instance, integer fields of objects
do not contribute to the definition of the path-length (Definition 24). As a consequence,
we cannot prove termination of a loop decreasing an integer field which is bounded from
below. We plan to study the applicability of the domain in [Chang and Leino 2005] to our
framework. It provides a way of approximating fields which is finer than ours.

It must be stressed also that our analysis is meant for sequential Java bytecode, not using
multithreading. However, we share this limitation with most other works on termination
analysis. If one allows any kind of data structures, possibly shared between threads, and
an unbounded number of dynamically created threads, very little can be said about the ter-
mination of the programs. Recent research can prove only special cases, when for instance
the number of threads is fixed in advance [Cook et al. 2007].

A final limitation of our analysis is a consequence of the use of native methods and
reflection (the ability of Java programs to access, create and modify objects, classes and
the program itself through some methods of the standard Java libraries, mostly native). We
have manually provided approximations for a few hundreds of such methods, for all the
static analyses that we perform. For other native methods, Julia signals a warning to the
user, meaning that the result of the analyses might not be reliable. Most native methods
implementing reflection have not been manually specified. Since reflection can modify the
same program under analysis, we cannot see a simple way of analysing programs dealing
with reflection.

Let us make a final consideration about the cost of our analysis. Figure 17 reports analy-
sis of programs of up to 1201 methods, since the cost of the analysis is still relatively high.
This problem is not related to preprocessing and to the preliminary analyses, which are able
to scale to programs of up to 10000 methods, but it is related to the cost of the path-length
analysis and of the subsequent termination proof. A possible solution to this problem is
to use less precise but more efficient abstractions or algorithms. Octagons [Min é 2006]
or size-change termination in polynomial time [Ben-Amram and Lee 2007] are possible
candidates. Moreover, the standard Java library classes could be analysed once and for
all, so that a path-length approximation for them can be plugged into all programs that use
those libraries, instead of reanalysing the libraries each time. Besides, library methods that
are known to terminate, for instance by using semi-automatic techniques such as theorem
proving, need not be proved to terminate by our analyser. This would increase both its
efficiency and its precision.

A Termination Analyser for Java Bytecode Based on Path-Length · 61

In conclusion, our analyser shows that a completely automatic termination proof for Java
bytecode is possible. Future research will improve its precision and reduce the cost of the
analysis.

ACKNOWLEDGMENTS

The authors thank the anonymous referees for their helpful comments on this work. They
thank Pat Hill for her help with English. They also thank Roberto Bagnara for his support
with the installation and use of the Parma Polyhedra Library and all the developers of the
PPL for providing them with the Java interface to that library.

REFERENCES

AHO, A. V., SETHI, R., AND ULLMAN , J. D. 1986. Compilers, Principles Techniques and Tools. Addison
Wesley Publishing Company.

AHRENDT, W., BAAR , T., BECKERT, B., BUBEL, R., GIESE, M., HÄHNLE , R., MENZEL, W., MOSTOWSKI,
W., ROTH, A., SCHLAGER, S., AND SCHMITT, P. H. 2005. The KeY Tool.Software and System Model-
ing 4,1 (February), 32–54.

ALBERT, E., ARENAS, P., CODISH, M., GENAIM , S., PUEBLA , G.,AND ZANARDINI , D. 2007a. Termination
Analysis of Java Bytecode. InProc. of the 9th International Workshop on Termination (WST’07), A. Sere-
brenik and D. Hofbauer, Eds. Paris, France.

ALBERT, E., ARENAS, P., CODISH, M., GENAIM , S., PUEBLA , G., AND ZANARDINI , D. 2008. Termination
Analysis of Java Bytecode. InProc. of the International Conference on Formal Methods for Open Object-
Based Distributed Systems (FMOODS’08), G. Barthe and F. S. de Boer, Eds. Lecture Notes in Computer
Science, vol. 5051. Springer, Oslo, Norway, 2–18.

ALBERT, E., ARENAS, P., GENAIM , S., PUEBLA , G., AND ZANARDINI , D. 2007b. Cost Analysis of Java
Bytecode. InProc. of the 16th European Symposium on Programming (ESOP’07), R. De Nicola, Ed. Lecture
Notes in Computer Science, vol. 4421. Springer, Braga, Portugal, 157–172.

AVERY, J. 2006. Size-change Termination and Bound Analysis. InProc. of the 8th International Symposium on
Functional and Logic Programming (FLOPS’06), M. Hagiya and P. Wadler, Eds. Lecture Notes in Computer
Science, vol. 3945. Springer, Fuji Susono, Japan, 192–207.

BABIC , D., HU, A. J., RAKAMARIC , Z., AND COOK, B. 2007. Proving Termination by Divergence. InProc.
of the 5th IEEE International Conference on Software Engineering and Formal Methods (SEFM’07). IEEE
Computer Society, London, UK, 93–102.

BACON, D. F. AND SWEENEY, P. F. 1996. Fast Static Analysis of C++ Virtual Function Calls. InProc. of the
Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’96). ACM
SIGPLAN Notices, vol. 31(10). ACM, San Jose, California, USA, 324–341.

BAGNARA , R., HILL , P. M., RICCI, E.,AND ZAFFANELLA , E. 2005. Precise Widening Operators for Convex
Polyhedra.Science of Computer Programming 58,1–2, 28–56.

BAGNARA , R., HILL , P. M.,AND ZAFFANELLA , E. 2008. The Parma Polyhedra Library: Toward a Complete
Set of Numerical Abstractions for the Analysis and Verification of Hardware and Software Systems.Science
of Computer Programming 72,1–2, 3–21.

BANNWART, F. AND M ÜLLER, P. 2005. A Program Logic for Bytecode.Electronic Notes on Theoretical
Computer Science 141,1 (April), 255–273.

BARNETT, M., CHANG, B.-Y. E., DEL INE, R., JACOBS, B., AND LEINO, K. R. M. 2005. Boogie: A Modular
Reusable Verifier for Object-Oriented Programs. InProc. of the 4th International Symposium on Formal
Methods for Components and Objects (FMCO’05), F. S. de Boer, M. M. Bonsangue, S. Graf, and W. P.
de Roever, Eds. Lecture Notes in Computer Science, vol. 4111. Springer, Amsterdam, The Netherlands, 364–
387.

BEN-AMRAM , A. M. AND LEE, C. S. 2007. Program Termination Analysis in Polynomial Time.ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 29,1.

BERDINE, J., CALCAGNO, C., COOK, B., DISTEFANO, D., O’HEARN, P. W., WIES, T.,AND YANG, H. 2007a.
Shape Analysis for Composite Data Structures. InProc. of the 19th International Conference on Computer

62 · F. Spoto and F. Mesnard and É. Payet

Aided Verification (CAV’07), W. Damm and H. Hermanns, Eds. Lecture Notes in Computer Science, vol. 4590.
Springer, Berlin, Germany, 178–192.

BERDINE, J., CHAWDHARY, A., COOK, B., DISTEFANO, D., AND O’HEARN, P. W. 2007b. Variance Anal-
yses from Invariance Analyses. InProc. of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’07), M. Hofmann and M. Felleisen, Eds. Nice, France, 211–224.

BERDINE, J., COOK, B., DISTEFANO, D., AND O’HEARN, P. W. 2006. Automatic Termination Proofs for
Programs with Shape-Shifting Heaps. InProc. of the 18th International Conference on Computer Aided
Verification (CAV’06), T. Ball and R. B. Jones, Eds. Lecture Notes in Computer Science, vol. 4144. Springer,
Seattle, WA, USA, 386–400.

BOUAJJANI, A., BOZGA, M., HABERMEHL, P., IOSIF, R., MORO, P.,AND VOJNAR, T. 2006. Programs with
Lists Are Counter Automata. InProc. of the 18th International Conference on Computer Aided Verification
(CAV’06), T. Ball and R. B. Jones, Eds. Lecture Notes in Computer Science, vol. 4144. Springer, Seattle, WA,
USA, 517–531.

BRADLEY, A., MANNA , Z., AND SIPMA , H. 2005. Termination of Polynomial Programs. InProc. of the 6th In-
ternational Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI’05), R. Cousot,
Ed. Lecture Notes in Computer Science, vol. 3385. Springer, Paris, France, 113–129.

BRODSKY, A. AND SAGIV, Y. 1989. Inference of Monotonicity Constraints in Datalog Programs. InProc. of the
8th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM Press, Philadel-
phia, Pennsylvania, USA, 190–199.

BROTHERSTON, J., BORNAT, R.,AND CALCAGNO, C. 2008. Cyclic Proofs of Program Termination in Separa-
tion Logic. InProc. of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’08), G. C. Necula and P. Wadler, Eds. ACM, San Francisco, California, USA, 101–112.

BRYANT, R. E. 1986. Graph-Based Algorithms for Boolean Function Manipulation.IEEE Transactions on
Computers 35,8, 677–691.

