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Abstract: Magnesium (Mg) is an essential mineral in the body, impacting the synthesis of

biomacromolecules, bonematrix development, energy production, as well as heart, nerve, and muscle

function. Although the importance of Mg is evident, reference values for serumMg (sMg) in pediatric

patients (more specifically, in neonates) are not well established. This systematic literature review

and meta-analysis (using 47 eligible studies) aims to quantify normal and tolerable ranges of sMg

concentrations during the neonatal period and to highlight the factors influencing Mg levels and

the importance of regulating sMg levels during pregnancy and birth. In newborns without Mg

supplementation during pregnancy, magnesium levels at birth (0.76 (95% CI: 0.52, 0.99) mmol/L) were

similar to that of mothers during pregnancy (0.74 (95% CI: 0.43, 1.04) mmol/L), but increased during

the first week of life (0.91 (95% CI: 0.55, 1.26) mmol/L) before returning to adult levels. This pattern

was also seen in newborns with Mg supplementation during pregnancy, where the average was 1.29

(95% CI: 0.50, 2.08) mmol/L at birth and 1.44 (95% CI: 0.61, 2.27) mmol/L during the first week of life.

Factors influencing these levels include prenatal Mg supplementation, gestational age, birth weight,

renal maturity/function, and postnatal Mg intake. Elevated Mg levels (>2.5 mmol/L) have been

associated with an increased risk of mortality, admission into intensive care, hypotonia, hypotension,

and respiratory depression but sMg concentrations up to 2.0 mmol/L appear to be well tolerated in

neonates, requiring adequate survey and minimal intervention.

Keywords: systematic literature review; meta-analysis; magnesium; neonates; cord blood; nutrition;

supplementation

1. Introduction

Magnesium, the fourth most abundant cation in the body [1], plays a crucial role in many

physiologic functions. It contributes to bone matrix development and is required for the synthesis
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of biomacromolecules, including DNA, RNA, and proteins [2–4]. It is needed for energy production

and glycolysis [2,4–6]. Magnesium is also utilized for electrostatic stabilization in cell systems

and participates in the regulation of active transport of calcium and potassium ions across cell

membranes [7–10], thereby regulating muscle contraction, nerve impulse conduction, vascular

tone, and normal heart function. Magnesium homeostasis is largely controlled by the kidney,

with reabsorption occurring predominantly in the thick ascending limb of the loop of Henle (70–80%)

and, to a lesser extent (10–15%), in the distal convoluted tubule [11]. It is regulated by many hormonal

and nonhormonal factors, and reabsorption is closely linked to that of calcium [11].

Evaluation of serum magnesium (sMg) is the most common method of assessing magnesium

concentration in clinical practice [12], despite the fact that it may not accurately reflect total body

magnesium content—only approximately 1% of total body magnesium is in serum and interstitial

body fluid, with the remainder in bone, muscle, and soft tissue [1]. Reference values for sMg in adults

are well defined (0.75 mmol/L; 95% CI: 0.45, 1.05) [13,14]. By contrast, in pediatric patients—and more

specifically in newborn and preterm infants (<37 weeks gestation [15])—reference values are either not

available or are very limited and still controversial; most laboratories do not provide specific reference

intervals for this population.

Until recently, sMg concentrationwas scarcely included in the biological survey of newborn infants

unless hypomagnesemia was suspected in association with persistent and refractory hypocalcemia [11].

Serum magnesium assessment has become more frequently requested due to the more regular

early use of magnesium in balanced parenteral nutrition providing electrolytes and minerals for

very-low-birth-weight (VLBW) infants; and the use of antenatal magnesium administration for

neuroprotection in very preterm infants (<32 weeks gestation [15]) and/or for the prevention of

eclampsia in preeclamptic mothers. Thus, there is a need for normative data and the determination

of an upper tolerable level of sMg concentration in preterm and term infants. In 2012, the Canadian

Laboratory Initiative in Pediatric Reference Intervals (CALIPER) project proposed new reference

ranges for neonates that were developed using the CALIPER database, which included data from

healthy infants and children in the community (1072 male and 1116 female; newborn to 18 years) [16].

CALIPER data suggested that sMg levels in healthy term infants during the first two weeks after

delivery were higher than adult reference values and decreased progressively during the remainder of

the first year of life to adult levels. Although analytical methods and reagents have changed since the

time of this study, the provided ranges are useful for understanding changes in magnesium levels that

occur during this time period.

Magnesium requirements in preterm infants remain poorly defined. Fetal accretion of magnesium

occurs throughout pregnancy, with accretion rates reportedly ranging from 3 to 5 mg/kg/day

(0.12–0.20 mmol/kg/day) during the third trimester [17]. Data derived from the chemical analysis

of fetuses from 24 to 40 weeks of gestation demonstrated gradually increasing rates of magnesium

accretion [18]. Preterm infants exhibit particularly high growth velocity, and they miss at least some of

the period of high in utero accretion of magnesium; therefore, it is likely that magnesium requirements

of preterm infants are different than those of infants delivered at full term.

The primary objectives of the current review are to examine magnesium levels in preterm infants

during the neonatal period (0–28 days); explore major potential factors influencing magnesium

concentration (i.e., gestational age, magnesium supplementation during pregnancy, postnatal

magnesium intakes, and renal function) in an effort to better understand magnesium replacement

requirements; and discuss reference sMg concentrations in preterm infants. As a secondary objective,

this review evaluated the potential side effects of increased sMg in order to discern the upper tolerable

levels in preterm infants during the first weeks of life.

2. Materials and Methods

To find relevant published literature on magnesium levels, a search was conducted on PubMed

that included terms for the type of patient (e.g., human, newborn, and infant), stage of care (e.g.,
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prenatal, antenatal, and neonatal), and type of treatment/measures (e.g., magnesium, magnesium

sulfate (MgSO4), nutrition, nutritional status, and nutritional sciences) and included articles published

up to June 2014. A total of 322 articles were found. Article titles and abstracts were reviewed

(3 contributors) for potential relevancy, and 143 were excluded; papers were excluded at this stage

if they were review articles, if the study was in non-healthy infants, and if mineral concentrations

were not a part of the focus. The full texts of the remaining 179 studies were reviewed and 51 were

eligible as they reported magnesium levels in preterm and/or term infants before, at, and/or after

birth. Studies were excluded if they reported mean magnesium levels that were clearly outliers among

the collected data based on clinical expert opinion (JR); this included 4 studies [19–22].

