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Abstract This paper deals with a multi-objective topol-
ogy optimization problem in an asymmetrically heated

channel, based on both pressure drop minimization and
heat transfer maximization. The problem is modeled
by assuming steady-state laminar natural convection

flow. The incompressible Navier-Stokes equations cou-
pled with the convection-diffusion equation, under the
Boussinesq approximation, are employed and are solved
with the finite volume method. In this paper, we discuss

some limits of classical pressure drop cost function for
buoyancy driven flow and, we then propose two new ex-
pressions of objective functions: the first one takes into

account work of pressure forces and contributes to the
loss of mechanical power while the second one is related
to thermal power and is linked to the maximization of

heat exchanges. We use the adjoint method to compute
the gradient of the cost functions. The topology opti-
mization problem is first solved for a Richardson (Ri)
number and Reynolds number (Re) set respectively to

Ri ∈ {100, 200, 400} and Re = 400. All these configura-
tion are investigated next in order to demonstrate the
efficiency of the new expressions of cost functions. We
compare two types of interpolation functions for both
the design variable field and the effective diffusivity.
Both interpolation techniques have pros and cons and
give slightly the same results. We notice that we obtain

less isolated solid elements with the sigmoid-type inter-
polation functions. Then, we choose to work with the
sigmoid and solve the topology optimization problem
in case of pure natural convection, by setting Rayleigh
number to {3× 103, 4× 104, 5× 105}. In all considered
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cases, our algorithm succeeds to enhance one of the phe-
nomenon modeled by the proposed cost functions with-

out deteriorating the other one. The optimized design
obtained suppresses any reversal flow at the exit of the
channel. We also show that the thermal exchanges are

improved by computing the Nusselt numbers and bulk
temperature. We conclude that the new expressions of
objective functions are well suited to deal with natural

convection optimization problem in a vertical channel.

Keywords Natural convection · Vertical channel ·
Topology optimization · Objective functions · Adjoint

sensitivity analysis · Sigmoid function

1 Introduction

Heat transfer between two vertical plates has appli-

cations in many widely used engineering systems; for
example, cooling and heating industrial and electronic
equipment such as transistors, mainframe computers,
plate heat exchangers and solar energy collectors. Heat

transfer by natural convection does not require addi-
tional mechanical devices, such as fans, and features
robustness and simplicity. So, the concept of natural
convection, that is the transport of heat by fluid mo-
tion driven by temperature dependent buoyancy forces,
is attractive and the design of efficient heat transfer sys-
tems constitute a multiple challenge.

Heat transfer and fluid flows driven by natural con-
vection in open channels have been extensively studied
over the last past decades, for vertical or inclined con-
figurations, with uniform heat fluxes or constant tem-
peratures [8, 9, 13, 21, 23, 61, 66, 67]. Some studies
also investigated the optimization of heat transfer in

the vertical channel. Bar-Cohen and Rohsenow [10] per-
form analytical optimization based on maximizing to-
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tal heat transfer per unit volume or unit primary area.
To achieve this analytical optimization, they developed
composite relations for the variation of the heat trans-
fer coefficient along the plate surfaces. Morrison [47]
developed an approach for determining the optimized
fin configurations for a given heat sink in natural con-
vection. The proposed algorithm allows the computer
to look for the lowest temperature performance of a
user specified range of fin geometries. Nasri et al. [48]
performed a numerical study in order to analyze the
effect of adding a chimney to a vertical open channel.
They determined the optimal geometric parameters of
the chimney and studied thermal and dynamic aspects
of the channel-chimney system by varying the width
and the height of the chimney while the aspect ratio
of the channel is kept fixed. Lim et al. [43] applied a
CFD-based shape optimization in order to find the op-
timal channel cross-sectional shape for minimizing lo-
cal heat flux on the cooling surface in fusion divertors.
Maximum heat flux on the cooling channel surface is
defined as the objective function in the optimization

process. Finally, it is found that the maximum heat flux
and temperature in the cooling channel can be signifi-
cantly reduced compared to the original circular chan-

nel shape by simple modification of the ellipse-shaped
cross-section. Talukdar et al. [65] focused on the opti-
mization of the thermal performance for compressible

laminar natural convection flow induced under high-
temperature difference in an open-ended vertical chan-
nel by optimizing the channel inter-plate spacing us-
ing numerical simulation. From the results obtained,

a correlation for optimum aspect ratio with Rayleigh
number which maximizes the heat transfer within the
channel is presented. To summarize, among these differ-

ent studies, there are few optimization of natural con-
vection heat transfer in open-ended channels investi-
gations other than parametric geometry with few de-
sign variables. However, the optimization of these sys-
tems simultaneously demands compactness, efficiency
and control of heat and mass transfers. As a result,
in this paper, we deal with some topology optimiza-
tion problems for heat and mass transfers, considering
the physical case of an asymmetrically heated vertical
channel.

Topology optimization is a powerful and a popular
tool for designers and engineers to design process. Its
notion was initially introduced in structural mechanics
by Bendsøe and Kikuchi [12]. In order to increase the

structural stiffness under certain load, they targeted the
optimal material density distribution by identifying ar-
eas in which material should be added. They expressed
the design problem in terms of real valued continuous
function per point, with values ranging from zero (in-

dicating the presence of void/absence of material) to
unity (indicating solid). The method has then been de-
veloped to numerous problems in structural mechanics
[24, 31–33, 42, 64, 69]. In fluid mechanics, the same idea
was adapted to Stokes flows by Borrvall and Petersson
[14], by introducing a parameter γ that depends on both
the dynamic viscosity ν of the fluid and the specific
permeability κ of the porous material: γ = ν/κ. This
parameter γ is often referred as an inverse permeability
function in the literature [28]. The friction force acting
on the fluid by the material is proportional to the veloc-
ity of the fluid as f = −γu where u is the velocity of the
fluid. This term is added to the flow equations. Domain
areas corresponding to the fluid flow are those where γ
is closed to 0 while areas where γ is far from 0 define the
part of the domain to be solidified. The optimal solid
walls to be designed correspond to the interfaces be-
tween the two aforementioned areas. To summarize, the
goal of topology optimization is to compute the opti-
mal γ field in order to minimize some objective function
under consideration. Contrary to topology optimization