CHANG, B.-Y. E. AND LEINO, K. R. M. 2005. Abstract Interpretation with Alien Expressions and Heap
Structures. InProc. of the 6th International Conference on Verification, Model Checking, and Abstract Inter-
pretation (VMCAI’05), R. Cousot, Ed. Lecture Notes in Computer Science, vol. 3385. Springer, Paris, France,
147–163.

CHOI, J. D., BURKE, M., AND CARINI , P. 1993. Efficient Flow-Sensitive Interprocedural Computation of
Pointer-Induced Aliases and Side Effects. InProc. of the 20th Symposium on Principles of Programming
Languages (POPL’93). ACM, Charleston, South Carolina, 232–245.

CODISH, M. 2007. Proving Termination with (Boolean) Satisfaction. InProc. of the 17th International Sym-
posium on Logic-Based Program Synthesis and Transformation (LOPSTR’07), A. King, Ed. Lecture Notes in
Computer Science, vol. 4915. Kongens Lyngby, Denmark, 1–7.

CODISH, M., LAGOON, V., AND STUCKEY, P. J. 2005. Testing for Termination with Monotonicity Constraints.
In Proc. of the 21st International Conference on Logic Programming (ICLP’05), M. Gabbrielli and G. Gupta,
Eds. Lecture Notes in Computer Science, vol. 3668. Springer, Sitges, Spain, 326–340.

CODISH, M. AND TABOCH, C. 1999. A Semantics Basis for Termination Analysis of Logic Programs.Journal
of Logic Programming 41,1, 103–123.

COOK, B., PODELSKI, A., AND RYBALCHENKO , A. 2005. Abstraction Refinement for Termination. InProc.
of the 12th Static Analysis Symposium (SAS’05), C. Hankin and I. Siveroni, Eds. Lecture Notes in Computer
Science, vol. 3672. Springer, London, UK, 87–101.

COOK, B., PODELSKI, A., AND RYBALCHENKO , A. 2006a. Termination Proofs for Systems Code. InProc.
of the ACM SIGPLAN 2006 Conference on Programming Language Design and Implementation (PLDI’06),
M. I. Schwartzbach and T. Ball, Eds. ACM, Ottawa, Ontario, Canada, 415–426.

COOK, B., PODELSKI, A., AND RYBALCHENKO , A. 2006b. Terminator: Beyond Safety. InProc. of the 18th
International Conference on Computer Aided Verification (CAV’06), T. Ball and R. B. Jones, Eds. Lecture
Notes in Computer Science, vol. 4144. Springer, Seattle, WA, USA, 415–418.

COOK, B., PODELSKI, A., AND RYBALCHENKO , A. 2007. Proving Thread Termination. InProc. of the ACM
SIGPLAN 2007 Conference on Programming Language Design and Implementation (PLDI’07), J. Ferrante
and K. S. McKinley, Eds. ACM, San Diego, California, USA, 320–330.

CORBETT, J. C., DWYER, M. B., HATCLIFF, J., LAUBACH , S., PASAREANU, C. S., ROBBY, AND ZHENG,
H. 2000. Bandera: Extracting Finite-state Models from Java Source Code. InProc. of the 22nd International
Conference on Software Engineering (ICSE’00). ACM, Limerick, Ireland, 439–448.

A Termination Analyser for Java Bytecode Based on Path-Length · 63

COUSOT, P. 2005. Proving Program Invariance and Termination by Parametric Abstraction, Lagrangian Re-
laxation and Semidefinite Programming. InProc. of the 6th International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI’05), R. Cousot, Ed. Lecture Notes in Computer Science, vol.
3385. Springer, Paris, France, 1–24.

COUSOT, P. AND COUSOT, R. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints. InProc. of the 4th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’77). 238–252.

COUSOT, P. AND COUSOT, R. 1979. Systematic Design of Program Analysis Frameworks. InProc. of the
6th ACM Symposium on Principles of Programming Languages (POPL’79). ACM, San Antonio, Texas, USA,
269–282.

COUSOT, P. AND HALBWACHS, N. 1978. Automatic Discovery of Linear Restraints among Variables of a
Program. InProc. of the 5th ACM Symposium on Principles of Programming Languages (POPL’78). ACM,
Tucson, USA, 84–96.

DE SCHREYE, D. AND DECORTE, S. 1994. Termination of Logic Programs: The Never-Ending Story.Journal
of Logic Programming 19/20, 199–260.

DEAN, J., GROVE, D.,AND CHAMBERS, C. 1995. Optimization of Object-Oriented Programs using Static Class
Hierarchy Analysis. InProc. of the 9th European Conference on Object-Oriented Programming (ECOOP’95),
W. G. Olthoff, Ed. Lecture Notes in Computer Science, vol. 952. Springer,Århus, Denmark, 77–101.

DERSHOWITZ, N., LINDENSTRAUSS, N., SAGIV, Y., AND SEREBRENIK, A. 2001. A General Framework for
Automatic Termination Analysis of Logic Programs.Applicable Algebra in Engineering,Communication and
Computing 12,1/2, 117–156.

DISTEFANO, D., O’HEARN, P. W.,AND YANG, H. 2006. A Local Shape Analysis Based on Separation Logic.
In Proc. of the 12th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’06), H. Hermanns and J. Palsberg, Eds. Lecture Notes in Computer Science, vol. 3920.
Springer, Vienna, Austria, 287–302.

FLOYD , R. W. 1967. Assigning Meanings to Programs. InMathematical Aspects of Computer Science, J. T.
Schwartz, Ed. Proc. of Symposia in Applied Mathematics, vol. 19. American Mathematical Society, Provi-
dence, Rhode Island, 19–32.

GABBRIELLI , M. AND GIACOBAZZI , R. 1994. Goal Independency and Call Patterns in the Analysis of Logic
Programs. InProc. of the ACM Symposium on Applied Computing (SAC’94). ACM, Phoenix, Arizona, USA,
394–399.

GENAIM , S. AND CODISH, M. 2005. Inferring Termination Conditions for Logic Programs using Backwards
Analysis.Theory and Practice of Logic Programming (TPLP) 5,1-2, 75–91.

GENAIM , S. AND SPOTO, F. 2008. Constancy Analysis. InProc. of the 10th Workshop on Formal Techniques
for Java-like Programs (FTfJP’08), M. Huisman, Ed. Radboud University, Paphos, Cyprus.

GIESL, J., SCHNEIDER-KAMP, P.,AND THIEMANN , R. 2006. Automatic Termination Proofs in the Dependency
Pair Framework. In3th International Joint Conference on Automated Reasoning (IJCAR’06), U. Furbach and
N. Shankar, Eds. Lecture Notes in Computer Science, vol. 4130. Springer, Seattle, WA, USA, 281–286.

GOTSMAN, A., BERDINE, J., AND COOK, B. 2006. Interprocedural Shape Analysis with Separated Heap
Abstractions. InProc. of the 13th International Static Analysis Symposium (SAS’06), K. Yi, Ed. Lecture Notes
in Computer Science, vol. 4134. Springer, Seoul, Korea, 240–260.

ISHTIAQ, S. S.AND O’HEARN, P. W. 2001. BI as an Assertion Language for Mutable Data Structures. InProc.
of the 28th Symposium on Principles of Programming Languages (POPL’01). ACM, London, UK, 14–26.

JAFFAR, J. AND MAHER, M. J. 1994. Constraint Logic Programming: A Survey.Journal of Logic Program-
ming19/20, 503–581.

KLEIN , G. AND NIPKOW, T. 2006. A Machine-Checked Model for a Java-Like Language, Virtual Machine, and
Compiler. ACM Transactions on Programming Languages and Systems (TOPLAS) 28,4, 619–695.

LEAVENS, G. T., LEINO, K. R. M., AND M ÜLLER, P. 2007. Specification and Verification Challenges for
Sequential Object-Oriented Programs.Formal Aspects of Computing 19,2 (March), 159–189.

LEE, C. S., JONES, N. D., AND BEN-AMRAM , A. M. 2001. The Size-Change Principle for Program Termina-
tion. In Proc. of the 28th Symposium on Principles of Programming Languages (POPL’01). ACM, 81–92.

LEHNER, H. AND M ÜLLER, P. 2007. Formal Translation of Bytecode into BoogiePL.Electric Notes on
Theoretical Computer Science 190,1 (March), 35–50.

64 · F. Spoto and F. Mesnard and É. Payet

LEINO, K. R. M. AND M ÜLLER, P. 2004. Object Invariants in Dynamic Contexts. InProc. of the 18th European
Conference on Object-Oriented Programming (ECOOP’04), M. Odersky, Ed. Lecture Notes in Computer
Science, vol. 3086. Springer, Oslo, Norway, 491–516.

LEINO, K. R. M. AND M ÜLLER, P. 2005. Modular Verification of Static Class Invariants. InProc. of the
International Symposium of Formal Methods Europe (FM’05), J. Fitzgerald, I. J. Hayes, and A. Tarlecki, Eds.
Lecture Notes in Computer Science, vol. 3582. Springer, Newcastle, UK, 26–42.

LEINO, K. R. M. AND WALLENBURG, A. 2008. Class-local Object Invariants. InProc. of the 1st India Software
Engineering Conference (ISEC’08). ACM, Hyderabad, India. To appear.

