
HAL Id: hal-01816473
https://hal.univ-reunion.fr/hal-01816473

Submitted on 16 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Categorizing or Generating Relation Types and
Organizing Ontology Design Patterns

Philippe Martin, Jérémy Bénard

To cite this version:
Philippe Martin, Jérémy Bénard. Categorizing or Generating Relation Types and Organizing Ontology
Design Patterns. KAM’17, 23rd IEEE conference on Knowledge Acquisition and Management, Sep
2017, Prague, Czech Republic. pp.1109-1117. �hal-01816473�

https://hal.univ-reunion.fr/hal-01816473
https://hal.archives-ouvertes.fr



Abstract—This article proposes an ontology design pattern
leading knowledge providers to represent knowledge in more
normalized, precise and inter-related ways, hence in ways that
help automatic matching and exploitation of knowledge from
different sources. This pattern is also a knowledge sharing
best practice that is domain and language independent. It can
be used as a criteria for measuring the quality of an ontology.
This pattern is: “using binary relation types directly derived
from concept types, especially role types or process types”. The
article explains this pattern and relates it to other ones,
thereby illustrating ways to organize such patterns. It also
provides a top-level ontology for generating relation types
from concept types, e.g., those from lexical ontologies such as
those derived from the WordNet lexical database. This
generation and categorization helps normalizing knowledge,
reduces having to introduce new relation types and helps
keeping all the types organized.

I. INTRODUCTION

NTOLOGY Design Patterns (ODPs) are “modeling
solutions to solve a recurrent ontology design

problem” [1]. A “Conceptual ODP” describes a best practice
(BP) for content modelling [1]. Since we only consider
ODPs that represent BPs, we use these two terms
interchangeably in this article to ease its reading. Many
ODPs have been described. E.g., about 160 are registered in
the ODP catalog at http://ontologydesignpatterns.org which,
in this article, will now be referred to as ODPC. Despite
these ODPs, most of thousands of existing ontologies that
exist are still poorly inter-connected and heterogeneous in
their design. It is then difficult for people and automated
agents to compare or match such independently created
knowledge representations (KRs, e.g., types or statements)
to know if some KRs are equivalent to others or
specializations of others. Thus, it is difficult for people and
automated agents to align and aggregate – and thus, relate,
infer from, search or exploit – KRs or ontologies.

O

In other words, there is a need for ODPs specifically
aimed for knowledge modeling and sharing – as opposed to
knowledge exploitation with computational tractability
constraints – and, more precisely, specifically aimed for
solving the problem of leading knowledge providers to
create more matchable and re-usable KRs. As later detailed,

This work was not supported by any organization.

this implies leading them to create more precise,
normalized, well related and easy-to-understand KRs. To be
adopted, these ODPs should also be easy to follow and easy
to use as criteria for automatically measuring the quality of
an ontology, to help developing an ontology or selecting
ontologies to re-use. Finally, the ODPs – or, at least the
knowledge sharing ODPs – should be well inter-related by
semantic relations to help people i) know about them and
their advantages, and ii) select those they want to commit
to. Then, tools can check or enforce these commitments.

This article proposes such a knowledge sharing focused
ODP and relates it to other ones, via specialization relations
and gradual pattern relations. This BP, which in this article
will now be referred to as ABP, is: “using binary relation
types directly derived from concept types, especially role
types or process types”. No ODP catalog appears to include
ODPs similar to this one or to any of its parts. Like most
BPs, it is domain and language independent. The sections 2,
3 and 4 explain, formalize and illustrate the different parts
of ABP. Section 5 relates them to other ODPs and thereby
also gives more rationale.

II. USING BINARY RELATIONS

ABP starts by advocating the use of binary relations, i.e.,
logical statements based on binary predicates. In the RDF
model, these statements are called triples and binary
relation types are called properties. In this article, types that
are not relation types (RTs) are refered to as concept types
(CTs), i.e., classes in the RDF model. The expression
concept individual will be used for anything that is neither
a type nor a relation.

Since ABP is language independent, this article uses a
general terminology, one compatible with those for
Conceptual Graphs and RIF-FLD [2], the W3C Framework
for Logic Dialects of the Rule Interchange Format. For its
formal textual examples, this article uses RIF-FLD PS, the
Presentation Syntax of RIF-FLD. Indeed, this notation is
both expressive and rather intuitive. For clarity purpose too,
in the examples, RT names begin by “r__” and function
names begin by “f__”. Logical rules are used since RIF-
FLD is used and since this shows the direction the
implications are expected to be used. However, in each case,
a logical equivalence could also be used instead.

Categorizing or Generating Relation Types
and Organizing Ontology Design Patterns

Philippe A. Martin
University of La Réunion, EA2525 LIM,

Saint-Denis de la Réunion, F-97490 France
+ adjunct researcher of the School of I.C.T. at

Griffith University, Australia
Email: Philippe.Martin@univ-reunion.fr

Jérémy Bénard
 Uni. of La Réunion, EA2525 LIM and GTH, Logicells,

 55 rue Labourdonnais, 97400 Saint-Denis, France
Email: Jeremy.Benard@logicells.com

Following ABP does not prevent using non-binary RTs as
long as definitions or rules are also provided to enable the
automatic translation of “KRs using non-binary RTs” into
“KRs using binary RTs”. Table I illustrates such rules for
various kinds of use cases but only the third row is also
about the focus of Section 3, i.e., deriving a RT from a CT.

