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

Abstract—This article  proposes an ontology design pattern
leading knowledge providers to represent knowledge in more
normalized, precise and inter-related ways, hence in ways that
help automatic  matching and exploitation of knowledge from
different  sources.  This  pattern  is  also  a  knowledge  sharing
best practice that is domain and language independent. It can
be used as a criteria for measuring the quality of an ontology.
This pattern is:  “using binary relation types directly derived
from concept types, especially role types or process types”. The
article  explains  this  pattern  and  relates  it  to  other  ones,
thereby  illustrating  ways  to  organize  such  patterns.  It  also
provides  a  top-level  ontology  for  generating  relation  types
from concept types, e.g.,  those from lexical ontologies such as
those  derived  from  the  WordNet  lexical  database.  This
generation  and  categorization  helps  normalizing  knowledge,
reduces  having  to  introduce  new  relation  types  and  helps
keeping all the types organized.

I. INTRODUCTION

NTOLOGY  Design  Patterns  (ODPs)  are  “modeling
solutions  to  solve  a  recurrent  ontology  design

problem” [1]. A “Conceptual ODP” describes a best practice
(BP)  for  content  modelling  [1].  Since  we  only  consider
ODPs  that  represent  BPs,  we  use  these  two  terms
interchangeably  in  this  article  to  ease  its  reading.  Many
ODPs have been described. E.g., about 160 are registered in
the ODP catalog at http://ontologydesignpatterns.org which,
in  this  article,  will  now be referred  to as  ODPC. Despite
these ODPs, most of thousands of existing ontologies that
exist are still  poorly inter-connected and heterogeneous in
their  design.  It  is  then  difficult  for people and  automated
agents  to  compare  or  match such  independently  created
knowledge representations (KRs, e.g.,  types or statements)
to  know  if  some  KRs  are  equivalent  to  others  or
specializations of others. Thus, it is difficult for people and
automated agents to align and aggregate – and thus, relate,
infer from, search or exploit – KRs or ontologies.

O

In other  words, there  is  a  need  for  ODPs  specifically
aimed for knowledge modeling and sharing – as opposed to
knowledge exploitation  with  computational  tractability
constraints – and, more  precisely,  specifically  aimed  for
solving  the  problem  of  leading  knowledge  providers  to
create more matchable and re-usable KRs. As later detailed,
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this  implies  leading  them  to  create  more  precise,
normalized, well related and easy-to-understand KRs. To be
adopted, these ODPs should also be easy to follow and easy
to use as criteria for automatically measuring the quality of
an  ontology,  to  help  developing  an  ontology or  selecting
ontologies  to  re-use.  Finally,  the  ODPs  – or,  at  least  the
knowledge sharing ODPs – should be well inter-related by
semantic relations to help people i) know about them and
their  advantages,  and ii) select those they want to commit
to. Then, tools can check or enforce these commitments.

This  article proposes such a knowledge sharing  focused
ODP and relates it to other ones, via specialization relations
and gradual pattern relations. This BP, which in this article
will now be referred to as  ABP, is:  “using binary relation
types  directly  derived  from concept  types,  especially  role
types or process types”. No ODP catalog appears to include
ODPs similar  to this one or to any of its parts.  Like most
BPs, it is domain and language independent. The sections 2,
3 and 4 explain, formalize and illustrate the different parts
of ABP. Section 5 relates them to other ODPs and thereby
also gives more rationale.

II. USING BINARY RELATIONS

ABP starts by advocating the use of binary relations, i.e.,
logical  statements based on binary predicates.  In the RDF
model,  these  statements  are  called  triples and  binary
relation types are called properties. In this article, types that
are not relation types (RTs) are refered to as  concept types
(CTs),  i.e.,  classes in  the  RDF  model.  The  expression
concept individual will be used for anything that is neither
a type nor a relation.

Since  ABP is  language independent,  this  article  uses a
general  terminology,  one  compatible  with  those  for
Conceptual Graphs and RIF-FLD [2], the W3C Framework
for Logic Dialects of the Rule Interchange Format.  For its
formal textual examples, this article uses RIF-FLD PS, the
Presentation  Syntax  of RIF-FLD.  Indeed,  this  notation  is
both expressive and rather intuitive. For clarity purpose too,
in  the  examples,  RT names  begin  by “r__”  and  function
names begin by “f__”.   Logical  rules are used since RIF-
FLD  is  used  and  since  this  shows  the  direction  the
implications are expected to be used. However, in each case,
a logical equivalence could also be used instead.
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Following ABP does not prevent using non-binary RTs as
long as definitions or rules are also provided to enable the
automatic translation of “KRs using non-binary RTs” into
“KRs using binary RTs”.  Table I illustrates such rules for
various kinds  of use cases but only the  third  row is  also
about the focus of Section 3, i.e., deriving a RT from a CT.