L INDHOLM , T. AND YELLIN , F. 1999.The JavaTM Virtual Machine Specification, second ed. Addison-Wesley.
L INDSTROM, G., MEHLITZ , P. C., AND V ISSER, W. 2005. Model Checking Real Time Java using Java

PathFinder. InProc. of the 3rd International Symposium on Automated Technology for Verification and Analy-
sis (ATVA,05), D. Peled and Y.-K. Tsay, Eds. Lecture Notes in Computer Science, vol. 3707. Springer, Taipei,
Taiwan, 444–456.

LOGINOV, A., REPS, T. W.,AND SAGIV, M. 2006. Refinement-Based Verification for Possibly-Cyclic Lists. In
Proc. of Theory and Practice of Program Analysis and Compilation, Essays Dedicated to Reinhard Wilhelm
on the Occasion of His 60th Birthday, T. W. Reps, M. Sagiv, and J. Bauer, Eds. Lecture Notes in Computer
Science, vol. 4444. Springer, 247–272.

LOGOZZO, F. AND FÄHNDRICH, M. 2008. On the Relative Completeness of Bytecode Analysis versus Source
Code Analysis. InProc. of the 17th International Conference on Compiler Construction (CC’08), L. Hendren,
Ed. Lecture Notes in Computer Science. Springer, Budapest, Hungary, 197–212.

MANOLIOS, P. AND VROON, D. 2006a. Integrating Static Analysis and General-Purpose Theorem Proving for
Termination Analysis. InProc. of the 28th International Conference on Software Engineering (ICSE’06), L. J.
Osterweil, H. D. Rombach, and M. L. Soffa, Eds. ACM, Shanghai, China, 873–876.

MANOLIOS, P. AND VROON, D. 2006b. Termination Analysis with Calling Context Graphs. InProc. of the
18th International Conference on Computer Aided Verification (CAV’06), T. Ball and R. B. Jones, Eds. Lecture
Notes in Computer Science, vol. 4144. Springer, Seattle, WA, USA, 401–414.

MANSON, J. AND PUGH, W. 2001. Core Semantics of Multithreaded Java. InProc. of the ACM Java Grande
Conference. ACM, Stanford University, California, USA, 29–38.

MANSON, J., PUGH, W., AND ADVE, S. V. 2005. The Java Memory Model. InProc. of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’05), J. Palsberg and
M. Abadi, Eds. ACM, Long Beach, California, USA, 378–391.

MESNARD, F. 1996. Inferring Left-terminating Classes of Queries for Constraint Logic Programs. InProceed-
ings of the 1996 Joint Int. Conference and Symposium on Logic Programming, M. Maher, Ed. The MIT Press,
7–21.

MESNARD, F. AND BAGNARA , R. 2005. cTI: a constraint-based Termination Inference tool for ISO-Prolog.
Theory and Practice of Logic Programming 5,1-2, 243–257.

MESNARD, F. AND SEREBRENIK, A. 2008. Recurrence with Affine Level Mappings is P-time Decidable for
CLP(R). Theory and Practice of Logic Programming 8,1, 111–119.

M INÉ, A. 2006. The Octagon Abstract Domain.Higher-Order and Symbolic Computation 19,1, 31–100.
MONNIAUX , D. 2008. The Pitfalls of Verifying Floating-Point Computations.ACM Transactions on Program-

ming Languages and Systems (TOPLAS) 30,3.
M ÜLLER, P. 2007. Reasoning about Object Structures using Ownership. InProc. of the Workshop on Veri-

fied Software: Theories, Tools, Experiments (VSTTE’07), B. Meyer and J. Woodcock, Eds. Lecture Notes in
Computer Science, vol. 4171. Springer.

PALSBERG, J. AND SCHWARTZBACH, M. I. 1991. Object-Oriented Type Inference. InProc. of the Confer-
ence on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’91), A. Paepcke, Ed.
ACM SIGPLAN Notices, vol. 26(11). ACM, Phoenix, Arizona, USA, 146–161.

PAYET, E. AND SPOTO, F. 2007. Magic-Sets Transformation for the Analysis of Java Bytecode. InProc. of
the 14th International Static Analysis Symposium (SAS’07), H. R. Nielson and G. Filé, Eds. Lecture Notes in
Computer Science, vol. 4634. Springer, Kongens Lyngby, Denmark, 452–467.

PIPPENGER, N. 1997. Pure Versus Impure Lisp.ACM Transactions on Programming Languages and Systems
(TOPLAS) 19,2, 223–238.

PLÜMER, L. 1990. Termination Proofs for Logic Programs. Lecture Notes in Computer Science, vol. 446.
Springer.

A Termination Analyser for Java Bytecode Based on Path-Length · 65

PODELSKI, A. AND RYBALCHENKO , A. 2004a. A Complete Method for Synthesis of Linear Ranking Func-
tions. InProc. of the 5th International Conference on Verification, Model Checking, and Abstract Interpre-
tation (VMCAI’04), B. Steffen and G. Levi, Eds. Lecture Notes in Computer Science, vol. 2937. Springer,
Venice, Italy, 239–251.

PODELSKI, A. AND RYBALCHENKO , A. 2004b. Transition Invariants. InProc. of the 19th IEEE Symposium on
Logic in Computer Science (LICS’04), H. Ganzinger, Ed. IEEE, Turku, Finland, 32–41.

PODELSKI, A. AND RYBALCHENKO , A. 2007. Transition Predicate Abstraction and Fair Termination.ACM
Transactions on Programming Languages and Systems (TOPLAS) 29,3 (May).

POLLET, I., LE CHARLIER, B., AND CORTESI, A. 2001. Distinctness and Sharing Domains for Static Analysis
of Java Programs. InProc. of the 15th European Conference on Object-Oriented Programming (ECOOP’01).
Lecture Notes in Computer Science, vol. 2072. Budapest, Hungary, 77–98.

REYNOLDS, J. C. 2000. Intuitionistic Reasoning about Shared Mutable Data Structure. InProc. of Millen-
nial Perspectives in Computer Science, Symposium in Honour of Sir Tony Hoare, J. Davies, B. Roscoe, and
J. Woodcock, Eds. Palgrave, 303–321.

ROSSIGNOLI, S. AND SPOTO, F. 2006. Detecting Non-Cyclicity by Abstract Compilation into Boolean Func-
tions. InProc. of the 7th International Conference on Verification, Model Checking and Abstract Interpreta-
tion (VMCAI’06), E. A. Emerson and K. S. Namjoshi, Eds. Lecture Notes in Computer Science, vol. 3855.
Springer-Verlag, Charleston, SC, USA, 95–110.

SALCIANU , A. AND RINARD , M. C. 2005. Purity and Side Effect Analysis for Java Programs. InProc. of
the 6th International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI’05),
R. Cousot, Ed. Lecture Notes in Computer Science, vol. 3385. Springer, Paris, France, 199–215.

SCHNEIDER-KAMP, P., GIESL, J., SEREBRENIK, A., AND THIEMANN , R. 2006. Automated Termination Anal-
ysis for Logic Programs by Term Rewriting. InProc. of the 16th International Symposium on Logic-Based
Program Synthesis and Transformation (LOPSTR’06), G. Puebla, Ed. Lecture Notes in Computer Science,
vol. 4407. Springer, Venice, Italy, 177–193.

SECCI, S.AND SPOTO, F. 2005. Pair-Sharing Analysis of Object-Oriented Programs. InProc. of Static Analysis
Symposium (SAS’05), C. Hankin and I. Siveroni, Eds. Lecture Notes in Computer Science, vol. 3672. London,
UK, 320–335.

SEREBRENIK, A. AND DE SCHREYE, D. 2002. On Termination of Logic Programs with Floating Point Com-
putations. InProc. of the 9th International Symposium on Static Analysis (SAS’02), M. V. Hermenegildo and
G. Puebla, Eds. Lecture Notes in Computer Science, vol. 2477. Springer, Madrid, Spain, 151–164.

SPOTO, F. 2008a. TheJULIA Static Analyser. Available athttp://profs.sci.univr.it/∼spoto/julia.
SPOTO, F. 2008b. Nullness Analysis in Boolean Form. InProc. of the 6th IEEE International Conference on

Software Engineering and Formal Methods (SEFM’08). IEEE Computer Society, Cape Town, South Africa.
To appear.

SPOTO, F., HILL , P. M.,AND PAYET, E. 2006. Path-Length Analysis for Object-Oriented Programs. InFirst In-
ternational Workshop on Emerging Applications of Abstract Interpretation (EAAI’06). Vienna, Austria. Avail-
able at the web addresshttp://profs.sci.univr.it/∼spoto/papers.html.

SPOTO, F. AND JENSEN, T. 2003. Class Analyses as Abstract Interpretations of Trace Semantics.ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 25,5 (September), 578–630.

SPOTO, F., LU, L., AND MESNARD, F. 2008. UsingCLPSimplifications to Improve Java Bytecode Termination
Analysis. Submitted for publication.