The remaining 47 studies were used in meta-analyses to derive an estimated global mean and

95% confidence interval (CI) of the population concentration range using only studies reporting

both mean and standard deviation data. Populations of interest included: healthy pregnant women

without magnesium supplementation during pregnancy and healthy newborns with and without

magnesium supplementation during pregnancy. In each meta-analysis, studies were weighted based

on the number of sMg samples collected. In studies reporting both venous and arterial blood

levels, the venous levels were used for the meta-analysis. Heterogeneity was quantified using the I2

statistic [23]. Magnesium data reported in non-SI units were converted to millimoles by multiplying

by the appropriate conversion factor.

Additional information from other studies found from the reference lists of reviewed papers and

articles not reporting exact magnesium levels was included to bolster the evidence. To increase the data

available for preterm infants during the first week of life, the primary authors of four recent clinical

studies in preterm infants (Drs. F. Bonsante, S. Iacobelli, S.J. Moltu, V. Christmann, and S. Marret)

provided additional information on the sMg concentrations and/or intakes, as well as recorded during

their studies [24–29]. This complementary information was included in the present manuscript.

Meta-analyses were conducted with OpenMeta[Analyst] (BrownUniversity, Providence, RI, USA),

a program funded by AHRQ (grant number: R01HS018574; available at http://www.cebm.brown.

edu/openmeta/index.html), using a continuous random-effects model at the 95% confidence level.

3. Results

3.1. Maternal Magnesium Concentrations

In normal pregnancy, maternal sMg decreases. However, the exact time course of these changes

has yet to be established [30]. Published data from pregnant women are presented in Table S1. In those

studies, mean sMg concentration in mothers ranged from 0.59 mmol/L to 0.95 mmol/L during

gestation [31–45], from 0.54 mmol/L to 0.86 mmol/L before or during labor [31,35,40,41,43,46–49],

and from 0.54 mmol/L to 0.90 mmol/L at delivery [24,35,36,42,48,50–63].

Although the heterogeneity of the included studies was high (I2 = 99.6%; p < 0.001),

the meta-analysis performed on 31 studies including 2395 mothers revealed a mean estimate of

0.74 mmol/L (95% CI: 0.43, 1.04) in pregnant women around delivery (Figure 1). For the studies not

included in the meta-analysis [33,42,45], the mean (or median) reported magnesium level falls within

the derived 95% CI, as well as the reported ranges.

Ranges of magnesium concentrations reported in healthy pregnant women without magnesium

supplementation differ to the normal reference interval reflecting an adequate magnesium status

for healthy adults (0.75–0.95 mmol/L) [64]. Changes in magnesium status in pregnant women

may translate into effects on glucose metabolism, blood pressure, and the contractile response of

uterine muscle. Thus, earlier reductions in maternal magnesium have been associated with an

increased incidence of gestational diabetes [65–67] and may contribute to both preterm delivery and

preeclampsia [36,68,69]. Few well-designed trials have examined the impact of dietary magnesium

supplementation in pregnant women; thus, the benefits and risks of such remain controversial [70].
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By contrast,MgSO4 supplementation in pregnantwomen experiencingpreterm labor or preeclampsia

has been more thoroughly studied in randomized trials. In these studies, the target sMg in the mother

before delivery was between 2.0 and 3.5 mmol/L [71] and meta-analyses of these data suggest that these

levels have a neuroprotective effect [72,73]. However, very few studies report the sMg concentrations in

the mothers receiving MgSO4 supplementation during pregnancy (e.g., Marret et al. [24]).

Figure 1. Magnesium concentrations in healthy pregnant women without magnesium supplementation

during pregnancy. * If 95% CIs were not reported in the study, then the 95% CIs were calculated as

follows: mean± (1.96× SD); † Patient groups within these studies were pooled, as the literature search

did not confirm an association between magnesium levels and gestational age, birth weight, or mode

of delivery; ‡ Reference line and 95% CI derived using only studies reporting both mean and SD data.

Overall statistic for heterogeneity: I2 = 97.8% (p < 0.001). CI: confidence interval, SD: standard deviation.

3.2. Magnesium Levels at Birth in Neonates without Magnesium Supplementation during Pregnancy

Reference ranges for sMg levels in preterm infants are difficult to pinpoint because a limited

number of studies evaluate the sMg concentration in healthy preterm and term infants during the

first week of life. Some data have been published on the cord blood from healthy preterm and term
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infants and can be utilized to estimate early neonatal levels. In addition, data on sMg levels in cord

blood and during the early neonatal period are available in preterm infants included in randomized

control trials evaluating the effect of maternal magnesium administration before delivery for tocolysis,

for prevention or treatment of eclampsia, or for neuroprotection against cerebral palsy. In these studies,

the control group may represent normative neonatal levels whereas the treatment group may be

evaluated to discern upper tolerable levels or potential side effects of magnesium overload (Table S2;

Figure 2) [24,34,35,40–43,46–53,57–60,63,74–81].

Figure 2. Magnesium concentrations in umbilical cord blood of healthy newborns without magnesium

supplementation during pregnancy. * If 95% CIs were not reported in the study, then the 95% CIs

were calculated as follows: mean ± (1.96 × SD); † Patient groups within these studies were pooled,

as the literature search did not confirm an association between magnesium levels and gestational age,

birth weight, or mode of delivery; ‡ Reference line and 95% CI derived using only studies reporting

both mean and SD data. Overall statistic for heterogeneity: I2 = 98.3% (p < 0.001). CB: [umbilical] cord

blood; CI: confidence interval; n: number of infants; SD: standard deviation.

In identified studies that sampled umbilical cord blood at delivery in preterm infants not

administered magnesium during pregnancy, mean magnesium concentrations varied considerably,

ranging from 0.67 to 0.96 mmol/L (Table S2) [24,34,75–78,81]. Similar mean values were observed

in studies of term infants at delivery, in which the mean concentration of sMg in cord blood ranged

from 0.61 to 0.97 mmol/L [35,40,41,43,46,48,50–52,59,60,63,75–80]. Together, these data represent a

potential cord sMg mean level of 0.61–0.97 mmol/L in neonates without magnesium supplementation

during pregnancy.

Although the heterogeneity of the included studies was high (I2 = 98.3%; p < 0.001),

the meta-analysis performed on 22 studies including 2766 infants revealed a mean estimate of

0.76 mmol/L (95% CI: 0.52, 0.99) in neonates at delivery (Figure 2). For the studies not included
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in the meta-analysis [42,46,77,79,81], the mean (or median) reported magnesium level falls within the

derived 95% CIs, as well as the reported ranges, except for Stigson et al. (1997), which reported a wider

range (possibly due to a lack of exclusion criteria relevant to medical conditions) [81].

These mean values are similar to that observed in mothers during pregnancy, failing to

demonstrate a distinct relationship between gestational age and neonatal magnesium concentration.