One reason why such definitions or rules are useful for
knowledge sharing is that binary relations can be compared
while two relations of different arities generally cannot. Two
types or KRs are comparable if and only if an equivalence
or specialization relation between them has been directly
stated or can be automatically inferred. Thus, KRs using
binary relations can be ordered by generalization relations,

typically, implications. This is more difficult with KRs
using relations of different arities, thus reducing
possibilities for knowledge matching or inferences. E.g., as
illustrated by Table I, some relations of different arities can
be translated into binary relations using a list as destination.
Then, they can be compared.

A related reason why such definitions or rules are useful
for knowledge sharing is that they make more information
explicit. As detailed it Section 5, normalizing knowledge,
enhancing its comparability or adding more information
have strong relationships.

In practice, with a KR language (KRL) allowing contexts
and sets or lists, it is easy to avoid the use of relations with

TABLE I.
EXAMPLES OF HOW TO DEFINE A GIVEN RT WITH RESPECT TO OTHER TYPES

(THE RIF­FLD PS NOTATION IS USED IN THE NON­HIGHLIGHTED PARTS; VARIABLES BEGIN BY “?”; “ :­” MEANS “<=”)

If you wish to (re-)use non-binary RTs, as in
 r__spatial_entity_between_3_other_ones (Jack Joe John Mary)

 Exists ?X (r__spatial_entity_between_2_other_ones (?X Joe John))
 instead of using binary RTs as in
 r__list_of_surrounding_entities (Jack List(Joe John Mary))
 Exists ?X (r__list_of_surrounding_entities (?X List(Joe John)))
 then provide ways to translate the 1st ones into the 2nd ones, e.g.,
 Forall ?A ?B ?C ?D (r__list_of_surrounding_entities (?A List(?B ?C ?D))
 :- r__spatial_entity_between_3_other_ones (?A ?B ?C ?D))
 since it is then much easier to make inferences, e.g., ?X = Jack
 and the above 3rd statement specializes (hence implies) the 4th

The above approach also works for contextualizations, e.g.,
 r__list-of-surrounding-entities_at-time (Jack Joe John D-Day)

 can automatically be translated into the binary relation
 r__list_of_surrounding-entities (Jack_at_D-Day List (Joe_at_D-Day John_at_D-Day))
This cannot be specified in RIF PS but something similar can be:
 Forall ?A ?B ?C ?time_T (
 Exists ?A_at_time_T ?B_at_time_T ?C_at_time_T (
 And (r__list_of_surrounding_entities (?A_at_time_T List (?B_at_time_T ?C_at_time_T))
 r__extended_specialization (?A ?A_at_time_T) r__time (?A_at_time_T ?time_T)
 r__extended_specialization (?B ?B_at_time_T) r__time (?B_at_time_T ?time_T))
 :- r__list-of-surrounding-entities_at-time (?A ?B ?C ?time_T)))

Similarly, if you wish to use RTs representing types of processes, as in

 r__landing (Joe Omaha_Beach D-Day) r__defining (Joe Square)
 instead of using classic primitive binary RTs as in
 Exists ?landing (And (?landing # landing // "?i # ?t" <=> instanceOf (?i ?t)
 r__agent(?landing Joe) r__place(?landing Omaha_Beach)
 r__time(?landing D-Day)))
 Exists ?defining (And (?defining # defining r__agent (? defining Joe)
 r__object (?defining "square")))
 then provide ways to translate the 1st ones into the 2nd ones, e.g.,
 r__directly_derived_relation (Landing r__landing)
 r__directly_derived_relation (Defining r__defining)

 Forall ?rel ?process ?agent ?time ?place (
 And (r__agent (?process ?agent) r__place (?process ?place) r__time (? process ?time))
 :- And (?rel (?agent ?place ?time) r__process (?rel ?process))

 Forall ?rel ?process ?agent ?object (
 And (r__agent (?process ?agent) r__object (?process ?object))
 :- And (?rel (?agent ?object) r__directly_derived_ relation (?process ?rel)))
 since it is then much easier to make inferences,
 e.g., for the statement in the next line, a match for ?X is Joe
 Exists ?A (And(r__agent (Landing ?A) r__agent (Defining ?A)))