applied to design structure, research on topology opti-
mization applied to heat transfer and fluid dynamics
is quite recent. Dbouk [19] presented a review about
topology optimization design methods that have been

developed for heat transfer systems, and for each of
them, he presented their advantages, limitations and
perspectives. In topology optimization problems with

large number of design variables, gradient-based algo-
rithms are frequently used to compute accurate solu-
tions efficiently [2, 17, 35, 45, 50, 71]. This algorithm
starts with a given geometry and iterates with informa-

tion related to the derivatives (sensitivity derivatives)
of the objective function with respect to the design vari-
ables. Among the methods used to compute the sensi-
tivity derivatives required by gradient-based methods,
the adjoint method [11, 36, 45, 49, 50, 52] has received
a lot of attention since the cost of computing the neces-

sary derivatives is independent from the number of de-
sign variables. Papoutsis-Kiachagias and Giannakoglou
[52] present a review on continuous adjoint method ap-
plied to topology optimization for turbulent flows. Tong
et al. [68] have recently discussed on the optimization of
thermal conductivity distribution for heat conduction
enhancement. They considered different cost functions

and demonstrated that they should be carefully chosen
when heat conduction is involved. Othmer [49] derived
the continuous adjoint formulations and the boundary
conditions on ducted flows for typical cost functions.
He proposed an objective function to reduce pressure
drops in open cavity. The originality of his method
is the versatility of the formulation where the adjoint
boundary conditions were expressed in a form that can
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be adapted to any commonly used objective function.
Then, for the automotive industry, Othmer et al. [51]
implemented several objective functions like dissipated
power, equal mass flow through different outlets and
flow uniformity. To describe the transition and inter-
face between fluid and solid regions in the domain, the
Solid Isotropic Material with Penalization (SIMP) tech-
nique [12, 73] is the mostly used in the literature as the
interpolation technique in topology optimization. This
approach represents the non-fluid regions as infinitely
stiff, a penalty to the flow, such that no interaction is
modeled. A new method of interpolation was presented
by Ramalingom et al. [57] in order to improve the fluid-
solid interface during the optimization process. They
proposed two sigmoid functions to interpolate material
distribution and effective diffusivity. They showed that
the transition zones, i.e. zones where the velocity of
fluid is not small enough to be considered as solid, can
be made arbitrary small. The present paper thus also
aims to present an efficient gradient-based optimization
method and gives comparison between two types of in-

terpolation functions, namely SIMP and the sigmoids
from Ramalingom et al. [57], for the material distribu-
tion and the effective diffusivity.

Conjugate heat transfer was originally treated in

Dede [20] and Yoon [71]. It is worth noting that this
field of research is very active today [27, 29, 30, 54,
58, 70]. Most of these works focused on forced con-

vection although authors have previously presented a
density-based approach for natural convection problems
[2, 3, 53, 59]. Coffin and Maute [18] introduced a topol-

ogy optimization method for 2D and 3D, steady-state
and transient heat transfer problems that are domi-
nated by natural convection in the fluid phase. The
geometry of the fluid-solid interface is described by an
explicit level set method. Recently, Alexandersen et al.
[4] used topology optimization to the design of three-
dimensional heat sinks cooled by natural convection.

Heat sinks in a closed cooled cavity are investigated for
several Grashof numbers. Interesting design features are
observed and trends are discussed. Joo et al. [34] pre-
sented a density-based method for a simplified convec-
tion model for plane extruded structures. Alexander-
sen et al. [5] show that the optimized designs obtained
thanks to topology optimization for passive cooling of

light-emitting diode (LED) lamps by natural convec-
tion yield less package temperature with less material
compared to a lattice-fin design. Saglietti et al. [59] con-
sidered numerically the natural convection-driven flow
in a differentially heated cavity using three different
Prandtl numbers ranging from 0.7 to 7 at super-critical
conditions. For specific cases, the computation of opti-
mal initial conditions leads to a degenerate problem and

the power iteration converges very slowly and fails to
extract all possible optimal initial conditions. Lei et al.
[40] used a natural convection experimental setup to
study the performance of the fabricated heat sinks, de-
signed by a previously reported topology optimization
model for natural convection. The results show that the
tested topology optimization heat sinks can always re-
alize the best heat dissipation performance compared
to pin-fin heat sinks, when operating under the condi-
tions used for the optimization. Saglietti et al. [60] stud-
ied innovative designs of heat sinks generated through
numerical optimization. They investigated the impact
of boundary conditions, initial designs, and Rayleigh
number. They showed that as the Rayleigh number
increases, the topology of the heat exchanger is able
to substantially enhance the convection contribution to
the heat transfer.

Although well-performing structures are obtained
using density-based approach, Alexandersen et al. [4, 5]

specified that the performance of structures obtained
for natural convection cannot be guaranteed in general
due to the simplified modeling. In Alexandersen et al.

[2], they treated several difficulties that would be en-
countered when dealing with natural convection prob-
lems as the oscillatory behavior of the solver, namely
a damped Newton method, used for the optimization

computations. He also reported intermediate relative
densities that amplified the natural convection effects
leading to non-vanishing velocity in some solid parts

of the computational domain. Although it is reported
that this issue only arose when the objective function
was directly dependent on the velocity field, those zones

are considered as solid by the optimization algorithm
while they should be treated as fluid. In addition to this,
topology optimization of natural convection problems is
computationally expensive [6]. Bruns [17] applied topol-
ogy optimization to convection-dominated heat trans-
fer problems. He highlighted numerical instabilities in
convection-dominated diffusion problems and justified
them by the density-design-variable-based topology op-
timization. Other numerical issues are encountered in
topology optimization problems, as checkerboards pat-
tern and intermediate density regions. Authors usually
adopted a continuation strategy where the parameter
involved in the SIMP interpolation of the effective dif-
fusivity is gradually increased during the optimization