SPOTO, F., MESNARD, F.,AND PAYET, E. 2008. Julia + BinTerm: An Automatic Termination Prover for Java
Bytecode. Available at the web addresshttp://spy.sci.univr.it/JuliaWeb.

STEENSGAARD, B. 1996. Points-to Analysis in Almost Linear Time. InProc. of the 23th ACM Symposium on
Principles of Programming Languages (POPL’96). St. Petersburg Beach, Florida, USA, 32–41.

STOER, J. AND WITZGALL , C. 1970. Convexity and Optimization in Finite Dimensions I. Springer-Verlag,
Berlin.

SUWIMONTEERABUTH, D., BERGER, F., SCHWOON, S.,AND ESPARZA, J. 2007. jMoped: A Test Environment
for Java Programs. InProc. of the 19th International Conference on Computer Aided Verification (CAV’07),
W. Damm and H. Hermanns, Eds. Lecture Notes in Computer Science, vol. 4590. Springer, Berlin, Germany,
164–167.

SUWIMONTEERABUTH, D., SCHWOON, S.,AND ESPARZA, J. 2005. jMoped: A Java Bytecode Checker Based
on Moped. InProc. of the 11th International Conference on Tools and Algorithms for the Construction and

66 · F. Spoto and F. Mesnard and É. Payet

Analysis of Systems (TACAS’05), N. Halbwachs and L. D. Zuck, Eds. Lecture Notes in Computer Science, vol.
3440. Springer, Edinburgh, UK, 541–545.

TARSKI, A. 1955. A Lattice-theoretical Fixpoint Theorem and its Applications.Pacific Journal of Math 5,
285–309.

TURING, A. 1936. On Computable Numbers, with an Application to the Entscheidungsproblem.London Math-
ematical Society 42,2, 230–265.

ULLMAN , J. D.AND GELDER, A. V. 1988. Efficient Tests for Top-Down Termination of Logical Rules.Journal
of the ACM 35,2, 345–373.

V ISSER, W., HAVELUND , K., BRAT, G. P., PARK , S., AND LERDA, F. 2003. Model Checking Programs.
Automated Software Engineering 10,2, 203–232.

WILDMOSER, M., CHAIEB , A., AND NIPKOW, T. 2005. Bytecode Analysis for Proof Carrying Code.Electronic
Notes on Theoretical Computer Science 141,1 (April), 19–34.

WILDMOSER, M. AND NIPKOW, T. 2005. Asserting Bytecode Safety. InProc. of the 14th European Sym-
posium on Programming (ESOP’05), S. Sagiv, Ed. Lecture Notes in Computer Science, vol. 3444. Springer,
Edinburgh, UK, 326–341.

WILHELM , R., REPS, T. W., AND SAGIV, S. 2002. Shape Analysis and Applications. InThe Compiler Design
Handbook, Y. N. Srikant and P. Shankar, Eds. CRC Press, 175–218.

11. PROOFS (TO BE KEPT IN AN ELECTRONIC APPENDIX ONLY)

11.1 Proof of Proposition 21

LEMMA 57. Let ins be a bytecode instruction and{ιj}j∈J ⊆ I with J ⊆ N. Then

[[ins]]⊔j∈J ιj
= ∪j∈J [[ins]]ιj

.

PROOF. If ins is not acall then

[[ins]]⊔j∈J ιj
= {ins} = ∪j∈J [[ins]]ιj

.

We also know (Definition 19) that[[call m1, . . . , mn]]⊔j∈J ιj
is

⋃

1≤i≤n

extendmi
({selectmi

}; {makescopemi
}; (⊔j∈J ιj)(bmi

)) (12)

wherebmi
is the block where methodmi = κi(t1, . . . , tp) : t starts. Since; is the extension

of ; over sets of denotations, it is by definition additive; the same holds forextend . Hence
Equation (12) is

⋃

1≤i≤n

extendmi
({selectmi

}; {makescopemi
};∪j∈J(ιj(bmi

)))

=
⋃

1≤i≤n

extendmi
(∪j∈J ({selectmi

}; {makescopemi
}; ιj(bmi

)))

=
⋃

1≤i≤n

∪j∈Jextendmi
({selectmi

}; {makescopemi
}; ιj(bmi

))

= ∪j∈J

⋃

1≤i≤n

extendmi
({selectmi

}; {makescopemi
}; ιj(bmi

))

= ∪j∈J [[call m1, . . . , mn]]ιj
.

We can now prove Proposition 21:

A Termination Analyser for Java Bytecode Based on Path-Length · 67

PROOF. Let {ιj}j∈J ⊆ I with J ⊆ N. We prove that

TP (⊔j∈J ιj)(b) = (⊔j∈JTP (ιj))(b)

for all blocksb.

Let b =
ins1
···

insw

⇉
b1
···
bm

with w > 0 andm > 0 (the casem = 0 is considered later). We

have

TP (⊔j∈J ιj)(b) = [[b]]⊔j∈J ιj

= [[ins1]]⊔j∈J ιj
; · · · ; [[insw]]⊔j∈J ιj

; ((⊔j∈J ιj)(b1) ∪ · · · ∪ (⊔j∈J ιj)(bm))

which by Lemma 57 is equal to

∪j∈J [[ins1]]ιj
; · · · ;∪j∈J [[insw]]ιj

; (∪j∈J (ιj(b1)) ∪ · · · ∪ ∪j∈J (ιj(bm))) . (13)

Since; is the extension of; over sets of denotations, it is by definition additive; the same
holds for∪. Since the composition of additive functions is additive, Equation (13) can be
rewritten into

∪j∈J

(
[[ins1]]ιj

; · · · ; [[insw]]ιj
; (ιj(b1) ∪ · · · ∪ ιj(bm))

)

= ∪j∈J [[b]]ιj
= ∪j∈J (TP (ιj)(b))

= (⊔j∈JTP (ιj)) (b) .

The casem = 0 follows similarly: we just have to remove the denotations of the blocks
b1, . . . , bm.

11.2 Proof of Proposition 46

First, we need a lemma:

LEMMA 58. Let I ⊂ N be finite,{pl i}i∈I ⊆ PLli,si→lo,so
andρ be an assignment of

integer values to a superset of the variables ofpl i for everyi ∈ I. Thenρ |= pl i for all
i ∈ I if and only ifρ |=

⋃

i∈I

pl i.

PROOF. We first note that, since the union∪i∈Ipl i is finite, the resulting set is still a
convex polyhedron. Ifρ |= pl i for all i ∈ I then for everyc ∈ ∪i∈Ipl i we havec ∈ pl j
for a suitablej ∈ I so thatρ |= c. It follows thatρ |= ∪i∈Ipl i. Conversely, ifρ |= ∪i∈Ipl i
then for everyi ∈ I andc ∈ pl i we havec ∈ ∪i∈Ipl i so thatρ |= c. It follows that
ρ |= pl i.

We need another lemma:

LEMMA 59. Let#l, #s be the number of local variables and stack elements at a pro-
gram pointq. Let instructioninsq, different fromcall, occur atq. Let σ = 〈l || s ||µ〉
in Σ#l,#s. LetL ⊆ {0, . . . , #l − 1} andS ⊆ {0, . . . , #s − 1}. Assume thatinsq(σ) is
defined and it does not modifylL = {li | i ∈ L} andsS = {si | i ∈ S} w.r.t.σ. Moreover,
assume that the following propertyU holds:

(U) every locationℓ reachable fromlL or sS in σ is also reachable fromlL or sS in
insq(σ) and is bound to the same objects, up to the values of integer fields, and vice
versa (for instance, it is enough thatinsq(σ) does not modifyµ)

then ˇlen(σ) ∪ ˆlen(insq(σ)) |= Unchangedq(L, S).

68 · F. Spoto and F. Mesnard and É. Payet

PROOF. Let #l′ be the number of local variables,#s′ be the number of stack elements
andµ′ be the memory ininsq(σ). Notice that

ˇlen(σ) ∪ ˆlen(insq(σ))

= [ľi 7→ len(li, µ) | 0 ≤ i < #l] ∪ [ši 7→ len(si, µ) | 0 ≤ i < #s] ∪

[l̂i 7→ len(li, µ′) | 0 ≤ i < #l′] ∪ [ŝi 7→ len(si, µ′) | 0 ≤ i < #s′]

⊇ [ľi 7→ len(li, µ) | i ∈ L] ∪ [ši 7→ len(si, µ) | i ∈ S] ∪

[l̂i 7→ len(li, µ′) | i ∈ L] ∪ [ŝi 7→ len(si, µ′) | i ∈ S] .