arity greater than two. A context, i.e., a contextualizing
statement, is a meta-statement specifying restrictive
conditions for the contextualized statement to be true, e.g.,
via temporal relations or modalities. Although RIF-FLD is
not restricted to first-order logic, it lacks a construct for
expressing contextualizations in simple ways, as in KIF [3]
for example. However, the second row of Table I shows how
simple contextualizations can still be represented – albeit in
a rather cumbersome way – using binary relations. To that
end, this example uses an adaptation of the ODP named
Context Slices in ODPC [4]. It relies on introducing
concept individuals within contexts and relating them to
their context as well as to their context-independent
counterpart. This is an alternative to the more common
approach of reifying a statement and asserting a relation
between the reification and the context. With the reification
based approach, handling contexts is a bit more difficult
when simple KR management tools are re-used and
extended. Both approaches lead to rather lengthy statements
and are ad-hoc since they require extensions to inference
engines to fully handle them correctly. Therefore, for the
purpose of knowledge modeling and sharing – as opposed to
knowledge exploitation which comes after and may require
converting the knowledge into KRLs of reduced
expressiveness but which can be handled efficiently – a BP
is to i) use a KRL that handles contexts or use more ad-hoc
concise constructs, and then ii) provide or use rules for
translating into the various ways to represent contexts in
other KRLs. The same idea applies for the many ODPs that
deal with the problems of translating “KRs using high
expressive constructs” into “KRs using lower expressive
constructs”. E.g., in ODPC, there are many ODP for
translations into OWL or from OWL.

To conclude, although formally specifying the semantics
of relations of arity greater than two requires at least one
primitive ternary relation [5], in practice there is no
necessity to use such relations for knowledge modelling.

There is no claim here that the idea of “translating non-
binary RTs into binary ones or directly using them” is
original. Yet, it should be an ODP for various reasons: i) it
is useful, ii) some claims seemingly about the necessity of
using non-binary relations are actually claims about the
necessity of using constructs supporting different kinds of
contexts [6], and iii) this best practice is sometimes
unknown to users of KRLs allowing non-binary relations.

III. DERIVING RELATION TYPES FROM CONCEPT TYPES

ABP advocates the use of – or specifications of
translations into – binary RTs directly derived from CT”. A
CT may have multiple directly derived RTs if they have un-
comparable signatures, i.e., if none specializes another one.
The third row of Table I illustrated a way to directly derive
an RT from a CT using a rule and a relation of type
r__directly_derived_relation. The first two rows illustrate
the definitions of non-binary RTs mainly with respect to
binary RTs. This is useful as an intermediary step: the final
step – deriving these last binary RTs from a CT, e.g., one

named List_of_surrounding_entities – was not illustrated in
Table I.

Manually or automatically defining each RT with respect
to a CT makes additional information explicit and ensures
that every distinction in the (subtype) hierarchy of RTs is
also included in the CT hierarchy. This last point is
important for two reasons. First, it prevents some
knowledge providers to develop distinctions only in the RT
hierarchy while others develop distinctions only in the CT
hierarchy, thus leading to undetected redundancies within a
shared knowledge base or in different ontologies. Second, it
ensures that any distinction can be used – without losing
possibilities of knowledge representation and matching –
with both its CT form and its RT form. More possibilities
come from the CT form since i) unlike RTs, CTs can be
quantified in many different ways (e.g., “3 landings”, “all
landings” or “8% of landings” can only be described via the
CT “Landing”, not the RT r__landing), ii) CTs are easier to
organize by subtype relations than RTs, and iii) the number
of used or re-usable existing CTs is much greater than the
number of used or re-usable RTs. Thus, both cases lead to
better categorizations in the concept and relation hiearchies.

These advantages of using defined RTs come for free
when RTs are automatically derived from CTs and hence
defined with respect to them. Furthermore, such derivations
permits a system to display fewer types in the RT hierarchy
which is then easier to read and grasp. Indeed, the derived
RTs may be left hidden or may not have to be created at all.
This last option was used in the knowledge server Ontoseek
[7] and is used in the knowledge base server WebKB
(www.webkb.org; [8]). In Ontoseek, any type derived from
the noun-related part of the lexical ontology Sensus could
be re-used as a CT or a RT. WebKB also re-uses a lexical
ontology derived from WordNet. However, unlike Ontoseek,
WebKB only allows the subtypes of certain types to be re-
used as RTs. This is defined by specifications that users can
adapt. More precisely, this is defined by relation signatures
which are directly associated to certain top-level CTs.
Table II illustrates the approach and then gives rules that
would actually generate the derived RTs. The next section
complements this framework by giving an ontology of the
CTs these rules can be applied to. These RT generation rules
permit to formalize the framework. They rely on the
functions f__type_name and f__denotation_of_type_name
which are identical to the KIF functions name and
denotation formalized in the documentation of KIF [3]. In
WebKB, such rules are not actually executed but a more
efficient process relying on the same idea is used. Indeed,
during the parsing of statements, whenever a CT is used
where a RT is expected, WebKB simply checks that one of
the signatures associated to the CT is respected and acts as
if the relevant derived RT was actually used. Thus, in
WebKB, there is no need to use the actual names of the
virtually derived RTs: the CT names can be used directly. As
in the framework described by Table II, signatures are
inherited along subtype relations between CTs and an error
is generated if a CT is associated to two signatures that are
comparable. This approach and ODP seem original.