process. These values are chosen to aggressively penal-
ize intermediate densities with respect to effective dif-
fusivity and to confine the maximum impermeability
to the fully solid parts of the domain. Similarly, au-
thors used filtering techniques [2, 16, 38, 39, 45] to
overcome bad connectivity between elements of solid
domain. The filtering is done by looking at the ”neigh-
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borhood” of the individual element which is defined as
the set of elements with centers within the filter radius.
Bruns [16] explained that the main disadvantage of fil-
tering the sensitivities is that the approach is heuristic
[63] because the sensitivities are not consistent with the
primal analysis. Therefore, the optimization problem is
not well posed in a rigorous sense. Alexandersen et al.
[1] explained that some form of filtering can be bene-
ficial for some topology optimization problems. Mini-
mizing the energy dissipated in fluid flow problems are
generally well posed and no filtering is needed. On the
contrary, alternating solid and fluid elements can exist
in structural and heat transfer problems but the latter
creates areas of solid elements not correctly connected.
Sigmund [62] described various filters type to fix this
problem. More recently, Saglietti et al. [60] investigated
a complete conjugated problem in which the effect of
the solid material on the surrounding flow through the
action of a Brinkman friction term in the Navier-Stokes
equations is described. They applied advanced filtering
techniques for enforcing a desired length scale to the

solid structure. In this paper, we are going to avoid the
use of filtering methods and we do not obtain isolated
pieces of material at the end of the optimization pro-

cess. Finally, conjugate and heat transfer optimization
problems are dealt with quite many and various single
or multi-objective functions, such as thermal compli-

ance [2, 3, 34, 71], mean temperature [20], total fluid
power dissipated [20, 54], mass flow through a surface
[2], heat flux through a surface [53, 60], kinetic energy
and the entransy [60], average temperature at the heat

flux region [18, 30, 72], mechanical energy [53], dissipa-
tion energy combined with pressure drop [54, 70] and
conductance [29].

This paper deals with the minimization of pressure
drop and the maximization of heat transfer in a natural
convection optimization problem. After analyzing some
limits we identified for the classical pressure-drop cost

function when dealing with flows dominated by natu-
ral convection forces, we investigate new expressions of
objective functions defined according to a systemic ap-
proach to an asymmetrically heated vertical channel.
The geometry considered here is the model proposed
by Desrayaud et al. [22] and corresponds to a bound-
ary layer flow with a reversal flow at the exit [56]. Sev-

eral configuration cases are considered in order to eval-
uate the new objective functions. We also compare two
types of interpolation functions (Sigmoid and Ramp-
type) to interpolate material distribution and effective
diffusivity. We then solve the optimization problem in
mixed convection, for various Richardson number Ri =
{100, 200, 400} and then, we deal with the optimization
problem in case of pure natural convection, for various

Rayleigh numbers Rab = {3×105, 4×105, 5×105}. Our
optimization algorithm succeeds especially to avoid the
existence of a reversal flow. We show that our optimized
designs increase thermal exchanges by computing the
Nusselt numbers. We finally end this paper by drawing
some conclusions.

2 Governing equations

The flows considered in this paper are assumed to be in
a steady-state laminar regime, newtonian and incom-
pressible. Figure 1 shows the configuration of the com-
putational domain Ω. Physical properties of the fluid
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Fig. 1 Geometry of the problem

are the kinematic viscosity ν and the thermal conduc-
tivity λf . First, parameters governing the flow for nat-
ural convection dominant is the Reynolds number de-
fined as

Re =
Ub

ν
,

with b being the width of the channel and U the refer-
ence velocity based on the average velocity at the chan-
nel entrance. In case of pure natural convection, the
reference velocity is defined as

UCN =
k Ra1/2

b
,
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with k the thermal diffusivities of the fluid. The Prandtl
number is the ratio between the momentum and ther-
mal diffusivities of the fluid and is defined as

Pr =
ν

k
.

In this paper, we consider only fluids with small Prandtl
hence satisfying Pr < 1. The Grashof number repre-
sents the ratio between buoyancy and viscous force and
is defined as

Grb =
gβ∆Tb3

ν2
,

where ∆T = −φ/λf and φ is the thermal flux on Γ1.
The modified Rayleigh number is associated with buoy-
ancy driven flow, also known as natural convection. It
is defined as

Rab = GrbPr.

In thermal convection problems, the Richardson num-
ber represents the importance of natural convection rel-

ative to the forced convection. The latter is given by

Ri =
Grb

Re2
.

Note that values greater than unity means that the
flow is dominated by natural convection. Under these

assumptions and thanks to a method given in Bor-
rvall and Petersson [14], the porosity field is introduced
in the steady-state Navier-Stokes equation as a source

term hτ (γ)u which yields a Brinkman-like model with a
convection term [57]. Therefore, the dimensionless form
of the Navier-Stokes and energy equations are written
as follows:

∇ · u = 0 in Ω,

(u · ∇)u = −∇p+ A∆u− hτ (γ)u + Bθ−→ey in Ω,

∇ · (uθ) = ∇ · (Ckτ (γ)∇θ) in Ω,

(1)

where the constants A,B,C are defined according to
the case considered and read

– for dominant natural convection
{A,B,C} = {Re−1, Ri, Re−1Pr−1},

– for pure natural convection
{A,B,C} = {Pr Rab

−1/2, Pr, Rab
−1/2}.

In Eq. (1), (u, p, θ) correspond respectively to the di-
mensionless velocity, pressure and temperature and are
usually referred as the primal variable in the current

setting. Parameter γ is the effective inverse permeabil-
ity that is going to be determined thanks to the op-
timization algorithm. For the natural-dominated con-
vection problem, one has the following boundary con-
ditions:

u = 0, ∇p = 0, ∂nθ = −1 on Γ1,

u = 0, ∇p = 0, ∂nθ = 0 on Γ2,

u = uiey, ∇p = 0, θ = 0 on Γi,

∂nu = 0, p = 0, ∂nθ = 0 on Γo,

(2)

where ∂n is the normal derivative defined as ∂n = n ·∇,
Γ1, Γ2, Γi, and Γo are respectively the hot plate, the adi-
abatic plates, the inlet and the outlet of the channel.
For the natural convection case, the boundary condi-
tions reads as follow :

u = 0, ∇p = 0, ∂nθ = −1 on Γ1,

u = 0, ∇p = 0, ∂nθ = 0 on Γ2,

∂nu = 0, ∇p = 0, θ = 0 on Γi,

∂nu = 0, p = 0, ∂nθ = 0 on Γo, (if u · n > 0)

∂nu = 0, p = −1/2 u2, ∂nθ = 0 on Γo, (if u · n < 0).