We have assumed thatinsq(σ) is defined, that it does not modifylL andsS w.r.t. σ and
that propertyU holds. Hence, for eachi ∈ L, we havelen(li, µ′) = len(li, µ) and, for
eachi ∈ S, we havelen(si, µ′) = len(si, µ). Consequently,

ˇlen(σ) ∪ ˆlen(insq(σ)) |= {ľi = l̂i | i ∈ L} ∪ {ši = ŝi | i ∈ S} . (14)

Moreover,

—for eachi, j ∈ {0, . . . , sq − 1} such thatsi, according to our definite alias analysis, is
an alias ofsj at q, we have, by the correctness of the alias analysis, thatlen(si, µ) =
len(sj , µ),

—for eachi ∈ {0, . . . , sq − 1} andj ∈ {0, . . . , lq − 1} such thatsi, according to our
definite alias analysis, is an alias oflj at q, we have, by the correctness of the alias
analysis, thatlen(si, µ) = len(lj , µ),

—for eachi, j ∈ {0, . . . , lq − 1} such that, according to our definite alias analysis,li is
an alias oflj at q, we have, by the correctness of the alias analysis, thatlen(li, µ) =
len(lj , µ),

—for eachi ∈ {0, . . . , sq − 1} such thatsi does not have integer type atq, we have
len(si, µ) ≥ 0 by Definition 24 and

—for eachi ∈ {0, . . . , lq − 1} such thatli does not have integer type atq, we have
len(li, µ) ≥ 0 by Definition 24.

Therefore,

ˇlen(σ) ∪ ˆlen(insq(σ)) |=

{

ši = šj

∣
∣
∣
∣

0 ≤ i, j < sq andsi is an alias ofsj at q
according to our definite alias analysis

}

∪

ši = ľj

∣
∣
∣
∣
∣
∣

0 ≤ i < sq, 0 ≤ j < lq and
si is an alias oflj atq
according to our definite alias analysis

∪

{

ľi = ľj
∣
∣
∣
∣

0 ≤ i, j < lq andli is an alias oflj at q
according to our definite alias analysis

}

∪ {ši ≥ 0 | 0 ≤ i < sq andsi does not have integer type atq}

∪ {ľi ≥ 0 | 0 ≤ i < lq andli does not have integer type atq} .
(15)

Hence, by (14), (15) and Lemma 58, we have lěn(σ)∪lên(insq(σ)) |= Unchanged q(L, S).

We can now prove Proposition 46:

PROOF. Let #l, #s be the number of local variables and stack elements defined at q.
Let σ = 〈l || s || µ〉 in Σ#l,#s. Suppose that insq(σ) is defined. Below, we consider each
possible form for insq.

A Termination Analyser for Java Bytecode Based on Path-Length · 69

insq = constq c

By Definition 7, insq(σ) = 〈l || c :: s ||µ〉. So, insq(σ) does not modify{lk | 0 ≤ k <

#l} ∪ {sk | 0 ≤ k < #s} norµ. Hence, by Lemma 59, we have

ˇlen(σ) ∪ ˆlen(insq(σ)) |= Unchanged q(#l, #s) . (16)

Moreover, notice that[ŝ#s 7→ len(c, µ)] ∈ ˆlen(insq(σ)), so

[ŝ#s 7→ len(c, µ)] ∈ ˇlen(σ) ∪ ˆlen(insq(σ)) . (17)

—If c ∈ Z thenlen(c, µ) = c by Definition 24. Hence by (17),

ˇlen(σ) ∪ ˆlen(insq(σ)) |= {c = ŝ#s} .

Consequently, by (16) and Lemma 58, we have

ˇlen(σ) ∪ ˆlen(insq(σ)) |= Unchanged q(#l, #s) ∪ {c = ŝ#s} .

—If c = null thenlen(c, µ) = 0 by Definition 24. Hence by (17),

ˇlen(σ) ∪ ˆlen(insq(σ)) |= {0 = ŝ#s} .

Consequently, by (16) and Lemma 58, we have

ˇlen(σ) ∪ ˆlen(insq(σ)) |= Unchangedq(#l, #s) ∪ {0 = ŝ#s} .

Therefore, by Definition 37,̌len(σ)∪ ˆlen(insq(σ)) |= constPL

q c i.e., insq ∈ γ(constPL

q c).

insq = dupq

By Definition 7,#s > 0 andinsq(σ) = 〈l || s#s−1 :: s ||µ〉. So,insq(σ) does not modify
{lk | 0 ≤ k < #l} ∪ {sk | 0 ≤ k < #s} norµ. Hence, by Lemma 59, we have

ˇlen(σ) ∪ ˆlen(insq(σ)) |= Unchanged q(#l, #s) . (18)

Moreover, notice that[ŝ#s 7→ len(s#s−1, µ)] ∈ ˆlen(insq(σ)), so

[ŝ#s 7→ len(s#s−1, µ)] ∈ ˇlen(σ) ∪ ˆlen(insq(σ)) .

We also have[š#s−1 7→ len(s#s−1, µ)] ∈ ˇlen(σ), which implies that

[š#s−1 7→ len(s#s−1, µ)] ∈ ˇlen(σ) ∪ ˆlen(insq(σ)) .

So, ˇlen(σ) ∪ ˆlen(insq(σ)) |= {š#s−1 = ŝ#s}. Therefore, by (18) and Lemma 58, we
have

ˇlen(σ) ∪ ˆlen(insq(σ)) |= Unchangedq(#l, #s) ∪ {š#s−1 = ŝ#s} .

Consequently, by Definition 37,̌len(σ) ∪ ˆlen(insq(σ)) |= dupPL

q i.e., insq ∈ γ(dupPL

q).

insq = newq κ

By Definition 7, insq(σ) = 〈l || ℓ :: s ||µ[ℓ 7→ o]〉 whereℓ is a fresh location ando is an
object of classκ whose fields hold0 or null. So,insq(σ) does not modify{lk | 0 ≤ k <

70 · F. Spoto and F. Mesnard and É. Payet

#l} ∪ {sk | 0 ≤ k < #s}. Moreover, propertyU of Lemma 59 holds sinceℓ is a fresh
location. Hence, by Lemma 59, we have

ˇlen(σ) ∪ ˆlen(insq(σ)) |= Unchanged q(#l, #s) . (19)

Moreover, notice that[ŝ#s 7→ len(ℓ, µ[ℓ 7→ o])] ∈ ˆlen(insq(σ)) with len(ℓ, µ[ℓ 7→ o]) =
1 becauseo is an object whose fields hold0 or null. Hence,

[ŝ#s 7→ 1] ∈ ˇlen(σ) ∪ ˆlen(insq(σ)) .

So, ˇlen(σ) ∪ ˆlen(insq(σ)) |= {1 = ŝ#s}. Therefore, by (19) and Lemma 58, we have

ˇlen(σ) ∪ ˆlen(insq(σ)) |= Unchangedq(#l, #s) ∪ {1 = ŝ#s} .

Consequently, by Definition 37,̌len(σ)∪ ˆlen(insq(σ)) |= newPL

q κ i.e., insq ∈ γ(newPL

q κ).

insq = load q i

By Definition 7,insq(σ) = 〈l || l(i) :: s ||µ〉. So,insq(σ) does not modify{lk | 0 ≤ k <

#l} ∪ {sk | 0 ≤ k < #s} norµ. Hence, by Lemma 59, we have

ˇlen(σ) ∪ ˆlen(insq(σ)) |= Unchanged q(#l, #s) . (20)

Moreover, notice that[ŝ#s 7→ len(l(i), µ)] ∈ ˆlen(insq(σ)) with len(l(i), µ) = len(li, µ).
Hence,[ŝ#s 7→ len(li, µ)] ∈ ˆlen(insq(σ)) which implies that

[ŝ#s 7→ len(li, µ)] ∈ ˇlen(σ) ∪ ˆlen(insq(σ)) .

We also have[ľi 7→ len(li, µ)] ∈ ˇlen(σ) which implies that

[ľi 7→ len(li, µ)] ∈ ˇlen(σ) ∪ ˆlen(insq(σ)) .

So, ˇlen(σ) ∪ ˆlen(insq(σ)) |= {ľi = ŝ#s}. Therefore, by (20) and Lemma 58, we have

ˇlen(σ) ∪ ˆlen(insq(σ)) |= Unchangedq(#l, #s) ∪ {ľi = ŝ#s} .

Consequently, by Definition 37,̌len(σ)∪ ˆlen(insq(σ)) |= loadPL

q i i.e., insq ∈ γ(loadPL

q i).

insq = storeq i

By Definition 7, #s > 0 and insq(σ) = 〈l[i 7→ s#s−1] || s#s−2 :: · · · :: s0 ||µ〉 (with
s#s−2 :: · · · :: s0 = ε if #s = 1). So,insq(σ) does not modify{lk | 0 ≤ k < #l, k 6=
i} ∪ {sk | 0 ≤ k < #s− 1} norµ. Hence, by Lemma 59, we have

ˆ

ˆ

ˆ

ˆ

lěn(σ) ∪ lên(insq(σ)) |= Unchangedq({0, . . . , #l − 1} \ i, {0, . . . , #s − 2}) . (21)

Moreover, notice that [li 7→ len(s#s−1, µ)] ∈ lên(insq(σ)), so

[li 7→ len(s#s−1, µ)] ∈ lěn(σ) ∪ lên(insq(σ)) .

We also have [š#s−1 7→ len(s#s−1, µ)] ∈ lěn(σ), which implies that

[š#s−1 7→ len(s#s−1, µ)] ∈ lěn(σ) ∪ lên(insq(σ)) .