One reason why such definitions or rules are useful for
knowledge sharing is that binary relations can be compared
while two relations of different arities generally cannot. Two
types or KRs are comparable if and only if an equivalence
or specialization  relation between them has been  directly
stated  or can be automatically  inferred.  Thus,  KRs using
binary relations can be ordered by generalization relations,

typically,  implications.  This  is  more  difficult  with  KRs
using  relations  of  different  arities,  thus  reducing
possibilities for knowledge matching or inferences. E.g., as
illustrated by Table I, some relations of different arities can
be translated into binary relations using a list as destination.
Then, they can be compared.

A related reason why such definitions or rules are useful
for knowledge sharing is that  they make more information
explicit.  As detailed it  Section 5,  normalizing  knowledge,
enhancing  its  comparability  or  adding  more  information
have strong relationships. 

In practice, with a KR language (KRL) allowing contexts
and sets or lists, it is easy to avoid the use of relations with

TABLE I.
EXAMPLES OF HOW TO DEFINE A GIVEN RT WITH RESPECT TO OTHER TYPES 

(THE RIF­FLD PS NOTATION IS USED IN THE NON­HIGHLIGHTED PARTS;  VARIABLES BEGIN BY “?”;  “ :­” MEANS “<=”)

If  you wish to (re-)use non-binary RTs, as in
      r__spatial_entity_between_3_other_ones ( Jack   Joe  John  Mary )

       Exists ?X ( r__spatial_entity_between_2_other_ones (?X  Joe  John) )
   instead of using binary RTs as in
       r__list_of_surrounding_entities ( Jack   List( Joe  John  Mary )  )
       Exists ?X ( r__list_of_surrounding_entities ( ?X   List( Joe  John ) ) )
   then provide ways to translate the 1st ones into the 2nd ones, e.g.,
       Forall  ?A  ?B  ?C  ?D  (  r__list_of_surrounding_entities ( ?A  List( ?B  ?C  ?D ) )
                                              :- r__spatial_entity_between_3_other_ones ( ?A  ?B  ?C  ?D )  )
   since it is then much easier to make inferences, e.g.,  ?X = Jack
   and the above 3rd statement specializes (hence implies) the 4th

The above approach also works for contextualizations, e.g.,
      r__list-of-surrounding-entities_at-time ( Jack   Joe  John    D-Day )

   can automatically be translated into the binary relation
       r__list_of_surrounding-entities ( Jack_at_D-Day    List (Joe_at_D-Day   John_at_D-Day)  )
This cannot be specified in RIF PS but  something similar can be:
       Forall  ?A   ?B  ?C   ?time_T (
            Exists  ?A_at_time_T    ?B_at_time_T    ?C_at_time_T  (
                 And ( r__list_of_surrounding_entities (?A_at_time_T  List (?B_at_time_T   ?C_at_time_T) )
                           r__extended_specialization (?A  ?A_at_time_T)    r__time ( ?A_at_time_T   ?time_T ) 
                           r__extended_specialization (?B  ?B_at_time_T)    r__time ( ?B_at_time_T   ?time_T )  )
                 :- r__list-of-surrounding-entities_at-time (?A   ?B  ?C  ?time_T)  )  )

Similarly, if you wish to use RTs representing types of processes, as in

      r__landing ( Joe   Omaha_Beach   D-Day )        r__defining (Joe  Square)
   instead of using classic primitive binary RTs as in
      Exists  ?landing (   And (  ?landing  #  landing      // "?i  # ?t" <=> instanceOf (?i ?t)
                                               r__agent(?landing Joe)      r__place(?landing Omaha_Beach)
                                               r__time(?landing  D-Day)   )  )
      Exists  ?defining (  And (  ?defining  #  defining       r__agent (? defining  Joe) 
                                               r__object (?defining  "square")   )  )
   then provide ways to translate the 1st  ones into the 2nd ones, e.g.,
      r__directly_derived_relation ( Landing  r__landing )
      r__directly_derived_relation ( Defining  r__defining )

      Forall  ?rel   ?process   ?agent  ?time  ?place (
           And (  r__agent (?process  ?agent)   r__place (?process  ?place)    r__time (? process  ?time)  )
           :- And (   ?rel ( ?agent   ?place   ?time )      r__process ( ?rel   ?process )   )

      Forall   ?rel   ?process   ?agent  ?object  (
           And (  r__agent (?process  ?agent)   r__object (?process  ?object)  )
           :- And (   ?rel ( ?agent  ?object )     r__directly_derived_ relation ( ?process  ?rel )   )  )
   since it is then much easier to make inferences, 
   e.g.,  for the statement in the next line, a match for  ?X  is Joe 
      Exists ?A  ( And(  r__agent (Landing  ?A)   r__agent (Defining  ?A)  ) )