(3)

According to the results presented by recent studies
[15, 22, 56], pressure boundary conditions at the top
and bottom sections based on Local Bernoulli relation
are chosen in the current numerical study.

3 Topology optimization formulation

The main goal of this paper is to deal with a multi-
objective optimization problem in the asymmetrically

heated channel. In the literature, cost functions are of-
ten expressions of the work of forces or powers that one
either wish to minimize or to maximize. In the present
study, we consider both pressure drop minimization de-
scribed by a first objective function J1 and heat transfer
maximization described by a second objective function
J2. The optimization problem can then be stated as:

min J (u, p, θ) = c1 J1(u, p, θ) + c2 J2(u, p, θ),

where (u, p, θ) satisfy (1), (2),
(4)

and the cost function J is the combination of the two
objectives functions, c1 and c2 are weighting coefficients.
It is easy to observe that, for c1 � c2, the multi-
objective function amounts to a minimum power dis-
sipation problem, while for c1 � c2, a maximum heat
dissipation problem is defined.
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3.1 Multi-objective optimization

In multi-objective optimization, one of the challenges is
to benefit from both objective functions. As introduced
in previous subsection, the objective function based on
maximization of thermal exchanges can involve the in-
crease of pressure drop and conversely for the objective
function relative to the dissipation of power. Before
combining linearly the two functions, they must then
be rescaled to have the same order of magnitude. This
can be done by using an Aggregate Objective Func-
tion (AOF), also known as the weighted-sum approach,
which is based on a linear combination of both objective
functions [7, 46]. The latter reads:

f̂ =
f − fmin

fmax − fmin
(5)

where f is either J1 or J2. As explained by [45], the
other four parameters are determined by solving both

optimization problems independently (4) for min J1
and max J2. Consequently, both rescaled objective func-
tions are ranged between 0 and 1. Such a rescaling al-

lows to consider the following linear combination:

Ĵ = ω Ĵ1 − (1− ω)Ĵ2 (6)

where ω ∈ [0, 1] is the weight balancing the influence

of each objective function. Note that this combination
involves the opposite of J2 since one aims at minimizing
the combinatory function Ĵ . Thereafter, Ĵ1 and Ĵ2 are
used only during the optimization process.

3.2 Limits of classical pressure drop cost function for
buoyancy driven flow

In this section, we discuss some limits we identified of
the classical pressure-drop cost function when dealing
with flows dominated by natural convection forces. The
latter is widely used in the literature [14, 35, 44, 45, 49,
55, 57] and reads

f1(u, p) =

∫
Γ

−n · u
(
p+

1

2
|u|2

)
dS. (7)

Also, as pointed out by [44], it is equivalent to minimize
the power dissipated by the fluid when the fluid passes
the boundary with constant velocity. It is worth not-
ing that all the previously mentioned studies using cost
function (7) does not consider buoyancy driven flows.

We are now going to show that f1 is no longer the power
dissipated by the fluid in the current setting. Starting

with a Green formula, we obtain

f1(u, p) = −
∫
Γ

(
p+

1

2
|u|2

)
u · n dS

= −
∫
Ω

div

((
p+

1

2
|u|2

)
u

)
dΩ

= −
∫
Ω

div (u)

(
p+

1

2
|u|2

)
dΩ

−
∫
Ω

u · ∇
(
p+

1

2
|u|2

)
dΩ

= −
∫
Ω

u · (∇p+ (u · ∇)u) dΩ,

where we used that u · {(u · ∇)u} = u · ( 1
2∇|u|

2). Using
then (1) and the boundary conditions (2), we infer

f1(u, p) = −
∫
Ω

u ·
(
Re−1∆u +Riθey − hτ (γ)u

)
dΩ

=

∫
Ω

Re−1|∇u|2 + hτ (γ)|u|2 dΩ

−
∫
Γ

Re−1∂nu · u dΓ − Ri

∫
Ω

(u · ey)θ dΩ

=

∫
Ω

Re−1|∇u|2 + hτ (γ)|u|2 − Ri(u · ey)θ dΩ

−Re−1

∫
Γi

(∂nu · ey)ui dS.

From the previous computations, one can see that f1 in-
deed represent either the pressure loss inside the chan-
nel or the dissipated power but only if the velocity of the
fluid is constant across the inlet (hence ∂nu·ey = 0) and

if Ri = 0. It is worth mentioning that the cost function
f1 can still be used to reduce the total pressure losses
in the channel for fairly small Richardson number (see

e.g. [57] where one has Ri = 2.8). Nevertheless, since
in this paper we are going to work with large Ri, that
is Ri ≥ 100, we introduce in the next section a new

expression for the dissipated power.

3.3 Definition of the cost functions with systemic
approach

In our study, we propose to evaluate mechanical and
thermal power via two new expressions of both cost

functions. We emphasize that proposing another ex-
pression of the mechanical power is motivated by the
results of section 3.2 which show analytically that the
usual expression of the power dissipated by the fluid
(see Eq. (7)) actually depends on the Richardson num-
ber and does not suit when this number is relatively
large. The definition of our new cost function is based
on a systemic approach and have the major advantage
that they can be used with mean values at input and
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at output of a given physical model. As a result, as our
numerical results show, they do not seem to suffer from
intrinsic limitations coming from the modelling consid-
ered.

As we will show below, these functions actually give
an optimized design without using any filtering tech-
niques. Moreover, we do not observe isolated pieces of
material at the end of the optimization process.