So, lěn(σ) ∪ lên(insq(σ)) |= {š#s−1 = li}. Therefore, by (21) and Lemma 58, we have

lěn(σ)∪lên(insq(σ)) |= Unchanged q({0, . . . , #l−1}\i, {0, . . . , #s−2})∪{š#s−1 =

li} .

A Termination Analyser for Java Bytecode Based on Path-Length · 71

Consequently, by Definition 37,̌len(σ)∪ ˆlen(insq(σ)) |= storePL

q i i.e., insq ∈ γ(storePL

q i).

insq = add q

By Definition 7,#s > 1 andinsq(σ) = 〈l ||(s#s−1 + s#s−2) :: s#s−3 :: · · · :: s0 ||µ〉.
So,insq(σ) does not modify{lk | 0 ≤ k < #l} ∪ {sk | 0 ≤ k < #s− 2} norµ. Hence,
by Lemma 59, we have

ˇlen(σ) ∪ ˆlen(insq(σ)) |= Unchangedq(#l, #s− 2) . (22)

Moreover, notice that[ŝ#s−2 7→ len(s#s−1+s#s−2, µ)] ∈ ˆlen(insq(σ)) with len(s#s−1+
s#s−2, µ) = len(s#s−1, µ) + len(s#s−2, µ), so

[ŝ#s−2 7→ len(s#s−1, µ) + len(s#s−2, µ)] ∈ ˇlen(σ) ∪ ˆlen(insq(σ)) .

We also have[š#s−1 7→ len(s#s−1, µ), š#s−2 7→ len(s#s−2, µ)] ∈ ˇlen(σ), which im-
plies that

[š#s−1 7→ len(s#s−1, µ), š#s−2 7→ len(s#s−2, µ)] ∈ ˇlen(σ) ∪ ˆlen(insq(σ)) .

So, ˇlen(σ) ∪ ˆlen(insq(σ)) |= {š#s−1 + š#s−2 = ŝ#s−2}. Therefore, by (22) and
Lemma 58, we have

ˇlen(σ) ∪ ˆlen(insq(σ)) |= Unchanged q(#l, #s− 2) ∪ {š#s−1 + š#s−2 = ŝ#s−2} .

Consequently, by Definition 37,̌len(σ) ∪ ˆlen(insq(σ)) |= addPL

q i.e., insq ∈ γ(addPL

q).

insq = getfield q f

By Definition 7, #s > 0, s#s−1 is a location withs#s−1 6= null and insq(σ) =
〈l ||µ(s#s−1)(f) :: s#s−2 :: · · · :: s0 ||µ〉. So, insq(σ) does not modify{lk | 0 ≤
k < #l} ∪ {sk | 0 ≤ k < #s− 1} norµ. Hence, by Lemma 59, we have

ˇlen(σ) ∪ ˆlen(insq(σ)) |= Unchangedq(#l, #s− 1) . (23)

Moreover, notice that[ŝ#s−1 7→ len(µ(s#s−1)(f), µ)] ∈ ˆlen(insq(σ)), so

[ŝ#s−1 7→ len(µ(s#s−1)(f), µ)] ∈ ˇlen(σ) ∪ ˆlen(insq(σ)) .

We also have[š#s−1 7→ len(s#s−1, µ)] ∈ ˇlen(σ), which implies that

[š#s−1 7→ len(s#s−1, µ)] ∈ ˇlen(σ) ∪ ˆlen(insq(σ)) .

Suppose thatf does not have integer type.

—If s#s−1 might be cyclical atq then whether it is actually cyclical, so thatlen(s#s−1, µ) =
∞ ≥ len(µ(s#s−1)(f), µ), or it is not actually cyclical, so thatlen(s#s−1, µ) =
1 + max{len(ℓ′, µ) | ℓ′ ∈ rng(µ(s#s−1)) ∩ L} ≥ 1 + len(µ(s#s−1)(f), µ). In both
cases ˇlen(σ) ∪ ˆlen(insq(σ)) |= {š#s−1 ≥ ŝ#s−1}. Therefore, by (23) and Lemma 58,
we have

ˇlen(σ) ∪ ˆlen(insq(σ)) |= Unchanged q(#l, #s− 1) ∪ {š#s−1 ≥ ŝ#s−1} .

72 · F. Spoto and F. Mesnard and É. Payet

—If f cannot be cyclical atq only the second possibility above holdsi.e., len(s#s−1, µ) ≥

1+ len(µ(s#s−1)(f), µ). So, ˇlen(σ)∪ ˆlen(insq(σ)) |= {š#s−1 ≥ 1+ ŝ#s−1}. There-
fore, by (23) and Lemma 58, we have

ˇlen(σ) ∪ ˆlen(insq(σ)) |= Unchangedq(#l, #s− 1) ∪ {š#s−1 ≥ 1 + ŝ#s−1} .

Consequently, by Definition 37,̌len(σ) ∪ ˆlen(insq(σ)) |= getfieldPL

q f i.e., insq ∈

γ(getfieldPL

q f).

insq = putfieldq f

By Definition 7, #s > 1, s#s−2 is a location withs#s−2 6= null and insq(σ) =
〈l || s#s−3 :: · · · :: s0 ||µ[s#s−2 7→ µ(s#s−2)[f 7→ s#s−1]]〉.

—Suppose thatf has integer type. Theninsq(σ) does not modify{lk | 0 ≤ k < #l} ∪
{sk | 0 ≤ k < #s− 2} and only modifies an integer field of an object. Hence property
U of Lemma 59 holds and by that lemma we have

ˇlen(σ) ∪ ˆlen(insq(σ)) |= Unchanged q(#l, #s− 2) .

—Suppose thatf has not integer type. LetL be the indexes of the local variables which
cannot share withs#s−2 at q andS be the indexesx of the stack elements, with0 ≤
x < #s − 2, which cannot share withs#s−2 at q. Then,insq(σ) does not modify
{lk | k ∈ L} ∪ {sk | k ∈ S} nor any object bound to the locations reachable from those
variables. Hence, by Lemma 59, we have

ˇlen(σ) ∪ ˆlen(insq(σ)) |= Unchangedq(L, S) . (24)

Let µ′ = µ[s#s−2 7→ µ(s#s−2)[f 7→ s#s−1]]. The variables inL = {lk | 0 ≤ k <

#l, k 6∈ L} andS = {sk | 0 ≤ k < #s − 2, k 6∈ S} are affected by theputfield.
Suppose thats#s−2 cannot share withs#s−1 at q. Then, theputfield cannot build a
cycle and the variables inL ∪ S can only grow by the path-length of the value which is
stored inside the field, bound tos#s−1. Hence, for eachk ∈ L,

len(lk, µ) + len(s#s−1, µ) ≥ len(lk, µ′)

and for eachk ∈ S,

len(sk, µ) + len(s#s−1, µ) ≥ len(sk, µ′) .

Notice that

ˇlen(σ) ∪ ˆlen(insq(σ))

= [ľk 7→ len(lk, µ) | 0 ≤ k < #l] ∪ [šk 7→ len(sk, µ) | 0 ≤ k < #s] ∪

[l̂k 7→ len(lk, µ′) | 0 ≤ k < #l] ∪ [ŝk 7→ len(sk, µ′) | 0 ≤ k < #s− 2] .

Therefore,

ˇlen(σ) ∪ ˆlen(insq(σ)) |= {ľk + š#s−1 ≥ l̂k | k ∈ L} ∪ {šk + š#s−1 ≥ ŝk | k ∈ S} .

So, by (24) and Lemma 58, we have

ˇlen(σ) ∪ ˆlen(insq(σ)) |= Unchangedq(L, S) ∪

{ľk + š#s−1 ≥ l̂k | k ∈ L} ∪
{šk + š#s−1 ≥ ŝk | k ∈ S} .

A Termination Analyser for Java Bytecode Based on Path-Length · 73

Consequently, by Definition 37,̌len(σ) ∪ ˆlen(insq(σ)) |= putfieldPL

q f i.e., insq ∈

γ(putfieldPL

q f).

insq = ifeq of typeq t

By Definition 7, #s > 0, insq(σ) = 〈l || s#s−2 :: · · · :: s0 ||µ〉 and s#s−1 = 0 or
s#s−1 = null. So,insq(σ) does not modify{lk | 0 ≤ k < #l}∪{sk | 0 ≤ k < #s−1}
norµ. Hence, by Lemma 59, we have

ˇlen(σ) ∪ ˆlen(insq(σ)) |= Unchangedq(#l, #s− 1) . (25)

Moreover, notice that[š#s−1 7→ len(s#s−1, µ)] ∈ ˇlen(σ) with len(s#s−1, µ) = 0 be-
causes#s−1 = 0 or s#s−1 = null. So

[š#s−1 7→ 0] ∈ ˇlen(σ) ∪ ˆlen(insq(σ))

i.e., ˇlen(σ) ∪ ˆlen(insq(σ)) |= {š#s−1 = 0}. Therefore, by (25) and Lemma 58, we have

ˇlen(σ) ∪ ˆlen(insq(σ)) |= Unchangedq(#l, #s− 1) ∪ {š#s−1 = 0} .