arity  greater  than  two.  A  context,  i.e.,  a  contextualizing
statement,  is  a  meta-statement  specifying  restrictive
conditions for the contextualized statement to be true, e.g.,
via temporal relations or modalities. Although RIF-FLD is
not  restricted  to  first-order  logic,  it  lacks  a  construct  for
expressing contextualizations in simple ways, as in KIF [3]
for example. However, the second row of Table I shows how
simple contextualizations can still be represented – albeit in
a rather  cumbersome way – using binary relations. To that
end,  this  example  uses  an  adaptation  of the  ODP named
Context  Slices in  ODPC  [4].  It  relies  on  introducing
concept  individuals  within  contexts and  relating  them  to
their  context  as  well  as  to  their  context-independent
counterpart. This  is  an  alternative  to  the  more  common
approach  of reifying  a  statement  and  asserting  a  relation
between the reification and the context. With the reification
based approach,  handling  contexts  is  a  bit  more  difficult
when  simple  KR  management  tools  are  re-used  and
extended. Both approaches lead to rather lengthy statements
and  are  ad-hoc since they require  extensions to inference
engines  to fully handle  them correctly.  Therefore,  for the
purpose of knowledge modeling and sharing – as opposed to
knowledge exploitation which comes after and may require
converting  the  knowledge  into  KRLs  of  reduced
expressiveness but which can be handled efficiently – a BP
is to i) use a KRL that handles contexts or use more ad-hoc
concise  constructs,  and  then  ii) provide  or  use  rules  for
translating  into the  various ways to represent  contexts  in
other KRLs. The same idea applies for the many ODPs that
deal  with  the  problems  of  translating  “KRs  using  high
expressive  constructs”  into  “KRs  using  lower  expressive
constructs”.  E.g.,  in  ODPC,  there  are  many  ODP  for
translations into OWL or from OWL. 

To conclude, although formally specifying the semantics
of  relations of arity greater than two requires at  least one
primitive  ternary  relation  [5],  in  practice  there  is  no
necessity to use such relations for knowledge modelling.

There is no claim here that the idea of “translating non-
binary  RTs  into  binary  ones  or  directly  using  them”  is
original. Yet, it should be an ODP for various reasons: i) it
is useful, ii) some claims seemingly about the necessity of
using  non-binary  relations  are  actually  claims  about  the
necessity of using constructs  supporting  different  kinds of
contexts  [6],  and  iii)  this  best  practice  is  sometimes
unknown to users of KRLs allowing non-binary relations.

III. DERIVING RELATION TYPES FROM CONCEPT TYPES

ABP  advocates  the  use  of  – or  specifications  of
translations into – binary RTs directly derived from CT”. A
CT may have multiple directly derived RTs if they have un-
comparable signatures, i.e., if none specializes another one.
The third row of Table I illustrated a way to directly derive
an  RT from  a  CT  using  a  rule  and  a  relation  of  type
r__directly_derived_relation.  The  first  two rows  illustrate
the  definitions  of non-binary  RTs mainly  with  respect  to
binary RTs. This is useful as an intermediary step: the final
step  – deriving these last binary RTs from a CT, e.g.,  one

named List_of_surrounding_entities – was not illustrated in
Table I.

Manually or automatically defining each RT with respect
to a CT makes additional  information explicit and ensures
that  every distinction  in  the (subtype) hierarchy of RTs is
also  included  in  the  CT  hierarchy.  This  last  point  is
important  for  two  reasons.  First,  it  prevents  some
knowledge providers to develop distinctions only in the RT
hierarchy while others develop distinctions only in the CT
hierarchy, thus leading to undetected redundancies within a
shared knowledge base or in different ontologies. Second, it
ensures  that  any distinction  can  be used  – without  losing
possibilities  of  knowledge  representation  and  matching –
with both its CT form and its RT form. More possibilities
come from the  CT form since  i) unlike  RTs,  CTs  can  be
quantified in  many different  ways (e.g.,  “3 landings”,  “all
landings” or “8% of landings” can only be described via the
CT “Landing”, not the RT r__landing),  ii) CTs are easier to
organize by subtype relations than RTs, and iii) the number
of used or re-usable existing CTs is much greater than the
number of used or re-usable RTs. Thus, both cases lead to
better categorizations in the concept and relation hiearchies.

These  advantages  of  using  defined  RTs come  for  free
when  RTs are  automatically derived from CTs and  hence
defined with respect to them. Furthermore, such derivations
permits a system to display fewer types in the RT hierarchy
which is then easier to read and grasp. Indeed, the derived
RTs may be left hidden or may not have to be created at all.
This last option was used in the knowledge server Ontoseek
[7]  and  is  used  in  the  knowledge  base  server  WebKB
(www.webkb.org; [8]). In Ontoseek, any type derived from
the noun-related part  of the lexical  ontology Sensus could
be re-used as a CT or a RT. WebKB also re-uses a lexical
ontology derived from WordNet. However, unlike Ontoseek,
WebKB only allows the subtypes of certain  types to be re-
used as RTs. This is defined by specifications that users can
adapt. More precisely, this is defined by relation signatures
which  are  directly  associated  to  certain  top-level  CTs.
Table II illustrates  the approach  and  then  gives rules  that
would actually generate the derived RTs. The next section
complements this framework by giving an ontology of the
CTs these rules can be applied to. These RT generation rules
permit  to  formalize  the  framework.  They  rely  on  the
functions  f__type_name and  f__denotation_of_type_name
which  are  identical  to  the  KIF  functions  name and
denotation formalized in the documentation of KIF [3]. In
WebKB, such  rules  are  not  actually executed  but  a  more
efficient  process relying on the same idea is used. Indeed,
during  the  parsing  of statements,  whenever  a  CT is used
where a RT is expected, WebKB simply checks that one of
the signatures associated to the CT is respected and acts as
if  the  relevant  derived  RT  was  actually  used.  Thus,  in
WebKB, there  is  no need to use the  actual  names  of the
virtually derived RTs: the CT names can be used directly. As
in  the  framework  described  by  Table II,  signatures  are
inherited along subtype relations between CTs and an error
is generated if a CT is associated to two signatures that are
comparable.  This approach and ODP seem original.