Inlet Outlet

Domain

Fig. 2 Systemic approach

As illustrated in Figure 2, for a system with an inlet,
an outlet, an average velocity (Ui, Uo) and an average

temperature (θi, θo), the thermal power is defined as
the product of the mass flow, the volume heat capacity
and the difference of temperature between the entrance

and the exit of the system. Likewise, mechanical power
is defined as the product of mass flow rate and the dif-
ference of total pressure (pt) between the entrance and
the exit of the system. In that way, we chose to mini-

mize the work of pressure forces to minimize the power
dissipated in the channel as it is usually done in sys-
temic approach. Hence, the first cost function can be

written as:

J1(u, p) = − 1

|Γi|

∫
Γi

pt dS

∫
Γi

u · n dS

− 1

|Γo|

∫
Γo

pt dS

∫
Γo

u · n dS,
(8)

where pt = p + 1/2 |u|2 is the total pressure, Γi and
Γo are respectively the entrance (inlet) and the exit
(outlet) of the channel and |S| denotes the length of
S ⊂ Γ .

The second cost function concerns thermal exchange
maximization and is given by:

J2(u, θ) =
1

|Γi|

∫
Γi

θ dS

∫
Γi

u · n dS

+
1

|Γo|

∫
Γo

θ dS

∫
Γo

u · n dS.
(9)

We can observe that this systemic approach for defining
the cost functions enables to dissociate total pressure
or temperature from the mass flow rate, since velocity
profile is imposed at the entrance.

Remark 1 Another classical cost function used for in-
stance in Kontoleontos et al. [36], Marck et al. [45] is

related to the thermal power thanks to the next expres-
sion:

f2(u, θ) =

∫
Γ

n · u θ dS. (10)

Note that maximize f2 is equivalent to maximize the
bulk temperature. Also, maximizing (9) is equivalent to
maximize the mean temperature at apertures as opposed
to (10).

4 Topology optimization methods

Applying topology optimization to this problem aims to
minimize an objective function J by finding an optimal
distribution of solid and fluid element in the computa-
tional domain. The goal of topology optimization is to
end up with binary designs, i.e avoid that the design
variables take other value than those representing the

fluid or the solid. This is usually carried out by pe-
nalizing the intermediate densities with respect to the
material parameters, such as inverse permeability and

effective diffusivity. A standard approach is to use inter-
polation functions. We are also going to use gradient-
based algorithm that relies on the continuous adjoint
method.

4.1 Interpolation functions

The additional term hτ (γ) in (1) physically corresponds

to the ratio of a kinematic viscosity and a permeability.
As proposed by Guest et al. [28], Sigmund [62], Zhao
et al. [72], a projection approach is employed to relate

the element-based design variables to the physical den-
sities firstly and to the thermal diffusivity, secondly. We
defined two smooth regularization of Heaviside func-
tions for these interpolations. The interpolation func-
tion for the thermal diffusivity of each element is kτ (γ),
both functions were defined in Ramalingom et al. [57]
where it is shown that the intermediate zones can be as

small as desired. Regions with very high permeability
can be considered as solid regions, and those with low
permeability regions are interpreted as pure fluid.

Inverse permeability can be interpolated with the
following formula

hτ (γ) = γmax

(
1

1 + e−τ(γ−γ0)
− 1

1 + eτγ0

)
(11)

where γ0 is the abscissa slope of the sigmoid function,
τ is the slope of the sigmoid function, γmax is the max-

imum value that the design parameter γ can take. In
[57], it is shown that the parameter γ0 is linked to the
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quantity of material added in the domain Ω. These pa-
rameters are going to be given in the next section. The
difference in the adimensional thermal diffusivities of
the fluid and solid regions considered through the in-
terpolation of effective diffusivity kτ as follows:

kτ (γ) =
1

kf

[
kf + (ks − kf )

hτ (γ)

γmax

]
, (12)

where ks and kf are respectively the thermal diffusivity
of solid and fluid domains.

In this paper, we also studied the impact of a Ramp-
type interpolation function on solutions of the optimiza-
tion problem. The latter has been introduced in Bor-
rvall and Petersson [14] and can be defined as follows:

σ(γ) = σmax + (σmin − σmax) (1− γ)
1 + q

1− γ + q
, (13)

where σ ∈ {h, k} is either the inverse permeability or
the thermal diffusivity, q → 0, γ ∈ [0; γmax], hmin =
γmin, hmax = γmax, kmin = kf , kmax = ks.

4.2 Adjoint problem

The Lagrange multiplier method [26] is used to get an
optimization problem without constraints and can be
used to get the sensitivity of the cost function J . The

Lagrangian is defined as

L(u, p, θ,u∗, p∗, θ∗, γ) = J (u, p, θ)

+

∫
Ω

R(u, p, θ) · (u∗, p∗, θ∗)dΩ,
(14)

where (u∗, p∗, θ∗) are the so-called adjoint variables and
R(u, p, θ) = 0 corresponds to the governing equations
(1). In order to compute the adjoint problem for general
cost functions, we write the cost functional as follow

J (u, p, θ) =

∫
Ω

JΩ(u, p, θ)dΩ +

∫
Γ

JΓ (u, p, θ)dΓ.

The critical points of L with respect to the adjoint vari-
ables give the constraint of the optimization problem
(4) while the critical point with respect to the primal
variable yield the so-called adjoint problem. The latter
can be derived as in Othmer [49] (see also [57]) and is
given by

∇p∗ − hτ (γ)u∗ + θ ∇θ∗ + A ∆u∗ +∇u∗ u

−(u∗ · ∇)u =
∂JΩ
∂u

in Ω,

∇ · u∗ =
∂JΩ
∂p

in Ω, (15)

B u∗ · −→ey + u · ∇θ∗ +∇ · (C kτ (γ)∇θ∗)

=
∂JΩ
∂θ

in Ω,

together with the boundary conditions for the natural-
dominated convection problem

u∗ = 0,
∂JΓ
∂θ

= Re−1 Pr−1 kτ (α)∇θ∗ · n,
∂np

∗ = 0 on Γ1 ∪ Γ2,

u∗t = 0, θ∗ = 0,
∂JΓ
∂p

= −u∗n, ∂np∗ = 0 on Γi,

u∗t = 0 on Γo,
∂JΓ
∂θ

= −θ∗ un − Re−1 Pr−1 kτ (γ)∂nθ
∗ on Γo,

∂JΓ
∂u
· n = −p∗ − θ∗ θ − Re−1 ∂nu∗ · n

−u∗n un − u · u∗ on Γo,

(16)

where un = u·n is the normal component of the velocity
and ut = u · t is its tangential part.