However, magnesium crosses the placental barrier actively [11,82], and magnesium levels in neonates

tend to reflect maternal magnesium concentrations, regardless of magnesium exposure during

pregnancy (Table 1) [24,35,40,42,47–53,59,60,63,79,83–85]. Supporting data are provided in studies

conducted in term neonates without magnesium supplementation during pregnancy [42,49,50], as well

as in studies conducted in both preterm and term neonates with magnesium supplementation during

pregnancy [79,83,85]. The results from the study by Marret et al. (2008) also support the positive

relationship between magnesium levels in cord blood and maternal blood [24]. Although the influence

of other maternal factors (e.g., method of delivery and multiple gestations) have been proposed [21],

their role in predicting neonatal magnesium concentrations has not been confirmed. As suggested

for sMg concentration in healthy pregnant women without magnesium supplementation, the cord

blood mean (and 95% CI) for total sMg concentration could differ from the normal reference interval

reflecting an adequate fetal status.
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Table 1. Studies reporting relationship between maternal and umbilical cord blood and/or serum magnesium concentrations in newborns without and with

magnesium supplementation during pregnancy.

Study Population (n) Sampling Method
Maternal Magnesium Level,

Mean ± SD, mmol/L
Neonatal Magnesium Level,

Mean± SD, mmol/L
Correlation

No magnesium supplementation

Kozielec 2004 [50]

Term infants (38–41 weeks (72))
and mothers (75) derived from
population of mothers (83) and
neonates

At delivery, 2 mL maternal
venous blood and 5 mL cord
blood

0.89 ± 0.13 0.97 ± 0.16
r = 0.52

p = 0.000006

Marret 2008 [24]
Preterm infants (23–32 weeks
(92)) and mothers (92)

At delivery; mothers blood
serum and venous cord blood

0.78 ± 0.11 0.83 ± 0.13
r = 0.36
p = 0.0004

Schulpis 2010 [48]
Term infants and mothers
- Vaginal delivery (16)
- Scheduled cesarean delivery (14)

Mothers at the beginning of
delivery; cord blood within 3–4
min of delivery

0.81 ± 0.09
0.81 ± 0.04

0.81 ± 0.04
0.80 ± 0.02

r = not provided p > 0.05
r = not provided p > 0.05

Vobecky 1982 [49]
Mothers (550) and healthy term
infants (505)

Maternal venous blood
obtained during delivery;
mixed venous-arterial cord
blood at delivery

0.68 ± 0.13 0.69 ± 0.13
r = 0.64
p < 0.01

Magnesium supplementation

Borja-Del-Rosario 2014 [83]
Preterm infants 24–32 weeks (192)
and their mothers

Maternal serum within 6 h
before delivery; neonatal serum
24 h post-delivery

2.30 ± 0.51 1.52 ± 0.43
r = 0.10
p = 0.15

Marret 2008 [24]
Preterm infants (23–32 weeks
(119)) and mothers (119)

At delivery; mothers blood
serum and venous cord blood

0.77 ± 0.129 1.0 ± 0.193
r = 0.23
p = 0.012

Rudnicki 1991 [79]

Women (12) with
pregnancy-induced hypertension
and their infants (gestational age,
37–39 weeks)

Mothers prior to delivery;
arterial blood from cord

0.74 (0.71, 0.81) 1 0.80 (0.70, 0.91) 1
r = 0.77
p < 0.02

Schanler 1997 [85]
Women in preterm labor (16) and
their infants (22); mean
gestational age, 31.7 ± 2.6 weeks

At delivery; peripheral venous
blood from mothers and infants

Not provided (figure only) Not provided (figure only)
r = 0.61
p = 0.004

1 Median (95% confidence interval). Magnesium concentrations reported in non-SI units have been converted to mmol/L as follows: mg/dL × 0.411; mEq/L × 0.5.
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3.3. Magnesium Levels at Birth in Neonates with Magnesium Supplementation during Pregnancy

Data from available studies of neonates receiving magnesium administration during pregnancy are

summarized in Table S3, with considerable across-study variation in magnesium regimen. Magnesium

levels were, not surprisingly, generally higher among infants with administered magnesium during

pregnancy compared to those without supplementation, with emphasis on the extent of cumulative

intake provided before delivery. Average cord blood sMg concentrations drawn at delivery ranged from

0.80 to 1.80 mmol/L in studies of magnesium supplementation for pregnancy-induced hypertension

(PIH), fetal neuroprotection, or prevention of eclampsia [24,40,79,86–89].

In the study by Rudnicki et al. (1991), which reported 0.80 mmol/L at delivery in term infants

of mothers with PIH, mothers received a 48-h intravenous infusion (50 mmol of MgCl2 during the

first 24 h followed by 12 mmol of MgCl2 during the second 24 h), followed by 15 mmol/d until one

day after delivery, with a median duration of 12 days (range: 3–23 days) [79]. This was a low-dose

magnesium regimen, which may explain why the level at delivery was similar to corresponding levels

seen in term infants without magnesium supplementation during pregnancy.

In two studies for preterm neuroprotection [24,87], the average magnesium concentrations

were 1.00 mmol/L and 1.30 mmol/L, which seem to reflect the infant’s exposure to magnesium

administration inwomen at risk of imminent very pretermbirth. In the PREMAG study, which reported

a mean sMg of 1.00 ± 0.22 mmol/L at birth (n = 191), mothers received MgSO4 as a single injection

of 0.1 mg/L (4 g, 33.23 mmol) over 30 min within 24 h of expected delivery. In contrast, in the study

by Palatnik et al. (2015), which reported a mean of 1.30 mmol/L at birth, mothers received at least a

loading dose of 6 g (49.85 mmol) infused for 20–30 min, followed by a maintenance infusion of 2 g/h

(16.62 mmol/h) for up to 12 h [87]. In this study, infusion was discontinued if delivery was no longer

imminent, but would be resumed if the anticipated delivery was at less than 34 weeks gestation.

The other 2 studies reported magnesium concentrations in infants with preeclamptic mothers

who received magnesium supplementation for prevention of eclampsia [40,86]. Although the severely

preeclamptic mothers in the study by Katz et al. (2012) received MgSO4 prior to delivery, the regimen

was unspecified; the resulting sMg level in venous umbilical cord blood was 1.37 mmol/L [40].

The mean sMg level in term infants whose mothers received MgSO4 supplementation in the study by

Boriboonhirunsarn et al. (2012) was 1.80 mmol/L at delivery [86]. The magnesium regimen for these

mothers included a loading dose of 4 g (33.23 mmol) of MgSO4 followed by continuous intravenous

infusion of 2 g/h (16.62 mmol/h), with dose adjustments performed depending on if the magnesium

level was within therapeutic range (2.0–3.5 mmol/L) and on clinical signs and symptoms. The total

dose ranged from 5.5 g (45.69 mmol) to 34.5 g (286.62 mmol), with a mean of 14.4 g (119.63 mmol) [86].