IV. DERIVING FROM ROLE TYPES OR PROCESS TYPES

ABP advocates the derivation of RTs from CTs,
“especially role types or process types”. The third row of
Table I illustrated this for processes. In this article, a
process refers to a situation that is not a state, and hence
that makes a change. A situation is something that occurs
in a real/imaginary region of time and space. These

conceptual distinctions come from the Situation Semantics
[9] and are the basis of John Sowa's first top-level ontology
[10]. There are re-used in this article for at least the
following reasons:

• They are rather intuitive and generalize other well
known types. E.g., Perdurant from Dolce [11] is
subtype of Process.

TABLE II.
RULES FOR AUTOMATICALLY DERIVING A BINARY RT FROM A CT (AND, IF NEEDED,DOING SO FOR ALL ITS SUBTYPES)

BASED ON A KIND OF SIGNATURE ASSOCIATED TO THIS CT
(NOTE: IN THESE EXAMPLES, THE TYPES CREATED BY THE AUTHORS OF THIS ARTICLE HAVE NO PREFIX TO INDICATE THEIR NAMESPACE).

Table I gave examples of how a rule can define a RT with respect to a CT. This had to be done for each RT. Here, the
approach is simpler. The derived RT does not have to be explicitly defined. Its signature is directly associated to the CT
via a relation of type r__signature_for_derived_binary_relation or a function of type f__derived_binary_relation.

Thanks to the definitions given in the next row of this table, the derived RT is automatically created.
A CT may have different RT signatures associated to it, as long as the signatures are un-comparable, i.e., as long as
none specializes another.

 r__signature_for_derived_binary_relation (Father List (Animal Male))
 //-> associates a signature to the CT Father and derives the RT r__father with domain an Animal and range a Male

 Forall ?t (r__signature_for_derived_binary_relation (?t List (Thing ?t))
 :- ?t ## Thing_usable_for_deriving_a_binary_relation_with_that_thing_as_destination
 // "##" means "is subtype of"; "#" means "is instance of"; this rule derives the expected RT for each
 // subtype of Thing_usable_for_deriving_a_binary_relation_with_that_thing_as_destination

 Forall ?processType Exists ?r
 And (?r = f__ derived_binary_relation (?processType List (Agent Object))
 Forall ?process ?agent ?object And (r__agent (?process ?agent) r__ object (?process ?object))
 :- And (?process # ?processType ?r (?agent ?object)))
 :- ?processType ## Process //this rule derives the expected RT for each subtype of Process

Furthermore, the derived RTs have the same subtype relations as the CTs they derive from. However, to keep things
simple, it is here assumed that no RT with the same name as the derived RT has previously been manually created.
The RT name is created by taking the CT name, lowering its initial and prefixing it with “r__”. The functions
f__denotation_of_type_name, f__type_name, f__cons, f__cdr, f__lowercase used below are identical to their
counterparts (without the prefix “f__”) in KIF.

 Forall ?t ?r__t ?t_domain ?t_range ?t_supertype ?r__t_supertype ?t_sup_domain ?t_sup_range (
 And (rdfs:domain (?r__t ?t_domain) rdfs:range (?r__t ?t_range)
 ?r__t = f__denotation_of_type_name (f__cons (f__lowercase (f__car (f__type_name (?t)))
 f__cdr (f__name (?t)))
 ?r__t ## ?r__t_supertype //"##" means "is subtype of"
 :- And (?t ## ?t_supertype
 ?r__t_supertype = f__ derived_binary_relation (?t_supertype
 List (?t_sup_domain ?t_sup_range)))
)
 :- ?r__t = f__derived_binary_relation (?t List (?t_domain ?t_range)))

 Forall ?t ?t_domain ?t_range (
 Exists ?r__t (?r__t = f__ derived_binary_relation (?t List (?t_domain ?t_range)))
 :- r__signature_for_derived_binary_relation (?t List (?t_domain ?t_range)))

Other rules can be built upon these last ones, e.g., this rule for deriving functional binary relations:

Forall ?t ?t_domain ?t_range Exists ?r__t (
 And (?r__t = f__ derived_binary_relation(?t List (?t_domain ?t_range))
 ?r__t # owl:FunctionalProperty) //"#" means "is instance of"; owl:FunctionalProperty is a 2nd-order type
 :- r__signature_for_derived_functional_binary_relation (?t List (?t_domain ?t_range))

• They are very adequate for the signatures of thematic
relations [12], e.g., r__agent, r__recipient, r__cause,
r__instrument. Such types are top-level types of
relations from a process.

• In this article, a role type (e.g., Agent, Experiencer,
Recipient, Cause, Instrument) is a CT which is
defined – or could be defined – as being the range of
a thematic RT. This informal definition of a role is a
bit more general than what is usually thought to be a
role type [13] but here it is sufficient: as defined in
this article, processes and role types can be used for
deriving CTs into binary RTs.

• Thematic RTs or their subtypes can also be used for
defining most RTs. Thus, doing so normalizes KRs.