In the sequel, we are going to minimize some rescaled
cost function (6). We give below the expressions of the
derivatives of the cost functions used in the numerical
simulations done in the paper, namely the systemic cost

functions

Ĵ = ωĴ1 − (1− ω)Ĵ2
where Ĵ is defined with (5) and J1 and J2 are given

respectively by (8) and (9). Note that, one has

JΩ = 0.

In addition, the derivatives of JΓ with respect to the

primal variables (u, p, θ) are

∂JΓ
∂p

∣∣∣∣
Γi

= −c1
1

|Γi|

∫
Γi

u · n dS

∂JΓ
∂θ

∣∣∣∣
Γo

= c2
1

|Γo|

∫
Γo

u · n dS

∂JΓ
∂u

∣∣∣∣
Γo

= −c1
1

|Γo|
n

∫
Γo

pt dS − c1 u ·
∫
Γo

u · n dS

+ c2
1

|Γo|
n

∫
Γo

θ dS,

(17)

where

c1 =
ω

J1,max − J1,min
, c2 =

−(1− ω)

J2,max − J2,min
.

For the systemic cost functions considered in this paper,
the adjoint problem is thus given by (15,16,17) with
JΩ = 0.

4.3 Implementation

Topology optimization problem is solved by iterative
calculations as carried out, for instance, by Ramalin-
gom et al. [57]. The main steps of the algorithm consist
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to compute sensitivities by adjoint method and evaluate
the optimality condition. If a stopping criterion is met,
the computations are terminated. For our simulations,
we used the algorithm depicted in [57, Page 5, Figure 2]
where the stopping criterion is used with ε = 10−7. The
forward problem (1) and the adjoint problem (15) are
implemented using OpenFOAM [25]. A pressure-based,
segregated, steady solver (buoyant-Boussinesq, Simple-
Foam) was used with SIMPLE algorithm for pressure-
velocity coupling. For all results performed in this pa-
per, we monitored the number of iterations of linear sys-
tem solver. The generalized Geometric-Algebraic Multi-
Grid (GAMG) solver with a cell-centered colocalized
finite volume approach is used. Then, the design vari-
ables are evaluated by using the conjugated-gradient
descent direction method associated to Polack-Ribiere
method

βPRk+1 =
∇J Tk+1 (∇Jk+1 −∇Jk)

∇J Tk ∇Jk
.

The gradient of the cost function with respect to the
design parameter is given by the critical point of the
Lagrangian with respect to the design parameter γ and

reads as follows:

∂J
∂γ

(γ) = −
∂hτ

∂γ
u · u∗−C

∂kτ

∂γ
∇θ · ∇θ∗ in Ω,

∂J
∂γ

(γ) = −C
∂kτ

∂γ
θ∗with ∇nθ = −1 on Γ1.

(18)

5 Investigated configurations

We present in this section the several cases that are
numerically tackled in the paper. We highlight that we
are interested in simultaneously minimizing mechanical
power and maximizing thermal power in a setting where
both of these quantities have the same impact on the
optimized vertical channel. As a result, we set

ω = 0.5

in all our numerical simulations

Remark 2 We needed to compute the rescaled systemic
cost functions Ĵ1 and Ĵ2 in order to minimize Ĵ =
ωĴ1 − (1 − ω)Ĵ2. As a result, even if these results are
not presented here since they are not in the scope of
the paper, we actually also solved optimization problem
(4) for ω = 0 and ω = 1 hence we minimized the pres-
sure losses and maximized the thermal exchange in the
channel.

In section 6.1, we solve the heat and mass trans-
fer natural convection problem in the asymmetrically
heated-channel with γ = 0 in Ω, in order to save refer-
ences data, for various Ri taken in {100, 200, 400} and
under constant Re = 400. For these values of Reynolds
and Richardson numbers, the conducto-convection prob-
lem is dominated by natural convection phenomena.
These values have been chosen in accordance with the
study of Li et al. [41] on reversal flows in the asymmet-
rically heated channel. A vertical velocity profile at the
entrance (inlet) of the channel is considered in accor-
dance with the value of Re = 400. Its profile is defined
by the following equation:

ui(x) = 6.1x(1− x),

where i corresponds to the inlet of the channel. This
configuration case is named Case 1 and the numerical
simulation are going to be done without optimization in
order to have the values of J1 and J2 as reference data
and see the influence of adding material in an empty

channel on both work of pressure forces and thermal
exchange.

In section 6.2, we compare optimization results ob-
tained with the systemic cost functions (Eq. (8) and

(9)) when choosing sigmoid-type functions (11) and (12)
with those obtained with Ramp-type functions (13).
The comparison is made for Richardson number Ri ∈
{100, 200, 400}. These numerical simulations are referred
as Case 2.

In section 6.3, we solve the optimization problem
(4) for Re = 400 and Ri = {100, 200, 400}. We used the

systemic cost functions given in (8) and (9) and chose
sigmoid-type functions (11) and (12) for the interpola-
tions. This study case corresponds to the configuration
Case 3.

Finally, in section 6.4, we investigated the topology
optimization problem for the case of pure natural con-
vection which is going to be labelled as Case 4. We chose

various Rab numbers taken in {3×105, 4×105, 5×105},
which corresponds to a laminar flow. We used the sys-
temic cost functions defined in (Eq. (8) and (9)) and
chose sigmoid-type functions (Eq. (11) and (12)) for
the interpolations.