IV. DERIVING FROM ROLE TYPES OR PROCESS TYPES

ABP  advocates  the  derivation  of  RTs  from  CTs,
“especially  role types or process types”. The third row of
Table I  illustrated  this  for  processes.  In  this  article,  a
process refers to a  situation that  is not a  state,  and hence
that makes a change. A situation is something  that  occurs
in  a  real/imaginary  region  of  time  and  space.  These

conceptual  distinctions come from the  Situation Semantics
[9] and are the basis of John Sowa's first top-level ontology
[10].  There  are  re-used  in  this  article  for  at  least  the
following reasons:

• They are  rather  intuitive and  generalize  other  well
known  types.  E.g.,  Perdurant from  Dolce  [11]  is
subtype of Process.

TABLE II.
RULES FOR AUTOMATICALLY DERIVING A BINARY RT FROM A CT (AND, IF NEEDED,DOING SO FOR ALL ITS SUBTYPES) 

BASED ON A KIND OF SIGNATURE ASSOCIATED TO THIS CT  
(NOTE: IN THESE EXAMPLES, THE TYPES CREATED BY THE AUTHORS OF THIS ARTICLE HAVE NO PREFIX TO INDICATE THEIR NAMESPACE).

Table I gave examples of how a rule can define a RT with respect to a CT. This had to be done for each RT. Here, the 
approach is simpler. The derived RT does not have to be explicitly defined. Its signature is directly associated to the CT
via a relation of type  r__signature_for_derived_binary_relation or a function of type  f__derived_binary_relation.

Thanks to the definitions given in the next row of this table, the derived RT is automatically created.
A  CT may have different RT signatures associated to it, as long as the signatures are un-comparable, i.e., as long as 
none specializes another.

 r__signature_for_derived_binary_relation ( Father    List ( Animal  Male )  ) 
        //-> associates a signature to the CT Father and derives the RT   r__father  with domain an Animal and range a Male 

 Forall  ?t  (  r__signature_for_derived_binary_relation ( ?t   List ( Thing  ?t ) )
                     :-   ?t  ##  Thing_usable_for_deriving_a_binary_relation_with_that_thing_as_destination
                           // "##" means "is subtype of"; "#" means "is instance of"; this rule derives the expected RT for each 
                           //     subtype of Thing_usable_for_deriving_a_binary_relation_with_that_thing_as_destination

 Forall  ?processType   Exists ?r 
    And (  ?r  =  f__ derived_binary_relation ( ?processType   List ( Agent  Object ) )
               Forall  ?process ?agent  ?object    And ( r__agent (?process  ?agent)    r__ object (?process  ?object) )
                                                                      :-  And (  ?process # ?processType    ?r (?agent  ?object) )  )
     :-   ?processType  ##  Process    //this rule derives the expected RT for each subtype of Process

Furthermore, the derived RTs have the same subtype relations as the CTs they derive from. However, to keep things
simple, it is here assumed that no RT with the same name as the derived RT has previously been manually created.  
The RT name is created by taking the CT name, lowering its initial and prefixing it with “r__”.   The functions  
f__denotation_of_type_name,  f__type_name,  f__cons, f__cdr,  f__lowercase used below are identical to their 
counterparts (without the prefix “f__”) in KIF. 

 Forall  ?t   ?r__t    ?t_domain   ?t_range   ?t_supertype    ?r__t_supertype    ?t_sup_domain   ?t_sup_range  (
      And (  rdfs:domain (?r__t   ?t_domain )       rdfs:range (?r__t   ?t_range )
                 ?r__t  =  f__denotation_of_type_name ( f__cons ( f__lowercase ( f__car ( f__type_name ( ?t ) ) ) 
                                                                                  f__cdr ( f__name ( ?t ) )    ) 
                 ?r__t    ##   ?r__t_supertype      //"##" means "is subtype of"
                      :-   And (  ?t   ##  ?t_supertype 
                                      ?r__t_supertype  =  f__ derived_binary_relation ( ?t_supertype
                                                                                                                     List ( ?t_sup_domain  ?t_sup_range )  )    )
              ) 
       :-   ?r__t   =   f__derived_binary_relation ( ?t   List ( ?t_domain  ?t_range ) )   )