• Most statements implicitly or explicitly refer to a
process. Representing it, either directly or via RTs
directly derived from a process, strongly normalizes
KRs. Not doing so, which unfortunately is the case in
many ontologies, amounts to losing precisions and
many KR comparison possibilities.

Fig. 1 compares CTs usable for directly deriving a binary
RT with other types. The common supertype of these CTs is
Thing_usable_for_directly_deriving_a_binary_relation. Only
its subtypes can be used for deriving binary RTs; this

owl:Thing
 Thing_usable_for_directly_deriving_a_binary_relation

 Thing_usable_for_directly_deriving_a_unary_function

 wn:employer wn:seller wn:price wn:license

 {complete, not disjoint}

 Thing_usable_for_deriving_a_binary_relation_without_that_thing_as_destination

 Thing_usable_for_deriving_a_binary_relation_with_that_thing_as_destination

Entity Situation sowa:Independent_thing Thing_playing_some_role

 State Process sowa:Relative_thing sowa:Mediating_thing

 dolce:Perdurant wn:component_part wn:relation

 Situation_playing_some_role wn:marriage /* ”marriage” as a
 ”social relation” CT,
 wn:outcome not as a process,
 state nor instance of
 dolce:Endurant a RT */

 Entity_playing_some_role

 wn:recipient

Spatial_entity Non­spatial_entity

 Attribute_or_quality_or_measure

 wn:measure wn:attribute wn:property

 Description_content/medium/container

 wn:subject_matter wn:language_unit wn:file

Legend: i) the arrow “ ” represents a supertype (subClassOf) relation, ii) by default, each
subclass set is here a subclass partition, hence its “{disjoint, complete}” UML annotation is left
implicit, ii) for name-spaces, XML shortcuts are used but type names created by the authors of this article
have no prefix, iv) “wn” refers to WordNet, v) “(*)” is the RT signature for any set of arguments, vi)
comments are delimited by “/*” and “*/”, vii) for readability purposes, the boxes around classes
(concept types) are not drawn.

Fig. 1. Slightly adapted UML representation of a subtype hierarchy to compare the type Thing_usable_for_directly_deriving_a_binary_relation with other types.

includes types for processes and roles. Fig. 2 illustrates
subtype relations between such derived RTs. Fig. 3 displays
common top-level types for relations from a process, most
of which are thematic RTs. Fig. 3 re-uses top-level types
shown in Fig. 1. All the types in these figures are part of the
Multi-Source Ontology (MSO [14]) which is accessible and
cooperatively updatable via WebKB. Hence, the names in
these figures are names accessible via this Web server.
However, these figures have not previously been published.

The MSO includes more than 75,000 categories and
relates them by more than 100,000 relations, mainly
subtype relations. It categorizes WordNet types as well as
types from various top-level ontologies (DOLCE included)
with respect to the types shown in Fig. 1 or specializations
of them. More precisely, about a hundred of top-level
WordNet types and some more specialized WordNet types
were manually set as subtypes of those in Fig. 1 or
specializations of them. Thus, in the subtype hierarchy of
the MSO for things usable for directly deriving a binary
relation, there are currently more than 4800 process types,
2900 role types (for things playing some role), 650 types of
attributes or qualities or measures and 240 types of
description content/medium/container. This makes more
than 8600 types usable for creating relations without having
to declare new RTs. The 4800 process types can also be used
directly with relations from a process. Finally, the types
shown in Fig. 3 for these relations can implicitly or
explicitly be specialized by types derived from the 2900 role
types. To sum up, the proposed approach and the MSO
permit people and automated agents to create KRs that are
well normalized, inter-related and comparable. Furthermore
re-using the approach and content of the MSO to extend
other ontologies is eased by the fact that i) the MSO relates,
generalizes and specializes types from various other

ontologies, and ii) the MSO can be complemented online
via WebKB.

In Fig. 1, the types named Relative_thing and
Mediating_thing come from John Sowa's second top-level
ontology [15].

To show how rules can be used to associate a signature to
a CT and thereby to a derived RT, examples in Table II used
a process type and the type of things usable for deriving a
binary relation with it as destination. Similar rules can be
used for other types of things usable for deriving a binary
relation”. Fig. 2 shows how the various relations types
– derived or not from CTs – can be related by subtype
relations. Organizing relations of different arities is
permitted by the use of “*” in the relation signatures: it
refers to any number of arguments. In Fig. 2, a signature is
shown as an ordered list of comma-separated arguments,
within parenthesis. Both KIF and RIF-FLD allow relations
with a variable number of arguments. However, unlike in
KIF, there is no special construct in RIF-FLD for
definitions, hence for signatures.