Although the heterogeneity of the included studies was high (I2 = 99.1%; p < 0.001), the meta-

analysis performed on six studies including 992 preterm and term infants revealed a mean estimate of

1.29 mmol/L (95% CI: 0.50, 2.08) at delivery in neonates with exposure to magnesium supplementation

at the end of pregnancy (Figure 3). The study by Rudnicki et al. (1991) was not included in the

meta-analysis (as it did not report mean values in infants from healthy mothers) and reported a median

sMg level of 0.80 mmol/L at delivery in term infants of mothers with PIH [79]. In comparison to the

meta-analysis results, this median value ismore similar to infants withoutmagnesium supplementation

during pregnancy, whichmay be related to the relatively low dosing regimen employed by the Rudnicki

et al. (1991) study in comparison to the others, as well as the fact that the study used a different type of

magnesium supplementation formula (MgCl2 vs. MgSO4).

Neonates receiving magnesium supplementation during pregnancy have higher reported

concentrations of magnesium at birth than infants with no exposure, regardless of gestational

age and indication for treatment. Variability in reported levels may be related to the duration of

supplementation during pregnancy, the total dose of magnesium received, and the delay between

last supplementation dose and delivery, as well as other heterogeneous characteristics among

study populations.
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Figure 3. Magnesium concentrations in umbilical cord blood of newborns with magnesium

supplementation during pregnancy. * If 95% CIs were not reported in the study, then the 95% CIs

were calculated as follows: mean ± (1.96 × SD); † Patient groups within these studies were pooled,

as the literature search did not confirm an association between magnesium levels and gestational age,

birth weight, or mode of delivery; ‡ Reference line and 95% CI derived using only studies reporting

both mean and SD data. Overall statistic for heterogeneity: I2 = 99.1% (p < 0.001). CB: [umbilical] cord

blood; CI: confidence interval; n: number of infants; SD: standard deviation.

3.4. Magnesium Levels in Neonates during the First Days of Life

Serum magnesium concentration at birth is directly related to the maternal concentration and

thus directly related to the magnesium intake during pregnancy (Table 1). After birth, several factors

influence the sMg concentration during the first days of life.

3.4.1. Infants without Prenatal Magnesium Supplementation

In infants that did not receive magnesium supplementation during pregnancy, the reported mean

sMg levels from the 6 studies included in the meta-analysis ranged from 0.72 to 1.10 mmol/L within

24 h after delivery [24,63,74,79], from 0.94 to 0.97 mmol/L at 48 h after delivery [77,78], and from

0.79 to 0.95 mmol/L at 5–7 days of life (Table S2) [49,77]. Although the heterogeneity of the included

studies was high (I2 = 99.5%; p < 0.001), the meta-analysis performed on 993 preterm and term infants

revealed a mean estimate of 0.88 mmol/L (95% CI: 0.46, 1.30) during the first week of life in neonates

without exposure to magnesium supplementation during pregnancy (Figure 4).

Studies included in this meta-analysis of infants with no magnesium administration during

pregnancy varied in demonstrating a distinct trend in the change in magnesium concentration from

birth during the first days of life. In the largest study, mean magnesium concentration increased

from birth (0.68 mmol/L) to Day 5 of life (0.79 mmol/L) [49]. Other studies that demonstrated

an increase in magnesium levels include those by Marret et al. (2008), Schauberger et al. (1979),

and Mehta et al. (2007). Marret et al. (2008) reported a significant mean increase from 0.81 mmol/L

at birth to 0.96 mmol/L, (p = 0.001) 24 h after delivery in preterm infants [24]. For preterm and term

infants evaluated in the Schauberger et al. (1979) and Mehta et al. (2007) studies, the increases in mean

magnesium levels at 24 h and at 36–48 h after delivery, respectively, were very small (difference of

0.01 mmol/L for both populations) [63,78]. An interesting result was found in the Hillman et al. (1977)

study, which reported an increase in mean magnesium levels from birth to 48 ± 2 h post-delivery in

both preterm and term infants; however, at seven days of life, the mean sMg level for term infants

decreased, while mean sMg concentration for preterm infants continued to increase [77]. Three studies

found from the literature search, but which were not included in the meta-analysis, also show different

variation in magnesium changes. Rudnicki et al. (1991), which was not included because it provided

only a median value for infants delivered by mothers with PIH, demonstrated a decrease in median
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magnesium levels from birth (0.77 mmol/L) to 24 h postpartum (0.72 mmol/L) [79]. In a small study by

Schanler et al. (1997), which did not provide raw data, sMg concentrations in infants not administered

magnesium during pregnancy remained at approximately 1 mmol/L during the first 72 h of life, with a

slight downward trend [85]. According to data from the CALIPER database, which combined data for

newborns aged 0–14 days, magnesium concentrations in healthy newborns initially increased during

the first days of life, then steadily decreased progressively during the second week of life to reach adult

levels [16]. These discrepancies may be related to heterogeneity among the populations, including

postnatal magnesium intake, renal function maturation, gestational age, and birth weight.

Figure 4. Magnesium concentrations during the first week of life in healthy newborns without

magnesium supplementation during pregnancy. * If 95% CIs were not reported in the study, then the

95% CIs were calculated as follows: mean ± (1.96 × SD); † Patient groups within these studies

were pooled, as the literature search did not confirm an association between magnesium levels and

gestational age, birth weight, or mode of delivery; ‡ Reference line and 95% CI derived using only

studies reporting both mean and SD data. Overall statistic for heterogeneity: I2 = 98.5% (p < 0.001).

CI: confidence interval; n: number of infants; SD: standard deviation.

The results of the meta-analyses in infants without prenatal magnesium supplementation suggest

that sMg levels in these infants increase during the first week of life (mean cord bloodMg concentration

at birth, 0.76 mmol/L; mean sMg concentration during first week, 0.88 mmol/L), aligning with the

trend found from the large CALIPER database.

3.4.2. Infants with Prenatal Magnesium Supplementation

In infants exposed to magnesium supplementation during pregnancy, the reported mean

sMg levels from five studies ranged from 0.89 to 1.75 mmol/L within 24 h after delivery

(Table S3) [24,74,79,83,89]. Although the heterogeneity of the included studies was high (I2 = 99.5%;

p < 0.001), the meta-analysis performed on four studies including 777 infants evaluated at 24 h

revealed a mean estimate of 1.468 mmol/L (95% CI: 0.634, 2.28) at 24 h in neonates with magnesium

supplementation during pregnancy (Figure 5). The lower levels reported in the Marret et al. (2008)

study seem to be the result of the lower cumulative magnesium intake provided before delivery [24,79].