 Forall  ?t   ?t_domain   ?t_range (
      Exists  ?r__t  ( ?r__t   =   f__ derived_binary_relation ( ?t    List ( ?t_domain  ?t_range ) ) )
       :-   r__signature_for_derived_binary_relation ( ?t   List ( ?t_domain  ?t_range ) )  )

Other rules can be built upon these last ones, e.g., this rule for deriving functional binary relations:

Forall  ?t   ?t_domain   ?t_range    Exists  ?r__t   (
     And ( ?r__t   =   f__ derived_binary_relation( ?t    List ( ?t_domain  ?t_range ) )
               ?r__t  #  owl:FunctionalProperty   )    //"#" means "is instance of";  owl:FunctionalProperty is a 2nd-order type
     :-   r__signature_for_derived_functional_binary_relation ( ?t   List ( ?t_domain  ?t_range ) )



• They are very adequate for the signatures of thematic
relations [12], e.g., r__agent,  r__recipient, r__cause,
r__instrument.  Such  types  are  top-level  types  of
relations from a process.

• In this article, a  role type (e.g.,  Agent,  Experiencer,
Recipient,  Cause,  Instrument)  is  a  CT  which  is
defined – or could be defined – as being the range of
a thematic RT. This informal definition of a role is a
bit more general than what is usually thought to be a
role type [13] but here it  is sufficient:  as defined in
this article,  processes and  role types can be used for
deriving CTs into binary RTs. 

• Thematic RTs or their  subtypes can also be used for
defining most RTs. Thus, doing so normalizes KRs.

• Most  statements  implicitly  or  explicitly  refer  to  a
process.  Representing  it,  either  directly  or  via  RTs
directly derived from a process, strongly normalizes
KRs. Not doing so, which unfortunately is the case in
many ontologies,  amounts  to losing  precisions  and
many KR comparison possibilities.

Fig. 1 compares CTs usable for directly deriving a binary
RT with other types. The common supertype of these CTs is
Thing_usable_for_directly_deriving_a_binary_relation. Only
its  subtypes  can  be  used  for  deriving  binary  RTs;  this

owl:Thing
                                         Thing_usable_for_directly_deriving_a_binary_relation     

                                                        Thing_usable_for_directly_deriving_a_unary_function 

                                                                             wn:employer    wn:seller    wn:price    wn:license

                                                             {complete, not disjoint}   

                            Thing_usable_for_deriving_a_binary_relation_without_that_thing_as_destination

                                          Thing_usable_for_deriving_a_binary_relation_with_that_thing_as_destination

                                     

Entity          Situation             sowa:Independent_thing      Thing_playing_some_role    

                        State     Process                        sowa:Relative_thing    sowa:Mediating_thing 

                           dolce:Perdurant                          wn:component_part           wn:relation

                 Situation_playing_some_role                  wn:marriage /* ”marriage” as a                                             
                                                                                                                ”social relation” CT,
                                wn:outcome                                                           not as a process,
                                                                                                               state nor instance of  
                 dolce:Endurant                                                                     a RT */

            Entity_playing_some_role                                          

                                                                     wn:recipient                  

Spatial_entity         Non­spatial_entity            

                                                                               Attribute_or_quality_or_measure   

                                                                                 wn:measure    wn:attribute    wn:property

              Description_content/medium/container         

     wn:subject_matter     wn:language_unit     wn:file

Legend:   i)  the  arrow “   ” represents  a supertype (subClassOf) relation,   ii)  by default,   each
subclass  set   is  here  a  subclass  partition,  hence its  “{disjoint,  complete}”  UML annotation  is  left
implicit,   ii) for name-spaces, XML shortcuts are used but type names created by the authors of this  article
have no prefix,  iv) “wn” refers to WordNet,  v) “(*)” is the RT signature for any set of arguments,  vi)
comments  are  delimited  by “/*”  and  “*/”,   vii)  for  readability  purposes,  the  boxes  around classes
(concept types) are not drawn.

Fig. 1.  Slightly adapted UML representation of a subtype hierarchy to compare the type Thing_usable_for_directly_deriving_a_binary_relation with other types.



includes  types  for  processes  and  roles.  Fig.  2  illustrates
subtype relations between such derived RTs. Fig. 3 displays
common top-level types for relations from a process, most
of which  are  thematic  RTs.  Fig.  3  re-uses top-level  types
shown in Fig. 1. All the types in these figures are part of the
Multi-Source Ontology (MSO [14]) which is accessible and
cooperatively updatable via WebKB. Hence,  the  names in
these  figures  are  names  accessible  via  this  Web  server.
However, these figures have not previously been published.