These four investigated configuration cases are sum-
marized in Table 1.

All optimization results performed in this paper cor-
respond to the thermal and mechanical powers defined
as J1 and J2. Moreover, in order to be sure that no

material is added at the entrance of the channel dur-
ing the optimization process, we solved the problem by
imposing fluid domain at the lower part of the channel,
i.e.

γ = 0 for the elements in [0, 1]× [0, 1].
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Case Case 1 Case 2 Case 3 Case 4

Cost functions No optimization J1,J2 J1,J2 J1,J2

Eq. (8), (9) Eq. (8), (9) Eq. (8), (9)

Interpolation functions No optimization Sigmoid-type and Ramp-type Sigmoid-type Sigmoid-type
Eq. (11), (12),(13) Eq. (11), (12) Eq. (11), (12)

Natural convection Re = 400 Re = 400 Re = 400 Rab
Ri = {100, 200, 400} Ri = {100, 200, 400} Ri = {100, 200, 400} {5 103, 5 104, 5 105}

Table 1 Investigated configuration cases

We want to enhance heat transfer in the channel and
since adding material on the hot plate can affect the
heat transfer according to its conductivity, we impose
fluid domain near the heated plate. This reads

γ = 0 for the elements in [0, 0.10]× [2.5, 7.5].

It is important to note that the problem is purely aca-
demic. In our numerical simulations, the Prandtl num-
ber is set to

Pr = 0.71,

which corresponds to a fluid/liquid and the ratio of dif-
fusivity have been therefore set to

ks

kf
= 3.

As they are in the range of realistic problems, they are
thought to be representative of the problems that can

be physically encountered. The parameters appearing
in the sigmöıd interpolation function (11) are chosen
according to the previous study [57]. We then take

γ0 = 20, τ = 0.6 and γmax = 2× 10 5,

keeping in mind that similar results have been obtained
for γmax = 10 6.

5.1 Monitored quantities

Thermal quantities are monitored in the heated region
and at a discrete vertical coordinate located at the end
of the heated plate, namely for y = 3H/2 (cf. Figure 1).
The bulk temperature (θb), the Nusselt number (Nu2)

at the end of the hot plate y = 3H/2 and the local
Nusselt number (Nu1) integrated along the hot plate
are defined as in Desrayaud et al. [22], respectively:

θb(y) =
1

qin

∫ 1

0

u(x, y) θ(x, y) dx, y = 3H/2

Nu2(y) =
1

θ(0, y)− θb(y)
, y = 3H/2

Nu1(y) =

∫
Γ1

1

θ(0, y)
dy, y ∈ Γ1

(19)

where qin is the mass flow rate entering the channel at
y = 0.

For each value of Ri and Rab, we compute the pro-
portion Qt of material added in the domain Ω as in
Ramalingom et al. [57]:

Qt =
1

γmax Vtot

∫
Ω

hτ (γ) dΩ, (20)

where Vtot = 2Hb is the total volume of Ω.

6 Results and Discussion

6.1 Preliminary findings

This section aims to give numerical findings about nat-
ural convection in the vertical channel asymmetrically
heated (Case 1 ). We consider the single channel with
its geometric limitations to solve the problem of nat-

ural convection flow in the channel and we model the
thermal and dynamic boundary conditions at the exact
apertures. The thermal radiations and the heat conduc-

tion inside the solid walls are disregarded. According
to the results presented by recent studies [15, 22, 56],
pressure boundary conditions at the top and bottom

sections based on Local Bernoulli relation are chosen
in the current numerical study. We compute thermal
quantities defined in the previous section 5.1 without
optimization process. These results (cf. Table 2) are

going to be used as references within this paper (men-
tioned as Case 1 ). We solved the problem by using these
settings: Re = 400 and Ri = {100, 200, 400}. We can
first observe that J1 is smaller for Ri = 400, contrarily
to J2 which is bigger. Indeed, Table 2 indicates that
the heat transfer in the channel is weaker for Ri = 400
for Case 1. So, when natural convection forces are more
dominant in our conducto-convection problem, mechan-
ical power increases and thermal power decreases.
Figure 3 shows in blue color negative values of adimen-
sional vertical component of velocity for various Ri. The
latter corresponds to the reversal flow which is bigger
and larger at the end of the channel when Ri increases.

The streamlines (Figure 3) represent the fluid flow in
the channel at various Ri values. So, as highlighted by
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θb Nu2(3H/2) Nu1 J1 J2 Qt
Case 1 without optimization

Ri = 100 0.01747 12.932 13.611 −5.011 0.0232 without γ
Ri = 200 0.07015 10.508 7.692 −16.477 0.0888 without γ
Ri = 400 0.07006 10.510 7.694 −156.12 0.0714 without γ
Case 2 comparison Ramp-type and Sigmoid-type interpolation functions

Ri = 100 Sigmoid 0.01759 10.549 12.872 −5.011 0.0232 1.0%
Ri = 200 Sigmoid 0.01759 14.349 15.399 −9.173 0.0220 4.1%
Ri = 400 Sigmoid 0.01759 16.998 18.904 −17.127 0.0209 8.6%

Ri = 100 Ramp 0.01747 12.932 13.617 −5.010 0.0232 0.2%
Ri = 200 Ramp 0.01746 15.228 14.617 −9.173 0.0220 0.6%
Ri = 400 Ramp 0.01738 17.989 17.641 −17.127 0.0209 0.8%
Case 3 with Sigmoid interpolation functions

Ri = 100 0.01759 12.966 12.873 −5.011 0.0232 1.0%
Ri = 200 0.01744 15.213 15.489 −9.174 0.0219 4.3%
Ri = 400 0.01738 17.992 17.657 −15.427 0.0240 9.6%

Table 2 Monitored quantities for configuration cases corresponding to constant Re= 400, ω = 0.5 and Ri= {100, 200, 400},
for Case 1 (without optimization), Case 2 (Sigmoid-type and Ramp-type interpolation functions) and Case 3 (Sigmoid-type
interpolation functions)

Fig. 3 Case 1 : Streamlines and reversal flow in blue for Ri =
100 (a), Ri = 200 (b), Ri = 400 (c).