In the Basu et al. (2012) and Borja-Del-Rosario et al. (2014) studies, which reported high magnesium

levels at 24 h, mothers received a loading dose of 4–6 g (33.23–49.85 mmol) or 6 g (49.85 mmol),

respectively, infused over 30 min, followed by a maintenance infusion of 1–2 g/h (8.31–16.62 mmol/h)

or 2 g/h (16.62 mmol/h), respectively, until delivery [74,83].
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Figure 5. Magnesium concentrations during the first day of life in newborns with magnesium

supplementation during pregnancy. * If 95% CIs were not reported in the study, then the 95% CIs

were calculated as follows: mean ± (1.96 × SD); ‡ Reference line and 95% CI derived using only

studies reporting both mean and SD data. Overall statistic for heterogeneity: I2 = 99.5% (p < 0.001).

CI: confidence interval; n: number of infants; SD: standard deviation.

Similar to levels reported in infants without magnesium supplementation during pregnancy,

these studies varied in demonstrating a distinct trend in the change in magnesium concentration from

birth during the first days of life. The results of the meta-analyses suggest that sMg levels in infants

increase during the first day of life (mean cord bloodMg concentration at birth, 1.25 mmol/L;mean sMg

concentration at 24 h, 1.48 mmol/L), aligning with the results of the meta-analyses in neonates that

did not receive magnesium administration during pregnancy. Two of the studies reported a small

positive change in mean magnesium concentration between birth and at 24 h post-delivery [24,79].

In the study by Marret et al. (2008), sMg increases from 0.99 mmol/L at birth to 1.07 mmol/L

(p = 0.001) 24 h after delivery [24]. In addition, both studies demonstrated larger first-day average

magnesium concentration in infants with supplementation compared to those without [24,79]. In the

study by Schanler et al. (1997), sMg concentrations demonstrated an overall negative trend from birth

(approximately 1.75 mmol/L) to 72 h (approximately 1.46 mmol/L) [85]. In this study for tocolysis,

mothers received a loading dose of 6 g (49.85 mmol) of MgSO4 over 30 min, followed by a maintenance

dose of 2 g/h (16.62 mmol/h; titrated from 1.5 to 3 g/h (12.46–24.92 mmol/h) depending upon uterine

activity) until within 60 min of birth or at the time of the C-section, with a mean administration of 26

days (range: 8–63) [85].

Notably, a relationship between the extent of magnesium exposure (dosage) and neonatal

magnesium has been documented in two of these studies [83,85]. Borja-Del-Rosario et al. (2014) reported

significant correlations between the total maternal magnesium dose at 24 and 48 h of infusion and

neonatal sMg concentrations (r = 0.55 (p < 0.0001) and r = 0.35 (p < 0.0001), respectively) [83]. Similarly,

Schanler et al. (1997) described a significant positive correlation between maternal MgSO4 dosage and

neonatal sMg concentration (r = 0.74; p < 0.001) when MgSO4 was administered for preterm labor [85].

3.5. Factors Contributing to Magnesium Levels in Neonates during the First Days of Life

As demonstrated in the previous sections, magnesium supplementation during pregnancy is highly

correlated with neonatal sMg levels. After birth, many other factors contribute to influencing neonatal

sMg levels, including postnatal magnesium intake, renal function, gestational age, and birth weight.

In preterm infants, magnesium nutritional supply can be provided parenterally during the

first days of life followed by a progressive introduction of enteral nutrition as human milk or

formula. In parenteral nutrition, magnesium intake is fully available for mineral metabolism and

magnesium homeostasis. With enteral nutrition, the intestinal magnesium absorption is limited

among newborns but may be higher in preterm versus term infants [11]. Magnesium retention

may also be higher in preterm versus term infants and may exceed the apparent intrauterine
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retention rates [90]. In term infants, breast milk provides approximately 5.5–7.5 mg/kg/day

(0.23–0.31 mmol/kg/day) of magnesium [17]. By contrast, amounts of magnesium provided by

enteral or parenteral nutrition in preterm infants vary, depending on the preparation(s) administered.

With fortified human milk or formula mean magnesium intakes range from 6.0 to 12.0 mg/kg/day

(0.25–0.5 mmol/kg/day), absorption rate around 50%, and mean retention accounted from 1.8 to

3.6 mg/kg/day (0.08–0.15 mmol/kg/day) [11].

Magnesium levels among newborn infants, especially VLBW infants, change rapidly during the

first days of life as a result of the early parenteral and enteral magnesium intakes and the maturation

of the glomerular filtration rate. After a few days, sMg levels decrease progressively to reach a plateau

at the end of the first month of age. Indeed, renal immaturity is observed at birth and renal function

improves progressively during the first weeks of life. In VLBW infants, renal function is directly

related to gestational age and inversely related to postnatal age as illustrated by the serum creatinine

concentration [91]. There is a progressive maturation of the glomerular filtration rate increasing

during the first weeks of life. Tubular reabsorption of magnesium is high but the serum threshold

of urinary excretion is not well defined in VLBW infants [92,93]. Medications for patent ductus

arteriosus (e.g., indomethacin, ibuprofen, acetylsalicylic acid) affecting renal perfusion can potentially

influence magnesium handling [94,95]. Additionally, changes in hormonal and nonhormonal factors

(e.g., calcium) can potentially contribute to magnesium homeostasis and sMg levels.

Data from studies conducted in VLBW infants are often confounded by postnatal parenteral

magnesium supplementation. In a time-course study of magnesium homeostasis, extremely low

birth weight infants with a birth weight (<1000 g; n = 51) received a parenteral solution providing

0.15 mmol/kg/day of magnesium. Mean sMg increased during the first week of life (from 0.85

± 0.14 mmol/L on Day 1 to 1.09 ± 0.10 mmol/L on Day 4), then decreased progressively (to

0.89 ± 0.08 mmol/L on Day 21 and to 0.91 ± 0.10 mmol/L on Day 28) [96]. This trend may be

strongly influenced by glomerular function. During the first week, the sMg concentration ranged

from 0.62 mmol/L to 1.53 mmol/L, but four out of five infants with magnesium levels higher than

1.3 mmol/L had evidence of acute kidney injury, defined as serum creatinine concentration greater

than 1.5 mg/dL (132 mmol/L). In this study, higher sMg concentration appears to be related to birth

weight (<750 g) and/or gestational age (<27 weeks) [96].