ODPC includes the DOLCE+DnS-Ultralite ontology [16]
and categorizes it as Content ODP. ODPC also includes
related but smaller content ODPs such those named
ActingFor and Agent-Role. Its DnS (Descriptions and
Situations) part includes some types which can be seen as
subtypes of those in Fig. 3. ODPC proposes many RTs
which could be – but, it seems, are not – derived from
process types, e.g., RTs with names such as actsFor,
conceptualizes or defines. Yet, some of its CTs have been
aligned with OntoWordNet [17]. Thus, the ontology and
approach proposed in this section and the previous one
could be used to extend and normalize DOLCE+DnS-
Ultralite. This would support more KR comparison
possibilities.

 r__relation (*)

r__relation_from_a_situation r__relation_not_directly_derived_from_a_concept_type
(Situation, *) (*)

 r__relation_from_an_entity r__relation_directly_derived_from_a_concept_type
 (Entity, *) (*)

 r__spatial_entity_between_2_other_ones r__landing
 (Spatial_entity, Spatial_entity, Spatial_entity) (Agent, Place, Time)

 r__binary_relation_directly_derived_from_a_thing_usable_for_deriving_a_binary_relation_with_that_thing_as_destination
 (*, Thing_usable_for_deriving_a_binary_relation_with_that_thing_as_destination)

r__outcome (Situation, Situation)

Legend: same as in Fig. 1; each RT signature is delimited by parenthesis; “*” refers to 0 or more arguments of any type.

Fig. 2. Subtype hierarchy of some relation types derived from subtypes of the concept type Thing_usable_for_directly_deriving_a_binary_relation.

V. RELATING TO OTHER ODPS

To be adopted, knowledge sharing ODPs should be well
inter-related by semantic relations to help people know
about them and the criteria or advantages they fulfill. Thus,
people can search and select ODPs to commit to. Then,
tools can check or enforce these commitments, or retrieve
ontologies satisfying them.

Thus, ideally, ODPs should at least be organized into
categories related by specializations and exclusion relations,
as in the hierarchy presented in Fig. 1. However, this is not
easy. The most organized of current ODPC or BP
repositories [18] seems to be ODPC. It organizes its ODPs
into a specialization hierarchy with a first level of six
categories. Each of them has 0 to 3 sub-levels. These six
categories and their current content are:

• Content ODP: 101 ontologies, some having only a few
types.

• Reasoning ODP: no ODP has yet been submitted in this
category.

• Structural ODP: 1 ODP in the Architectural ODP
category – BPs about the structure of an ontology, e.g.,
the use of subtype partitions, i.e., unions of disjoint
types as in Fig. 1 – and 13 in the Logical ODP category
– translations between constructs from KRLs of
different expressiveness.

• Correspondence ODP: 12 in the Reengineering ODP
category – meta-model transformation rules to create
ontologies from structured but less formal and semantic
sources – and 13 in the Alignment ODP category
– these ODPs are examples of RTs between elements
from different ontologies.

r__relation_to_another_spatial_entity r__relation_to_another_spatial_entity

 Spatial_entity Temporal_entity

r__relation_from_process_to_spatial_entity r__relation_from_process_to_temporal_entity
 /* e.g., r__beginning_place, r__place, /* e.g., r__beginning_time, r__ duration,
 r__end_place, r__places */ r__time , r__end_time, r__frequency */

 r__predecessor_state r__successor_state
 /* e.g., r__beginning_state, /* e.g., r__end_state,
 r__cause, r__consequence, r__purpose,
 r__precondition */ r__postcondition */
State Process State

r__relation_from_process_to_event r__relation_from_process_to_process_attribute
/* e.g., r__triggering_event, /*e.g., r__manner, r__speed */
 r__ending_event */
 Process_attribute

Event /* Process seen as r__relation_to_another_process
instantaneous from the viewpoint /* e.g., r__sub-process, r__method */
of the agent asserting relations
from this process */ r__relation_to_process_participant /* e.g.,
 r__relation_to_used_object (e.g.,
 r__input-output_object, r__ parameter,
 r__relation_to_description r__material, r__instrument),
 /* e.g., r__description */ r__relation_to_created-or-modified_object (e.g.,
 r__input-output_object, r__generated_object),
 r__relation_to_participating_agent (e.g.
 Description r__agent, r__initiator)
 r__relation_to_participating_agent (e.g.,
r__relation_to_another_description r__patient, r__experiencer, r__recipient) */
 /* e.g., r__sub-description,
 r__correction */ Process_participant /* e.g., Agent (Person or
 Automated_agent) */

Legend: same as in Fig. 1 plus i) arrows with dashed lines are relations like UML associations,
i.e., the source is universally quantified and a cardinality (or multiplicity) is associated to the
destination; here, each cardinality is either “0 to many” or “1 to many”, and is left implicit; and
ii) comments are enclosed within “/*” and “*/”; “e.g.,” is used for introducing subtypes.

Fig. 3. Examples of common types of relations from a process; most of them are thematic RTs.

• Lexico-Syntactic ODP: 20 linguistic structures for
extracting KRs or displaying them, as with a controlled
language.

• Presentation ODP: no submission of ODP has yet been
submitted in this category about the usability and
readability of ontologies. It has two subcategories:
Annotation ODP and Naming ODP.