The  MSO  includes  more  than  75,000  categories  and
relates  them  by  more  than  100,000  relations,  mainly
subtype relations.  It  categorizes WordNet  types as  well  as
types from various top-level ontologies (DOLCE included)
with respect to the types shown in Fig. 1 or specializations
of  them.  More  precisely,  about  a  hundred  of  top-level
WordNet types and  some more specialized WordNet types
were  manually  set  as  subtypes  of  those  in  Fig.  1  or
specializations of them.  Thus,  in  the subtype hierarchy of
the  MSO for  things usable  for directly  deriving  a binary
relation, there are currently more than 4800 process types,
2900 role types (for things playing some role), 650 types of
attributes  or  qualities  or  measures and  240  types  of
description  content/medium/container.  This  makes  more
than 8600 types usable for creating relations without having
to declare new RTs. The 4800 process types can also be used
directly  with  relations  from  a  process.  Finally,  the  types
shown  in  Fig.  3  for  these  relations  can  implicitly  or
explicitly be specialized by types derived from the 2900 role
types.  To  sum  up,  the  proposed  approach  and  the  MSO
permit people and automated agents to create KRs that are
well normalized, inter-related and comparable. Furthermore
re-using  the  approach  and  content  of the MSO to extend
other ontologies is eased by the fact that i) the MSO relates,
generalizes  and  specializes  types  from  various  other

ontologies,  and  ii) the  MSO can  be complemented  online
via WebKB.

In  Fig.  1,  the  types  named  Relative_thing  and
Mediating_thing  come from John  Sowa's second top-level
ontology [15].

To show how rules can be used to associate a signature to
a CT and thereby to a derived RT, examples in Table II used
a process type and the type of things usable for deriving a
binary relation with it as destination. Similar  rules can be
used for other  types of things usable for deriving a binary
relation”.  Fig.  2  shows  how  the  various  relations  types
– derived  or  not  from  CTs  – can  be  related  by subtype
relations.  Organizing  relations  of  different  arities  is
permitted  by the  use of “*”  in  the  relation  signatures:  it
refers to any number of arguments.  In Fig. 2, a signature is
shown as  an  ordered  list  of comma-separated  arguments,
within parenthesis. Both KIF and RIF-FLD allow relations
with a variable number  of arguments.  However,  unlike in
KIF,  there  is  no  special  construct  in  RIF-FLD  for
definitions, hence for signatures.

ODPC includes the DOLCE+DnS-Ultralite ontology [16]
and  categorizes  it  as  Content  ODP.  ODPC also  includes
related  but  smaller  content  ODPs such  those  named
ActingFor and  Agent-Role.  Its  DnS  (Descriptions  and
Situations) part  includes some types which can be seen as
subtypes  of  those  in  Fig.  3.  ODPC  proposes  many  RTs
which  could  be  – but,  it  seems,  are  not  – derived  from
process  types,  e.g.,  RTs  with  names  such  as  actsFor,
conceptualizes or  defines.  Yet, some of its CTs have been
aligned  with  OntoWordNet  [17].  Thus,  the  ontology and
approach  proposed  in  this  section  and  the  previous  one
could  be  used  to  extend  and  normalize  DOLCE+DnS-
Ultralite.  This  would  support  more  KR  comparison
possibilities.

                                                 r__relation (*)
                                                    

r__relation_from_a_situation          r__relation_not_directly_derived_from_a_concept_type
(Situation, *)                                    (*)

        r__relation_from_an_entity           r__relation_directly_derived_from_a_concept_type
        (Entity, *)                                        (*)           

        r__spatial_entity_between_2_other_ones                                r__landing 
        (Spatial_entity, Spatial_entity, Spatial_entity)                        (Agent, Place, Time)

        r__binary_relation_directly_derived_from_a_thing_usable_for_deriving_a_binary_relation_with_that_thing_as_destination
        (*, Thing_usable_for_deriving_a_binary_relation_with_that_thing_as_destination)

r__outcome (Situation, Situation)

Legend: same as in Fig. 1; each RT signature is delimited by parenthesis; “*” refers to 0 or more arguments of any type.

Fig. 2.  Subtype hierarchy of some relation types derived from subtypes of the concept type Thing_usable_for_directly_deriving_a_binary_relation.



V. RELATING TO OTHER ODPS

To be adopted, knowledge sharing ODPs should be well
inter-related  by  semantic  relations  to  help  people  know
about them and the criteria or advantages they fulfill. Thus,
people  can  search  and  select  ODPs  to  commit  to.  Then,
tools can check or enforce these commitments,  or retrieve
ontologies satisfying them.

Thus,  ideally,  ODPs  should  at  least  be  organized  into
categories related by specializations and exclusion relations,
as in the hierarchy presented in Fig. 1. However, this is not
easy.  The  most  organized  of  current  ODPC  or  BP
repositories [18] seems to be ODPC. It organizes its ODPs
into  a  specialization  hierarchy  with  a  first  level  of  six
categories.  Each  of them has 0 to 3 sub-levels.  These six
categories and their current content are:

• Content ODP: 101 ontologies, some having only a few
types.

• Reasoning ODP: no ODP has yet been submitted in this
category.