Consequently, by Definition 37,̌len(σ) ∪ ˆlen(insq(σ)) |= ifeq of typePL

q t i.e., insq ∈

γ(ifeq of typePL

q t).

insq = ifne of typeq t

By Definition 7,#s > 0, insq(σ) = 〈l || s#s−2 :: · · · :: s0 ||µ〉, s#s−1 6= 0 ands#s−1 6=
null. So,insq(σ) does not modify{lk | 0 ≤ k < #l} ∪ {sk | 0 ≤ k < #s − 1} norµ.
Hence, by Lemma 59, we have

ˇlen(σ) ∪ ˆlen(insq(σ)) |= Unchangedq(#l, #s− 1) . (26)

Suppose thatt 6= int. Notice that[š#s−1 7→ len(s#s−1, µ)] ∈ ˇlen(σ), so

[š#s−1 7→ len(s#s−1, µ)] ∈ ˇlen(σ) ∪ ˆlen(insq(σ)) .

Moreover,len(s#s−1, µ) ≥ 1 becauses#s−1 6= null. So, ˇlen(σ) ∪ ˆlen(insq(σ)) |=
{š#s−1 ≥ 1}. Therefore, by (26) and Lemma 58, we have

ˇlen(σ) ∪ ˆlen(insq(σ)) |= Unchangedq(#l, #s− 1) ∪ {š#s−1 ≥ 1} .

Consequently, by Definition 37,̌len(σ) ∪ ˆlen(insq(σ)) |= ifne of typePL

q t i.e., insq ∈

γ(ifne of typePL

q t).

11.3 Proof of Proposition 47

PROOF. δ = argsq,κ.m(t1,...,tp):t

Let σ ∈ Σlq,sq
be such thatδ(σ) is defined. Then,σ has the form〈l || ap :: · · · :: a0 ::

s ||µ〉 andδ(σ) = 〈ε || ap :: · · · :: a0 ||µ〉. Notice that

ˇlen(σ) ∪ ˆlen(δ(σ)) = [ľi 7→ len(li, µ) | 0 ≤ i < lq] ∪

[ši 7→ len(si, µ) | 0 ≤ i < sq] ∪

[ŝi 7→ len(ai, µ) | 0 ≤ i < p + 1]

74 · F. Spoto and F. Mesnard and É. Payet

with

[ši 7→ len(si, µ) | 0 ≤ i < sq] = [ši 7→ len(si, µ) | 0 ≤ i < sq − (p + 1)] ∪

[ši 7→ len(si, µ) | sq − (p + 1) ≤ i < sq]

= [ši 7→ len(si, µ) | 0 ≤ i < sq − (p + 1)] ∪

[šsq−(p+1)+i 7→ len(ssq−(p+1)+i, µ) | 0 ≤ i < p + 1]

and for eachi ∈ {0, . . . , p}, ssq−(p+1)+i = ai. Therefore,

ˇlen(σ) ∪ ˆlen(δ(σ)) = [ľi 7→ len(li, µ) | 0 ≤ i < lq] ∪

[ši 7→ len(si, µ) | 0 ≤ i < sq − (p + 1)] ∪

[šsq−(p+1)+i 7→ len(ai, µ) | 0 ≤ i < p + 1] ∪

[ŝi 7→ len(ai, µ) | 0 ≤ i < p + 1] .

Consequently, ˇlen(σ) ∪ ˆlen(δ(σ)) |= {šsq−(p+1)+i = ŝi | 0 ≤ i < p + 1} i.e., by
Definition 10, ˇlen(σ)∪ ˆlen(δ(σ)) |= argsPL

q,κ.m(t1,...,tp). Hence,δ ∈ γ(argsPL

q,κ.m(t1,...,tp)).

Let nowσ = 〈ε || sp :: · · · :: s1 :: s0 ||µ〉 in Σ0,p+1.

δ = selectκ.m(t1,...,tp):t

Suppose thatδ(σ) is defined. Then,δ(σ) = σ, so δ(σ) does not modify anything in
σ. Hence, we haveˇlen(σ) ∪ ˆlen(δ(σ)) |= Unchanged(0, p + 1) i.e., by Definition 43,
ˇlen(σ) ∪ ˆlen(δ(σ)) |= selectPL

κ.m(t1,...,tp):t. Therefore,δ ∈ γ(selectPL

κ.m(t1,...,tp):t).

δ = makescopeκ.m(t1,...,tp):t

Suppose thatδ(σ) is defined. Then,δ(σ) = 〈

l
︷ ︸︸ ︷

[i 7→ si | 0 ≤ i ≤ p] || ε ||µ〉. Notice that

ˇlen(σ) ∪ ˆlen(δ(σ)) = [ši 7→ len(si, µ) | 0 ≤ i ≤ p] ∪ [l̂i 7→ len(li, µ) | 0 ≤ i ≤ p]

with, for each0 ≤ i ≤ p, len(li, µ) = len(l(i), µ) = len(si, µ). So,

ˇlen(σ) ∪ ˆlen(δ(σ)) |= {ši = l̂i | 0 ≤ i ≤ p}

i.e., by Definition 43, ˇlen(σ) ∪ ˆlen(δ(σ)) |= makescopePL

κ.m(t1,...,tp):t. Therefore,δ ∈

γ(makescopePL

κ.m(t1,...,tp):t).

11.4 Proof of Proposition 48

PROOF. Let us consider each of the operations;, ∪ andextend .

;

Let pl 1 ∈ PLli,si→lt,st and pl2 ∈ PLlt,st→lo,so . Let δ ∈ γ(pl1); γ(pl 2). Then, there
exists δ1 ∈ γ(pl1) and δ2 ∈ γ(pl 2) such that δ = δ1; δ2. Notice that δ1 ∈ ∆li,si→lt,st ,
δ2 ∈ ∆lt,st→lo,so and δ ∈ ∆li,si→lo,so . We prove that δ ∈ γ(pl1;

PL pl2) i.e., for all
σ ∈ Σli,si such that δ(σ) is defined, we have

lěn(σ) ∪ lên(δ(σ)) |= pl1;
PL pl2 .

A Termination Analyser for Java Bytecode Based on Path-Length · 75

Let σ ∈ Σli,si
be such thatδ(σ) is defined. Then,δ1(σ) andδ2(δ1(σ)) are defined. As

δ1 ∈ γ(pl1), we have

ˇlen(σ) ∪ ˆlen(δ1(σ)) |= pl1 .

Moreover, asδ2 ∈ γ(pl2), we have ˇlen(δ1(σ)) ∪ ˆlen(δ2(δ1(σ))) |= pl2 i.e.,

ˇlen(δ1(σ)) ∪ ˆlen(δ(σ)) |= pl2 .

Let T = {l
0
, . . . , l

lt−1
, s0, . . . , sst−1} andµ be the memory inδ1(σ). Let

ρ = [l
i
7→ len(li, µ) | 0 ≤ i < lt] ∪ [si 7→ len(si, µ) | 0 ≤ i < st] .

Then, as ˆlen(δ1(σ)) = [l̂i 7→ len(li, µ) | 0 ≤ i < lt] ∪ [ŝi 7→ len(si, µ) | 0 ≤ i < st] and
ˇlen(δ1(σ)) = [ľi 7→ len(li, µ) | 0 ≤ i < lt] ∪ [ši 7→ len(si, µ) | 0 ≤ i < st], we have

ˇlen(σ) ∪ ρ |= pl1[v̂ 7→ v | v ∈ T]

and

ρ ∪ ˆlen(δ(σ)) |= pl2[v̌ 7→ v | v ∈ T] .

Notice the following facts:

—The domains ofˇlen(σ), ρ and ˆlen(δ(σ)) are disjoint.

—pl1[v̂ 7→ v | v ∈ T] is a constraint over the variables in the domains ofˇlen(σ) andρ.

—pl2[v̌ 7→ v | v ∈ T] is a constraint over the variables in the domains ofρ and ˆlen(δ(σ)).

So, we haveˇlen(σ) ∪ ρ∪ ˆlen(δ(σ)) |= pl1[v̂ 7→ v | v ∈ T] and ˇlen(σ)∪ ρ∪ ˆlen(δ(σ)) |=
pl2[v̌ 7→ v | v ∈ T], which implies by Lemma 58 that

ˇlen(σ) ∪ ρ ∪ ˆlen(δ(σ)) |= pl1[v̂ 7→ v | v ∈ T] ∪ pl2[v̌ 7→ v | v ∈ T] .

Then, as the domain ofρ is T , we have

ˇlen(σ) ∪ ˆlen(δ(σ)) |= ∃T (pl1[v̂ 7→ v | v ∈ T] ∪ pl2[v̌ 7→ v | v ∈ T])

i.e., by Definition 44,

ˇlen(σ) ∪ ˆlen(δ(σ)) |= pl1;
PL pl2 .

So,δ ∈ γ(pl1;
PL pl2).