Additional data were obtained from nutritional intervention studies evaluating the effect of

early aggressive parenteral nutrition in VLBW infants by direct contact with the primary authors

(Figure 6) [25–29,97]. The first study was a randomized controlled trial that evaluated the effect of two

diets (parenteral plus enteral) on postnatal growth and included 48 VLBW neonates (<1500 g) in two

groups of 24 infants [25]. The starting parenteral solutions contained 0.23 mmol/dL and 0.20 mmol/dL

of Mg for the two groups. The mean parenteral magnesium intake was 0.084 ± 0.034 mmol/kg/day

and 0.093 ± 0.030 mmol/kg/day in the intervention and control group, respectively (p = 0.18). Mean

sMg levels reported at Day 3 of life were 0.91 ± 0.13 mmol/L (n = 22) and 0.96 ± 0.12 mmol/L (n = 21),

respectively. During the first week of life in the whole population, the mean sMg concentrations were

0.93 ± 0.12 mmol/L (n = 75) [25] (Figure 6). Prenatal magnesium exposure was not part of the data

collected in this study; however, based on reviewing the magnesium data, the authors believe that

although it is possible some of the infants could have received prenatal magnesium supplementation,

the number of these patients is minimal and would not be expected to significantly alter the results

and interpretations of the current analysis.

The second nutritional intervention study was a cohort study evaluating the effect of increasing

protein intake during the first days of life in VLBW infants [27,97]. Serum magnesium concentration

was included in the biological survey during the first week of life. In all, 226 sMg concentrations were

recorded in 76 preterm infants <33 weeks gestational age. Parenteral nutrition was provided from

birth and magnesium after the second day of life. Mean magnesium parenteral intake during the first

week of life averaged of 0.11 mmol/kg/day of magnesium, with a maximum intake of 0.36 mmol/kg.

Mean sMg concentration during the first week of life was 0.94 ± 0.15 mmol/L (range: 0.56–1.35)



Nutrients 2017, 9, 1125 13 of 24

(Figure 6). In this study, the sMg levels increased progressively until day 5 and decreased thereafter.

In addition, the mean sMg concentrations were significantly related to the parenteral magnesium

intake [27,97]. The last study compares two successive cohorts of VLBW infants receiving different

nutritional intakes. Both cohorts received parenteral nutrition, with the second cohort receiving

higher concentrations of protein as well as minerals (including magnesium) [28,29]. For cohort 1,

the maximum parenteral intake of magnesium was 0.14 mmol/kg/day while the maximum intake in

cohort 2 was 0.3 mmol/kg/day. In preterm infants without prenatal magnesium supplementation,

mean sMg concentration during the first week of life was 0.87 ± 0.15 mmol/L (n = 64; 377 samples)

in cohort l and 0.96 ± 0.15 mmol/L (n = 66; 435 samples) in cohort 2 (Figure 6). In both groups, the

mean sMg level increased up to the Day 4 of life; however, the sMg concentration from Day 1 to Day

7 in cohort 2, was significantly higher than that in cohort 1 in relation to the higher parenteral Mg

intakes. In this study, sMg concentrations were also obtained during the first week of life in 17 infants

with prenatal magnesium supplementation. Mean sMg concentration reached 1.35 ± 0.44 mmol/L

(n = 114), but decreased progressively from birth to the end of the first week of life.

Figure 6. Magnesium concentrations during the first week of life in very-low-birth-weight newborns

receiving parenteral solution. * If 95% CIs were not reported in the study, then the 95% CIs were

calculated as follows: mean ± (1.96 × SD); † Patient groups within these studies were pooled,

as the literature search did not confirm an association between magnesium levels and gestational

age, birth weight, or mode of delivery; ‡ Reference line and 95% CI derived using only studies

reporting both mean and SD data. Overall statistic for heterogeneity: I2 = 62.8% (p = 0.045). C1: cohort

1; C2: cohort 2; CI: confidence interval; n: number of infants; SD: standard deviation.

Although the heterogeneity of the included studies was significant (I2 = 62.8%, p = 0.045),

the meta-analysis performed on four studies including 301 infants mainly without prenatal magnesium

supplementation and 1427 evaluations during the first week of age revealed a mean estimate of

0.94 mmol/L (95% CI: 0.66, 1.22) in VLBW infants receiving total or partial parenteral nutrition

(Figure 6).

Data during the second and third weeks of life were obtained from the Noone et al. (2012) and

Christmann et al. (2013; 2014) studies. In the study by Christmann et al. (2013; 2014), where enteral

nutrition accounted for more than 50% of magnesium intake, mean sMg was similar in both cohorts.

In cohort 1, sMg decreased respectively to 0.89 ± 0.12 mmol/L (n = 172) and 0.87 ± 0.07 mmol/L

(n = 58) in cohort 1 and to 0.91 ± 0.10 mmol/L (n = 88) and 0.86 ± 0.08 mmol/L (n = 16) in cohort

2 [28,29]. Similarly, Noone et al. (2012) reported a mean value of 0.91 ± 0.10 mmol/L (n = 51) and 0.89

± 0.08 mmol/L (n = 51) during the second and the third week of life respectively [96].

Thus, the results from the Noone et al. (2012) and Christmann et al. (2013; 2014) studies in VLBW

infants during the first month of life support the results from the large database of Colantonio et al.

(2012), which found that magnesium concentrations in healthy newborns initially increased during the

first week of life, before steadily decreasing to adults levels [16].



Nutrients 2017, 9, 1125 14 of 24

In summary, the results of this review of magnesium levels during the first month of life in

preterm infants and VLBW infants receiving nutritional intervention were similar to the data observed

in term infants suggesting that sMg concentration increases during the first week of life to a level higher

than the adult reference values and decreases to adult levels thereafter. These early changes are likely

influenced by many factors, including postnatal magnesium intake, gestational age, and renal maturity.

3.6. Benefits and Risks of Elevated Neonatal Serum Magnesium

3.6.1. Benefit: Neuroprotection

Magnesium supplementation via magnesium administration during pregnancy may provide

neuroprotective benefits in preterm infants, including reduced rates of cerebral palsy and gross motor

dysfunction [72,73,98]. A systematic review of data from five trials (6145 infants) indicated that

antenatal MgSO4 supplementation in women at risk of very preterm birth reduced the risk of cerebral

palsy by 32% (relative risk (RR): 0.68; 95% CI: 0.54, 0.87) [72]. In the 4 studies in which MgSO4 was

administered with neuroprotective intent, the combined rate of death or cerebral palsy was significantly

reduced (RR: 0.85, 95% CI: 0.74, 0.98) [72]. Both single-dose (4 g unrepeated) and multiple-dose (4–6 g

loading followed by 1–2 g/h maintenance) regimens were studied; however, an ideal dosing regimen

remains to be defined [99]. The target sMg concentration also remains unclear.

Data from a small retrospective analysis of sMg levels and motor outcome conducted in 75

premature infants (<1500 g, 25.8 weeks gestation; 20%withMgSO4 supplementation during pregnancy)

demonstrated a statistically significant relationship between lower magnesium levels (�1.9 mg/dL) in

the neonatal period (average age at first draw, 3.5 days) and abnormal motor exam findings (p = 0.037).