• Structural  ODP:  1  ODP in  the  Architectural  ODP
category – BPs about the structure of an ontology, e.g.,
the  use  of subtype  partitions,  i.e.,  unions  of  disjoint
types as in Fig. 1 – and 13 in the Logical ODP category
–  translations  between  constructs  from  KRLs  of
different expressiveness.

• Correspondence  ODP:  12 in  the  Reengineering  ODP
category  –  meta-model  transformation  rules  to  create
ontologies from structured but less formal and semantic
sources  – and  13  in  the  Alignment  ODP category
– these ODPs are  examples  of RTs between elements
from different ontologies.

r__relation_to_another_spatial_entity                                   r__relation_to_another_spatial_entity    

                                             Spatial_entity      Temporal_entity 

r__relation_from_process_to_spatial_entity             r__relation_from_process_to_temporal_entity
 /* e.g.,  r__beginning_place,  r__place,                 /* e.g.,  r__beginning_time, r__ duration,
               r__end_place,  r__places */                          r__time , r__end_time,  r__frequency  */

                                                                                                                                                          
            r__predecessor_state                                    r__successor_state 
            /* e.g.,  r__beginning_state,                          /* e.g.,  r__end_state,  
                         r__cause,                                               r__consequence, r__purpose, 
                         r__precondition */                                r__postcondition */
State                                                Process                                                        State

r__relation_from_process_to_event                       r__relation_from_process_to_process_attribute
/* e.g.,  r__triggering_event,                                     /*e.g., r__manner,  r__speed */ 
             r__ending_event */   
                                                                                   Process_attribute 
                                                                                                                   
Event  /* Process seen as                                        r__relation_to_another_process
instantaneous from the viewpoint                             /* e.g., r__sub-process,  r__method */
of the agent  asserting relations 
from this process */                                  r__relation_to_process_participant   /* e.g.,  
                                                                       r__relation_to_used_object  (e.g.,
                                                                                                         r__input-output_object, r__ parameter,  
           r__relation_to_description                         r__material,  r__instrument ),
           /* e.g.,  r__description */                     r__relation_to_created-or-modified_object  (e.g.,
                                                                            r__input-output_object,  r__generated_object),
                                                                       r__relation_to_participating_agent  (e.g.  
                                 Description                         r__agent,  r__initiator )
                                                                       r__relation_to_participating_agent (e.g., 
r__relation_to_another_description                      r__patient, r__experiencer, r__recipient)  */
    /* e.g., r__sub-description, 
                r__correction */                   Process_participant  /* e.g.,  Agent (Person  or
                                                                                                              Automated_agent) */ 

Legend: same as in Fig. 1 plus  i) arrows with dashed lines are relations like UML associations,
i.e.,  the  source is  universally  quantified  and  a  cardinality (or  multiplicity)  is  associated  to  the
destination; here, each cardinality is either “0 to many” or “1 to many”, and is left implicit; and
ii) comments are enclosed within “/*” and “*/”;  “e.g.,” is used for introducing subtypes.

Fig. 3. Examples of common types of relations from a process; most of them are thematic RTs. 



• Lexico-Syntactic  ODP:  20  linguistic  structures  for
extracting KRs or displaying them, as with a controlled
language.

• Presentation ODP: no submission of ODP has yet been
submitted  in  this  category  about  the  usability  and
readability  of  ontologies.  It  has  two  subcategories:
Annotation ODP  and  Naming ODP.

All  these categories  are  not  exclusive.  An ODP can  be
placed  in  several  of them.  E.g.,   the  ODPs listed  in  the
sections 2, 3 and 4 seem to be architectural ODPs as well as
logical  ODPs and,  for  some of them,  also Content  ODP,
e.g.,  the  DOLCE+DnS-Ultralite.  The  ODPs  we  gave  in
Section 5  are  Naming  ODPs  but  are  also  related  to
Structural ODPs.

Since  there  are  multiple  categorization  possibilities,
different persons will search or add a same ODP in different
categories, thus leading to less relations between the ODPs
and more undetected redundancies, as noted in the previous
sections. This structure also does not lead ODP providers to
collaboratively build a finely organized hierarchy or graph
of ODPs.  Such a structure  could be obtained  by formally
representing  each  ODP as  a  process,  using  a  same  base
ontology,  e.g.,  the  MSO,  hence  with  the  types shown  in
Fig. 1  and  Fig. 3  as  top-level  types.  Most  of the  subtype
relations  between  ODPs  could  then  be  automatically
calculated. Although this approach would scale well, such a
formal  and  homogenous  representation  would  be  a  huge
work and would require quite motivated ODP providers. 

Furthermore,  relations to criteria  and advantages would
still  probably  not  be  sufficient  since  relating  ODPs  to
criteria  – or  processes  representing  these  criteria  – is
difficult. Therefore, for the ODPs advocated in this article,
another  approach  has  been  adopted:  i) manually  setting
subtype  relations  between  ODPs  or  BPs  represented  as

process  types,  and  ii) using  positive  gradual  pattern
relations. Fig. 4 is the result.