∪

Let pl1, pl2 ∈ PLli,si→lo,so
. Let δ ∈ γ(pl1) ∪ γ(pl2). Then,δ ∈ γ(pl1) or δ ∈ γ(pl2).

We prove thatδ ∈ γ(pl1 ∪
PL pl2) i.e., for all σ ∈ Σli,si

such thatδ(σ) is defined, we have

ˇlen(σ) ∪ ˆlen(δ(σ)) |= pl1 ∪
PL pl2 .

Letσ ∈ Σli,si
be such thatδ(σ) is defined. Letρ denote the assignmenťlen(σ)∪ ˆlen(δ(σ)).

—Suppose thatδ ∈ γ(pl1). Then,ρ |= pl1 i.e., ρ defines a point inside the polyhedron
defined bypl1. As pl1 ∪

PL pl2 is the polyhedral hull ofpl1 andpl2, ρ defines a point
inside the polyhedron defined bypl1 ∪

PL pl2. Hence,ρ |= pl1 ∪
PL pl2 i.e.,

ˇlen(σ) ∪ ˆlen(δ(σ)) |= pl1 ∪
PL pl2 .

76 · F. Spoto and F. Mesnard and É. Payet

—Suppose thatδ ∈ γ(pl1). Then, reasoning as above, we get

ˇlen(σ) ∪ ˆlen(δ(σ)) |= pl1 ∪
PL pl2 .

Consequently, we haveδ ∈ γ(pl1 ∪
PL pl2).

extendκ.m(t1,...,tp):t

Let pl ∈ PL0,p+1→lo,so
. Let δ ∈ extendκ.m(t1,...,tp):t(γ(pl)). Then, there existsδ′ ∈

γ(pl) such thatδ = extendκ.m(t1,...,tp):t(δ
′). By Definition 33 we haveδ′ ∈ ∆0,p+1→lo,so

and by Definition 16 we haveδ ∈ ∆lq ,sq→lq,x+so
. We prove that

δ ∈ γ(extendPL

κ.m(t1,...,tp):t(pl))

i.e., for all σ ∈ Σlq,sq
such thatδ(σ) is defined, we have

ˇlen(σ) ∪ ˆlen(δ(σ)) |= extendPL

κ.m(t1,...,tp):t(pl) .

Let σ ∈ Σlq,sq
be such thatδ(σ) is defined. Then,σ has the form〈l || ap :: · · · :: a1 ::

a0 :: s ||µ〉 andδ(σ) has the form〈l || v :: s ||µ′〉 whereδ′(〈ε || ap :: · · · :: a1 :: a0 ||µ〉) =
〈l′ || v ||µ′〉, wherev stands for the return value of the callee, if any, or otherwisev = ε;
moreover, we know thatdom(µ) ⊆ dom(µ′) and that everyℓ ∈ dom(µ) which is not
reachable fromap :: · · · :: a1 :: a0 is such thatµ(ℓ) = µ′(ℓ). We also know that if thekth
argument is not modified insideκ.m(t1, . . . , tp) : t thenak = (l′)k. We prove the case
v 6= ε; the other case is similar. Namely, we prove that

(1) ˇlen(σ) ∪ ˆlen(δ(σ)) |= ∃T

pl [v̂ 7→ v | v ∈ T]
[šk 7→ šk+x | 0 ≤ k < p + 1][ŝ0 7→ ŝx]

∪MSA ∪MLA

;

(2) ˇlen(σ) ∪ ˆlen(δ(σ)) |= US ∪ UL.

When (1) and (2) are proved, then by Lemma 58 and Definition 44 we will have the thesis,
since the variables inT do not occur inUS ∪ UL.

(1) Sinceδ′ ∈ γ(pl) andδ′(〈ε || ap :: · · · :: a1 :: a0 ||µ〉) is defined, we have

ˇlen(〈ε || ap :: · · · :: a1 :: a0 ||µ〉) ∪ ˆlen(δ′(〈ε || ap :: · · · :: a1 :: a0 ||µ〉)) |= pl

that is

ˇlen(〈ε || ap :: · · · :: a1 :: a0 ||µ〉) ∪ ˆlen(〈l′ || v ||µ′〉) |= pl

which in turn means that

[šk 7→ len(ak, µ) | 0 ≤ k < p + 1] ∪ [ŝ0 7→ len(v, µ′)]
︸ ︷︷ ︸

ρ

∪[l̂k 7→ len((l′)k, µ′) | 0 ≤ k < lo]

 |= pl ,

(whereρ would be missing whenso = 0). Hence

[šk+x 7→ len(ak, µ) | 0 ≤ k < p + 1]
∪[ŝx 7→ len(v, µ′)]

∪[l̂k 7→ len((l′)k, µ′) | 0 ≤ k < lo]

 |= pl [šk 7→ šk+x | 0 ≤ k < p+1][ŝ0 7→ ŝx]

A Termination Analyser for Java Bytecode Based on Path-Length · 77

and

[šk+x 7→ len(ak, µ) | 0 ≤ k < p + 1]
∪[ŝx 7→ len(v, µ′)]

∪[l
k
7→ len((l′)k, µ′) | 0 ≤ k < lo]

 |=
pl [v̂ 7→ v | v ∈ T]

[šk 7→ šk+x | 0 ≤ k < p + 1]
[ŝ0 7→ ŝx]

.

Let l
k

= ŝi ∈ MSA; hence0 ≤ i < x, 0 ≤ k < p + 1, si is an alias inσ of the
kth parameter, according to our definite aliasing analysis, and thekth parameter is
not modified insideκ.m(t1, . . . , tp) : t. By the correctness of our aliasing analysis
we haveak = si. Since thekth argument is not modified, we haveak = (l′)k.
Hencesi = (l′)k and len(si, µ′) = len((l′)k, µ′). In a similar way we prove that

len(li, µ′) = len((l′)k, µ′) for everyl
k

= l̂i ∈ MLA. Then

[šk+x 7→ len(ak, µ) | 0 ≤ k < p + 1]
∪[ŝx 7→ len(v, µ′)]

∪[l
k
7→ len((l′)k, µ′) | 0 ≤ k < lo]

∪[ŝk 7→ len(sk, µ′) | 0 ≤ k < x]

∪[l̂k 7→ len(lk, µ′) | 0 ≤ k < lq]

|=

pl [v̂ 7→ v | v ∈ T]
[šk 7→ šk+x | 0 ≤ k < p + 1]

[ŝ0 7→ ŝx]
∪MSA ∪MLA

that is

[šk+x 7→ len(ak, µ) | 0 ≤ k < p + 1]
∪[ŝx 7→ len(v, µ′)]

∪[ŝk 7→ len(sk, µ′) | 0 ≤ k < x]

∪[l̂k 7→ len(lk, µ′) | 0 ≤ k < lq]

|= ∃T

pl [v̂ 7→ v | v ∈ T]
[šk 7→ šk+x | 0 ≤ k < p + 1]

[ŝ0 7→ ŝx]
∪MSA ∪MLA

.

In conclusion

ˇlen(σ) ∪ ˆlen(δ(σ)) |= ∃T

pl [v̂ 7→ v | v ∈ T]
[šk 7→ šk+x | 0 ≤ k < p + 1]

[ŝ0 7→ ŝx]
∪MSA ∪MLA

.

(2) The local variables are bound to the same locations inσ andδ(σ), as well as thex
lowest stack elements ins. We know thatµ(ℓ) = µ′(ℓ) for every ℓ which is not
reachable fromap :: · · · :: a1 :: a0. This entails thatδ′ can only modify the objects
bound to some location reachable fromap :: · · · :: a0, the other objects are the same
in µ and inµ′. As a consequence,δ does not change the set of objects which can
be reached from any local variable or any stack element ins which does not share
with any updated parameter amongap :: · · · :: a0. That is,len(li, µ) = len(li, µ′)
for every0 ≤ i < lq such thatli does not share with any updated parameter, and
len(si, µ) = len(si, µ′) for every0 ≤ i < x such thatsi does not share with any
updated parameter. Since our pair-sharing analysis is correct, we conclude that for
everyši = ŝi ∈ US we have thatsi does not share with any updated parameter and

78 · F. Spoto and F. Mesnard and É. Payet

hence
(

ˇlen(σ) ∪ ˆlen(δ(σ))
)

(ši) = ˇlen(σ)(ši)

= len(si, µ)

= len(si, µ′)

= ˆlen(δ(σ))(ŝi)

=
(

ˇlen(σ) ∪ ˆlen(δ(σ))
)

(ŝi) .

We conclude thatˇlen(σ) ∪ ˆlen(δ(σ)) |= ši = ŝi. Similarly ˇlen(σ) ∪ ˆlen(δ(σ)) |=

ľi = l̂i for everyľi = l̂i ∈ UL. By Lemma 58 this entails thaťlen(σ) ∪ ˆlen(δ(σ)) |=
US ∪ UL.

11.5 Proof of Theorem 52

PROOF. It is a consequence, by induction, of Propositions 46, 47 and 48 and of the fact
that we use a widening operator proved correct in [Bagnara et al. 2005].