In addition, infants with a lower magnesium level in the neonatal period tended to have a higher

incidence of epilepsy (p = 0.060); however, logistic regression analysis including birth weight and

magnesium concentration was non-significant (possibly due to the relative low sample size of the

study) [100].

In 3 studies, short-term postnatal administration of MgSO4 (250 mg/kg/day for 3 days) has

also demonstrated neuroprotective effects in term infants with severe perinatal asphyxia [101–103].

In the first study, mean sMg was 0.66 mmol/L at admission and 1.60 mmol/L (range, 0.94–2.05) after

48 h [103]. Reported mean sMg concentrations remained at or above 1.2–1.3 mmol/L during the

72-h treatment period and peaked at 2.8–3.2 mmol/L following the third MgSO4 dose in the two

other studies [101,102]. An additional beneficial effect of magnesium supplementation has been also

suggested to reduce bronchopulmonary dysplasia [104] and/or relative hypertension in children [105].

3.6.2. Risk: Adverse Outcomes

MgSO4 supplementation during pregnancy appears to be generally safe for the neonate.

In a meta-analysis of data from five trials and 6145 infants, evidence suggested that magnesium

supplementation during pregnancy reduces the need for ongoing respiratory support and has no

impact on other key pediatric outcomes (e.g., mortality, intraventricular hemorrhage, periventricular

leukomalacia, low Apgar score, need for active resuscitation, convulsions, hypotonia, chronic lung

disease, and postnatal corticosteroid use) [72]. More recently, in their retrospective cohort study of

cardiorespiratory effects of magnesium exposure during pregnancy in preterm neonates (23–28 weeks

gestation), DeJesus et al. (2015) reported similar risk of intubation in the delivery room, respiratory

support during the first day of life, patent ductus arteriosus, and other neonatal outcomes in newborns

with MgSO4 supplementation during pregnancy (n = 1091) relative to those without exposure (n = 453),

as well as lower risk of later (Day 3) mechanical ventilation and hypotension in newborns with MgSO4

supplementation during pregnancy [106]. Indeed, ionized magnesium concentration was inversely

related to umbilical artery pH that could be a confounding factor. Indeed, ionized Ca and ionized

Mg in blood are ionized about 50%, but they are susceptible to the effect of blood pH, with ionization

increasing when blood is on the acid side and decreasing when it is on the alkaline side [106].
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Negative neonatal outcomes have been reported with elevated neonatal ionized magnesium

concentrations [107]. However, ionized magnesium concentration is poorly related to total Mg content

and is more related to acidosis that could be the primary factor of the outcome [108].

Immediate clinical outcomes in preterm infants following magnesium supplementation during

pregnancy were retrospectively evaluated in 475 neonates born between 24 and 32 weeks of

gestation [74]. Serum magnesium level in the first 24 h of life was used to stratify the neonates treated

with magnesium during pregnancy into four subgroups: A (<1.25 mmol/L), B (1.25 to �1.75 mmol/L),

C (1.75 to �2.25 mmol/L), and D (>2.25 mmol/L). In this study, magnesium during pregnancy was

safe in the immediate postnatal period; however, in the subset of preterm neonates with sMg levels

>2.25 mmol/L, an increased mortality independent of birth weight and gestational age was observed

compared to the subgroup <1.25 mmol/L [74].

Similarly, a retrospective study at a single institution reviewed data from infants born to 6654

women who received MgSO4 during pregnancy for hypertensive disorders during labor and early

postpartum—6 g loading dose over 20 min, followed by 2 g/h adapted to reach a therapeutic range of

2.0–3.5 mmol/L. For all infants, the delay between birth and the last maternal blood sampling was

less than 4 h. Just before delivery, 30% of the mothers had a sMg concentration ranging between

1.5 and 2.0 mmol/L, and 65% had a sMg concentration ranging from 2.0 to 4.6 mmol/L [71]. In this

study, mechanical ventilation in the nursery, intraventricular hemorrhage, and neonatal death were

not significantly associated with maternal sMg concentrations. In contrast, 1- and 5-min Apgar scores,

intubation in the delivery room, admission to special care nursery, and hypotonia were significantly

increased as maternal sMg concentrations increased over 2.5 mmol/L [71]. Considering that cord

blood magnesium levels are directly related to maternal levels, this large study suggests that an sMg

concentration up to 2.5 mmol/L could be safe in preterm infants.

In a study conducted in late-preterm and term infants (�35 weeks gestation), Greenberg and

colleagues (2011) demonstrated a significant relationship between total hours and total maternal

dose of magnesium and admission to the neonatal intensive care unit (NICU) [109]. In this study,

sMg concentration was not determined in infants not admitted in the NICU; however in the NICU,

36 of 52 neonates (69.2%) had peak sMg levels of 2.05 ± 0.75 mmol/L suggesting that late-preterm

with relative hypermagnesemia were more likely to require respiratory assistance (47.8% versus 32.1%,

respectively; p = 0.4) and/or intravenous fluid supplementation (91.3% versus 39.3%; p < 0.001).

Recently, an additional retrospective cohort study was developed from the Canadian Neonatal

Network [110]. Resuscitation requirements and neonatal outcomes were compared between preterm

infants (23–31 weeks gestation) exposed to intrapartum MgSO4 for neuroprotection (n = 1387),

exposed for combined indications (neuroprotection, preeclampsia, tocolysis, and unknown) (n = 2147),

and unexposed (n = 3868) [110]. This study confirmed that exposure to intrapartum MgSO4 is

not associated with an increased need for intensive delivery room resuscitation in preterm infants

under current delivery room care practices. Indeed, any resuscitation needed and mortality were

significantly reduced in the exposed for neuroprotection and combined indication groups. However,

after adjustment for confounding factors, only death rate remained significantly reduced (adjusted

odds ratio: 0.61 (range: 0.40–0.94) and 0.64 (range: 0.46–0.89), respectively) [110].

It has also be suggested that MgSO4 administration during pregnancy could interfere with the

closure of the ductus arteriosus [111]. In a retrospective study in 160 preterm infants (<28 weeks

gestation) MgSO4 administration during pregnancy significantly reduced the closure of the ductus

arteriosus following prophylactic indomethacin at birth compared to the control group; however, the

efficacy of indomethacin treatment was similar in the two groups [111]. Moreover no differences

have been observed in randomized trials using antenatal MgSO4 administrations for neuroprotection

(PREMAG study). The threshold level of sMg concentration significantly impairing the spontaneous

closure of the patent ductus arteriosus remains to be determined.