These last relations represent rules of the form “the more
X,  the  more  Y”.  [19]  gives  a  formalization  for  such
relations.  Arrows  with  dashed  lines  are  positive gradual
pattern relations. E.g., the dashed arrow from “keeping the
types organized” to “avoiding undetected redundancies” can
be read “the more `keeping the types organized´ is achieved,
the more `avoiding undetected redundancies' is achieved´ ”.

This  last  particular  rule  refers  to  the  idea  that  was
mentioned again  two paragraphs  ago and  which  could be
rephrased  as:  “the  more  a  KR (type or  statement)  has  a
`unique place´ [20] in a hierarchy of KRs, the less chances
there are that another person will add an equivalent KR in
another  place”.  E.g.,  as  opposed  to  subtype  hierarchies,
taxonomies  relate  objects  (terms,  documents,  ...)  with
relations which are neither typed nor formal. Thus,  people
use  these  relations  for  representing  subtypes,  parts,
instances,  agents,  etc.  This  leads  to  hierarchies  that  are
difficult to search and that  often have redundancies. When
subtype partitions are used, this is far less the case. This is
also far  less the case when the hierarchy is automatically
built  based  on  the  definition  of  each  type.  Like  subtype
relations, gradual pattern relations are typed and transitive.
Hence, if used correctly, each KR can have a  unique place
[20]  in  the  graph  formed  by  these  transitive  relations.
However, gradual  pattern  relations do not enable as many
automatic checking possibilities as subtype partitions.

Given the explanations provided in the previous sections,
the relations in Fig. 4 should now be understandable.  The
use of gradual  pattern  relations  between ODPs or  BPs is
original.  The  direct  setting  of  subtype  relations  between
them also seems original.

"using RTs directly derived from CTs"            "keeping the RT         "using precise statements"
                                                                             hierarchy small"                                   
                 "using  binary RTs"                                                                 "avoiding undetected  
                                                                                                                     redundancies"
                                                                              "keeping                     
"using binary                         "using                      types                    "using normalized
  RTs directly                          primitive                organized"             statements"
  derived             "using         (hence                                                         
  from CTs"          process      binary)           "using                            "using               
                              types"       RTs                  precise and                   easy­to­understand
"using binary                                                  normalized                   statements"
  RTs directly                 "following the           statements"                                                   
  derived from CTs,         graph­based                                        "using well related and       
  especially role types      reading                                                  easy­to­compare statements"            
  or types of process"      convention"                                                  

Legend: same as in Fig. 3 except that arrows with dashed lines now represent positive gradual pattern
relations; relations inherited via subtype relations are left implicit,  e.g.,  like those inherited by “using
precise and normalized statements”.

Fig. 4. Supertype relations and gradual pattern relations between ABP (the BP advocated in this article;
see the BP name in italic bold characters at the bottom left of the figure) and related BPs.



VI. CONCLUSION

Knowledge sharing is difficult. It implies satisfying many
criteria – and following  various  BPs – which,  as  Fig.  4
showed, are inter-related. To provide such BPs and ways to
follow them, this article has focused on the idea of deriving
RTs from CTs and has shown the relationships between this
ODP to other  ones for  knowledge modeling  and  sharing.
Some  of  these  ODPs  were  already  known,  several  were
original. 

This  article  also  provided  various  kinds of  ODPs.
According  to  the  categories  of  ODPC,  these  are
architectural,  logical, content and naming ODPs. However,
given  their  inter-relations  and  the  focus  on  derivation
mechanisms, it is also true that this article focused on one
ODP – the one named ABP – composed of simpler ODPs.

The ODPs we proposed are applied to  – and  supported
by – the MSO which includes more than 75,000 categories
and  which  is  accessible  and  updatable  online  via  the
WebKB  shared  knowledge  base  server.  Together,  these
resources and tools help people and automated agents create
KRs that  are  more  normalized,  inter-related,  comparable
and  understandable.  Furthermore,  the  multi-source nature
of  the  MSO  would  help  applying  the  proposed  content
ODPs to other ones such as DOLCE+DnS-Ultralite.

Finally, the following of the proposed ODPs can easily be
tested,  e.g.,  via  SPARQL  queries  on  an  ontology  or,
interactively, within WebKB. For example, it is easy to test
if each RT is defined with respect to one CT. This makes
these BPs usable as criteria for selecting ontologies. 

This  work  will  be  extended  by  relating  knowledge
sharing  techniques,  BPs  and  criteria,  via  specialization
relations  and  gradual  pattern  relations.  Negative gradual
pattern relations  – “the more X, the  less Y” – will also be
used. The focus will be on representing various approaches
to  knowledge  sharing,  e.g.,  those  based  on  formal
documents,  those  based on  collaborative  editing  within  a
shared  ontology  server  and  those  based  on  knowledge
exchange  between  ontology  servers.  Thanks  to  their
organization by specialization relations and gradual pattern
relations, the various kinds of ways to share knowledge and
their  respective  advantages  and  drawbacks  should  be
clearer.
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