All these categories are not exclusive. An ODP can be
placed in several of them. E.g., the ODPs listed in the
sections 2, 3 and 4 seem to be architectural ODPs as well as
logical ODPs and, for some of them, also Content ODP,
e.g., the DOLCE+DnS-Ultralite. The ODPs we gave in
Section 5 are Naming ODPs but are also related to
Structural ODPs.

Since there are multiple categorization possibilities,
different persons will search or add a same ODP in different
categories, thus leading to less relations between the ODPs
and more undetected redundancies, as noted in the previous
sections. This structure also does not lead ODP providers to
collaboratively build a finely organized hierarchy or graph
of ODPs. Such a structure could be obtained by formally
representing each ODP as a process, using a same base
ontology, e.g., the MSO, hence with the types shown in
Fig. 1 and Fig. 3 as top-level types. Most of the subtype
relations between ODPs could then be automatically
calculated. Although this approach would scale well, such a
formal and homogenous representation would be a huge
work and would require quite motivated ODP providers.

Furthermore, relations to criteria and advantages would
still probably not be sufficient since relating ODPs to
criteria – or processes representing these criteria – is
difficult. Therefore, for the ODPs advocated in this article,
another approach has been adopted: i) manually setting
subtype relations between ODPs or BPs represented as

process types, and ii) using positive gradual pattern
relations. Fig. 4 is the result.

These last relations represent rules of the form “the more
X, the more Y”. [19] gives a formalization for such
relations. Arrows with dashed lines are positive gradual
pattern relations. E.g., the dashed arrow from “keeping the
types organized” to “avoiding undetected redundancies” can
be read “the more `keeping the types organized´ is achieved,
the more `avoiding undetected redundancies' is achieved´ ”.

This last particular rule refers to the idea that was
mentioned again two paragraphs ago and which could be
rephrased as: “the more a KR (type or statement) has a
`unique place´ [20] in a hierarchy of KRs, the less chances
there are that another person will add an equivalent KR in
another place”. E.g., as opposed to subtype hierarchies,
taxonomies relate objects (terms, documents, ...) with
relations which are neither typed nor formal. Thus, people
use these relations for representing subtypes, parts,
instances, agents, etc. This leads to hierarchies that are
difficult to search and that often have redundancies. When
subtype partitions are used, this is far less the case. This is
also far less the case when the hierarchy is automatically
built based on the definition of each type. Like subtype
relations, gradual pattern relations are typed and transitive.
Hence, if used correctly, each KR can have a unique place
[20] in the graph formed by these transitive relations.
However, gradual pattern relations do not enable as many
automatic checking possibilities as subtype partitions.

Given the explanations provided in the previous sections,
the relations in Fig. 4 should now be understandable. The
use of gradual pattern relations between ODPs or BPs is
original. The direct setting of subtype relations between
them also seems original.

"using RTs directly derived from CTs" "keeping the RT "using precise statements"
 hierarchy small"
 "using binary RTs" "avoiding undetected
 redundancies"
 "keeping
"using binary "using types "using normalized
 RTs directly primitive organized" statements"
 derived "using (hence
 from CTs" process binary) "using "using
 types" RTs precise and easy­to­understand
"using binary normalized statements"
 RTs directly "following the statements"
 derived from CTs, graph­based "using well related and
 especially role types reading easy­to­compare statements"
 or types of process" convention"

Legend: same as in Fig. 3 except that arrows with dashed lines now represent positive gradual pattern
relations; relations inherited via subtype relations are left implicit, e.g., like those inherited by “using
precise and normalized statements”.

Fig. 4. Supertype relations and gradual pattern relations between ABP (the BP advocated in this article;
see the BP name in italic bold characters at the bottom left of the figure) and related BPs.

VI. CONCLUSION

Knowledge sharing is difficult. It implies satisfying many
criteria – and following various BPs – which, as Fig. 4
showed, are inter-related. To provide such BPs and ways to
follow them, this article has focused on the idea of deriving
RTs from CTs and has shown the relationships between this
ODP to other ones for knowledge modeling and sharing.
Some of these ODPs were already known, several were
original.

This article also provided various kinds of ODPs.
According to the categories of ODPC, these are
architectural, logical, content and naming ODPs. However,
given their inter-relations and the focus on derivation
mechanisms, it is also true that this article focused on one
ODP – the one named ABP – composed of simpler ODPs.

The ODPs we proposed are applied to – and supported
by – the MSO which includes more than 75,000 categories
and which is accessible and updatable online via the
WebKB shared knowledge base server. Together, these
resources and tools help people and automated agents create
KRs that are more normalized, inter-related, comparable
and understandable. Furthermore, the multi-source nature
of the MSO would help applying the proposed content
ODPs to other ones such as DOLCE+DnS-Ultralite.

Finally, the following of the proposed ODPs can easily be
tested, e.g., via SPARQL queries on an ontology or,
interactively, within WebKB. For example, it is easy to test
if each RT is defined with respect to one CT. This makes
these BPs usable as criteria for selecting ontologies.