Limited reports in preterm and term infants are available to evaluate the main clinical side effects

of hypermagnesemia. Ali and colleagues (2003) described two cases of acute hypermagnesemia
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in premature infants resulting from malfunction of an automated total parenteral nutrition mixing

device [112]. Observed effects included hypotension, QT interval prolongation, intraventricular

conduction delay, respiratory depression, neuromuscular blockade, and coma [112]. In both infants, sMg

levels upon admission were extremely high (21.6 mmol/L and 22.5 mmol/L, respectively) [112]. Similar

effects (e.g., severe hypotension, lethargy, hypotonia, diminished deep tendon reflexes, respiratory

depression, apnea, and sluggish pupillary reflexes) have been described in premature neonates

with hypermagnesemia (17.8–18.4 mmol/L) of unknown etiology and no history of magnesium

supplementation [113,114]. In 2013, the FDA provided a safety announcement recommending against

prolonged use of MgSO4 to stop preterm labor as administration of MgSO4 injection to pregnant women

longer than 5–7 days can cause low calcium levels and bone problems in the developing fetus or neonate,

including thin bones (i.e., osteopenia) and bone breaks (i.e., fractures) [115].

Overall, these data suggest that neonates can tolerate during a short time a relatively wide

range of sMg concentrations, without increased risk of adverse outcomes primarily associated with

substantially increased sMg.

3.7. Implications for Postnatal Magnesium Supplementation in Preterm Infants

Clinical practice guidelines for the feeding of newborns have been regularly revised over recent

decades, reflecting our improved understanding of nutrient requirements early in life [17,116–125].

Infants fed by the enteral route require higher levels of magnesium supplementation, because only

approximately 30% to 50% of ingested magnesium is absorbed [11]. Taking this into consideration,

the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN)

Committee on Nutrition in 2010 and an international group of experts in 2014 recommended that

VLBW infants receiving enteral nutrition target a magnesium intake of 0.33–0.62 mmol/kg/day

(8–15 mg/kg/day) [17,118]. Previous guidelines for enteral nutrition recommended that magnesium in

enteral feedings could be increased as the preterm infant matured (from 0.20–0.25 mmol/kg/day for

the first seven days to 0.20–0.40 mmol/kg/day from stabilization to term and 0.20–0.60 mmol/kg/day

from term to one year) [119,120]. Both noted that required magnesium supplementation levels

may vary depending on the feeding of other minerals that could influence the bioavailability of

magnesium [119,120]. Considering a mean absorption rate around 50% [126], metabolizable magnesium

can be estimated as 0.1–0.3 mmol/kg/day that could be used for adequate intakes in parenteral nutrition.

Recommendations for parenteral magnesium intake in preterm infants are limited and vary

considerably; however, most propose the use of lower parenteral magnesium doses relative to those

used in enteral supplementation. The American Society for Parenteral and Enteral Nutrition has

recommended 0.15–0.25 mmol/kg/day in both preterm neonates and in infants and children weighing

up to 50 kg [116,117]. ESPGHAN guidelines (2005) do not provide recommendations for parenteral

magnesium intake in preterm infants but suggest supplementation at a rate of 0.2 mmol/kg/day

for infants 0–6 months of age [123]. In a more recent clinical nutrition webinar series (in 2013),

higher targets were identified for neonates weighing <2 kg (0.175–0.3 mmol/kg/day) than for

neonates weighing >2 kg (0.125–0.25 mmol/kg/day) [127,128]. Recent recommendations put forth

by the Chinese Society of Parenteral and Enteral Nutrition are slightly higher (0.3–0.4 mmol/kg/day

in premature infants and 0.4–0.5 mmol/kg/day in term infants) [121]. However, a ready-to-use

parenteral solution providing 0.38 mmol/kg/day was recently retrieved from the market in 2013

due to a risk of hypermagnesemia and was replaced by the same solution providing a maximum

of 0.21 mmol/kg/day [129]. Therefore, for VLBW infants, a reduction of the magnesium intake

has been suggested during the first day of life; thus, Mimouni and colleagues (2014) recommend

0–0.12 mmol/kg/day on the first day of life and 0.3–0.4 mmol/kg/day thereafter [17].

According to the data available on parenteral nutrition in preterm infants, as presented before,

magnesium supplies may be provided from the first day of life in preterm infants and progressively

increased during the first week in relation to the protein (amino acid) and the energy intakes. In the

range of the actual recommendations (0.10–0.40 mmol/kg/day), safe levels of sMg concentration are
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observed. Nevertheless, in light of the apparent variability in magnesium levels reported in the preterm

population, regular serum monitoring should be used to tailor supplementation for the individual

patient. This is of particular importance in infants with a history of magnesium supplementation

during pregnancy, infants receiving indomethacin or ibuprofen for patent ductus arteriosus prevention

or treatment, and infants with transitory renal failure.

3.8. Limitations

These meta-analyses were limited by high levels of heterogeneity and a limited number of

available studies reporting sMg concentrations in mothers and neonates. Although heterogeneity was

not explored statistically, reasons for this variance include differences in magnesium intake during

pregnancy, postnatal magnesium intake, number of samples taken, sample timing, gestational age,

lack of standardized analytical methods to determine magnesium level, and exclusion/inclusion

criteria relevant to medical conditions (e.g., hypertension, preeclampsia, diabetes, and AIDS).

4. Summary and Recommendations

Serum magnesium levels vary broadly in preterm infants and are influenced not only by

maternal factors, but also by health status (e.g., renal function), concomitant nutrient intake,

and drug administration. Available data suggest that normal mean sMg levels in preterm infants

during the first week of life was higher than that in the cord blood and could be estimated as

0.88 mmol/L with a reference interval ranging from 0.46 to 1.30 mmol/L (Figure 7). In infants

with magnesium supplementation during pregnancy, as well as in preterm infants with relative renal

failure, sMg concentrations up to 2.0 mmol/L appear to be well tolerated, requiring adequate survey

and minimal intervention. It is notable that these data were fairly consistent, despite the lack of

standardized analytical methods of magnesium level determination. The considerable variance in

the recommendations for enteral and parenteral magnesium intake in preterm infants reflects the

limited knowledge of magnesium requirements in this population; thus, regular serum monitoring

is crucial to maintaining adequate magnesium levels in the individual patient. In addition, due to

the demonstrated neuroprotective effect with antenatal administration of MgSO4, it is proposed to

conduct a randomized clinical trial evaluating different dose regimens of magnesium in parenteral

nutrition on neurodevelopmental outcomes and potential side effects in VLBW infants.

 

Figure 7. Summary of meta-analysis results of magnesium concentrations in newborns (mmol/L).

CI: confidence interval; n: number of infants; PN: parenteral nutrition; VLBW: very low birth weight.
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