This work will be extended by relating knowledge
sharing techniques, BPs and criteria, via specialization
relations and gradual pattern relations. Negative gradual
pattern relations – “the more X, the less Y” – will also be
used. The focus will be on representing various approaches
to knowledge sharing, e.g., those based on formal
documents, those based on collaborative editing within a
shared ontology server and those based on knowledge
exchange between ontology servers. Thanks to their
organization by specialization relations and gradual pattern
relations, the various kinds of ways to share knowledge and
their respective advantages and drawbacks should be
clearer.

REFERENCES

[1] A. Gangemi, and V. Presutti, “Ontology Design Patterns,” Handbook on
Ontologies, 22 May 2009, pp. 221-243, http://doi.org/10.1007/978-3-
540-92673-3_10

[2] H. Boley, and M. Kifer (eds.), RIF Framework for Logic Dialects (2nd
edition). W3C Recommendation 2013, http://w3.org/TR/2013/REC-rif-
fld-20130205/

[3] M. Genesereth, and R. Fikes, Knowledge Interchange Format, Version
3.0, Reference Manual. Technical Report 1992, Logic-92-1, Stanford
Uni., http://www.cs.umbc.edu/kse/

[4] C. Welty Context Slices. 2010
http://ontologydesignpatterns.org/wiki/Submissions:Context_Slices

[5] J. Correia, and R. Pöschel, “The Teridentity and Peircean Algebraic
Logic,” LNCS 4068, Springer Berlin, 2006, pp. 229–246,
http://doi.org/10.1007/11787181_17

[6] G. Zarri, Representation and Management of Narrative Information:
Theoretical Principles and Implementation. Springer, Series: Advanced
Information and Knowledge Processing, 312 pages, 2009,
http://doi.org/10.1007/978-1-84800-078-0

[7] N. Guarino, C. Masolo, and G. Vetere, “Ontoseek: Content-based Access
to the Web,” IEEE Intelligent Systems, vol. 14, no. 3, 1999, pp. 70–80,
http://doi.org/10.1109/5254.769887

[8] P. Martin, “Collaborative knowledge sharing and editing,” IJCSIS, vol.
6, Issue 1, 2011, pp. 14–29, http://www.worldcat.org/issn/1646-3692

[9] J. Barwise, J. Gawron, and G. Plotkin, Situation Theory and its
Applications. CSLI publications, 2000, 655 pages,
http://www.worldcat.org/oclc/947127096

[10] J.F. Sowa, “Conceptual Graphs Summary,” Conceptual Structures:
current research and practice, Ellis Horwood, 1992, pp. 3–51,
http://www.worldcat.org/oclc/856836888

[11] S. Borgo, and C. Masolo, “Ontological Foundations of DOLCE,”
Theory and Applications of Ontology: Computer Applications, R. Poli,
M. Healy, and A. Kameas (eds.), Springer, 2010, pp. 279–295,
http://doi.org/10.1007/978-90-481-8847-5_13

[12] A. Carnie, Syntax: A Generative introduction. Wiley-Blackwell
publishers, 2013, http://www.worldcat.org/oclc/779740455

[13] R. Mizoguchi, K. Kozaki, K., and Y. Kitamura, “Ontological Analyses of
Roles,” IEEE FedCSIS 2012, pp. 489–496, oclc: 5873174590.

[14] Ph. Martin, “Correction and Extension of WordNet 1.7,” LNAI 2746,
pp. 160–173, ICCS 2003, http://doi.org/10.1007/b11835, see also
http://www.webkb.org/doc/MSO.html

[15] J.F. Sowa, Knowledge Representation: Logical, Philosophical, and
Computational Foundations. Boston : Course Technology, 2012, 594
pages, http://www.worldcat.org/oclc/819364955, see also
http://www.jfsowa.com/ontology/toplevel.htm

[16] Gangemi, A.: DOLCE+DnS-Ultralite, RDF+OWL ontology at
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl

[17] A. Gangemi, N. Guarino, and A. Oltramari, “Restructuring Wordnet's
Top-Level,” AI Magazine, vol. 40, no. 5, 2002, pp. 235–244.

[18] M. Poveda-Villalón, M.C. Suárez-Figueroa, and A. Gómez-Pérez,
“Reusing Ontology Design Patterns in a Context Ontology Network,” in
Proc. WOP 2010, CEUR-WS.org vol. 671, pp. 35–49,
http://www.worldcat.org/oclc/5495106523

[19] S. Ayouni, A. Laurent, S. Ben Yahia, and P. Poncelet, “Mining closed
gradual patterns,” LNCS 6113, ICAISC 2010, pp. 267–274, Springer-
Verlag Berlin, Heidelberg, http://www.worldcat.org/oclc/3719235

[20] G. Dromey, “Scaleable Formalization of Imperfect Knowledge,” in Proc.
AWCVS 2006, Macau, China, http://www.worldcat.org/oclc/669648707

http://dx.doi.org/10.1016/S1097-2765
http://www.worldcat.org/oclc/669648707
http://www.worldcat.org/oclc/3719235
http://www.worldcat.org/oclc/5495106523
http://www.worldcat.org/oclc/5873174590
https://doi.org/10.1007/11787181_17