Desrayaud et al. [22], the natural convection problem in
the vertical channel asymmetrically heated corresponds
to a boundary layer flow with a reversal flow at the exit.

6.2 Comparisons between interpolation functions

In this section, we compared the solutions of the opti-
mization problem obtained with the Sigmoid functions

(11),(12) and the Ramp functions (13). Parameters for
the optimization problems mentioned as Case 2 are set
as follow:

Re = 400, Ri = {100, 200, 400}, ω = 0.5.

Simulations of these configuration cases with Ramp-
type interpolation functions required to add a volume

constraint in optimization problem (4)

Qt ≤ Q0, Q0 ∈ [0, 1],

where Qt is defined in Eq. (20). In our numerical sim-
ulations, we chose

Q0 = 0.1,

which amounts to fill the channel with at most 10% of
solid. To compare the two interpolation functions, we
did some numerical experiment (not presented here) us-
ing RAMP but without setting a maximal ratio of ma-
terial in the channel. In such cases, the algorithm filled
successively the channel with material before draining
it. Therefore, the problem did not give an optimized
solution. This is the first noticeable difference between

the two types of interpolation function.
In order to correctly make comparisons, we also add
the constraint volume for the simulations with sigmoid
functions (Case 2 ), i.e. the maximal ratio of material
is set to Q0 = 0.1. This parameter corresponds to the
maximal global of porosity in Marck et al. [45], for ex-
ample.
Secondly, with the Ramp functions, we chose to solve
three times the optimization problem since we adopted
the strategy from [14, 45] in order to make the Ramp

functions more convex. By varying q parameter in in-
terpolation functions (13), we can tolerate the existence
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of intermediate states mainly at the beginning of the
iterates of the algorithm solving the optimization prob-
lem and less at the end. So, parameter q takes succes-
sively the values {0.01, 0.1, 1}. Likewise, we are going
to investigate a continuation strategy for the sigmoid
interpolation function and τ is going to take succes-
sively the values τ ∈ {0.6× 10−4, 0.6× 10−3, 0.6}. Fig-
ure 4 shows the interpolation functions for these values.
As explained by Ramalingom et al. [57], thanks to the
parameter γ0, we can vary the proportion of material
added in the domain by the algorithm.
We represent in Figure 8 and Figure 9 the evolution of
both systemic cost functions over iterations. One can
see that, for both interpolation functions, the stopping
criterion is reached with a number of iteration that is
roughly the same, namely below 20000. Note that, for
Ri = 100, the values of J1 and J2 after optimization
are nearly the same while the other monitored quanti-
ties vary. We therefore represent the value of Ĵ (see (6))
in Figure 12 to show that this cost function is indeed
minimized and that the number of iteration needed to

reach the stopping criterion is again similar for both
interpolation functions.
Whichever the interpolation functions chosen, Ramp-

type or Sigmoid-type, it can be observed that the re-
versal flow (cf. Figure 3) is suppressed by the optimized
design (cf. Figure 5 and Figure 6). Indeed, material

added by the algorithm at the end of the channel pre-
vent the fluid from re-entering in the channel. Likewise,
thermal and mechanical powers are identical to few dec-
imal places at the end of the optimization process (cf.

Table 2).
Nevertheless, the structure of material domain obtained
is quite different when we use the type-Ramp inter-

polation functions. The optimized designs obtained in
Figure 6-top contain some holes in which fluid can cir-
culate. Figure 7 is an enlargement of the solid domain
at the top-end of the channel in order to see the distri-
bution of solid elements in the optimized designs. How-
ever, fluid velocity is zero in this area as shown in Figure
6-bottom. So, we observe less pieces of isolated mate-
rial when we solved the optimization problem with the
Sigmoid-type interpolation functions. The frontier be-
tween fluid and solid obtained with the sigmoid-type
interpolation functions is smooth.
Finally, heat transfer in the channel is approximately in
the same order when the topology optimization prob-
lem is solved with the Sigmoid-type interpolation func-

tions for any considered Ri. As can be seen in Table
2, for any considered Ri, Nusselt Number Nu1 com-
puted with Sigmoid-type interpolation function records
a difference between 5.07% and 6.6% lower compared
to Nu1 computed with Ramp-type interpolation func-

tion.
So, optimization process with Sigmoid-type interpola-
tion functions gave smooth shapes as designs obtained
did not contain holes in which fluid can circulate. This
contribution accounts for an increase of the heat trans-
fer up to 146% compared to the reference Case 1.
We end this section with some general remarks and
comments regarding the results obtained with RAMP
and sigmoid interpolation functions. First, as seen from
Table 2, the monitored quantities, namely the bulk tem-
perature, the Nusselt numbers and the values of the cost
function at the end of the optimization procedure are
slightly the same. As a result, whichever the interpo-
lation technique used, both succeed in reducing pres-
sure losses and maximizing heat transfer in the vertical
channel. The major difference is the optimized shape
and the quantity of material of the optimized design.
Indeed, fluid-solid boundaries of the sigmoid designs are
smooth while those obtained with RAMP are defined
by multiple holes. Nevertheless, it is worth noting that
both designs can be considered very similar in the sense

that the zones where the velocity vanishes are nearly
the same for both interpolation function (see Figures 5
and 6). This observation gives an explanation why they

achieved similar performances regarding the monitored
quantities from Table 2.
Note also that, thanks to its very sharp nature, the

sigmoid interpolation function affect more zones of the
computational domain to solid than RAMP. Therefore,
RAMP allows less material to be added in order to min-
imize the cost function than sigmoid. As a result, the

sigmoid interpolation function could be considered ei-
ther as shape optimization or level-set method. How-
ever, one major difference, is that we do not need any

mesh refinement techniques. In addition, we have the
parameter τ at hand that can still be tuned to have non-
sharp interpolation function which, even if they cannot
be convex as RAMP, could still achieved more complex
designs. The latter is however beyond the scope of the
paper which was formerly intended to solve topology
optimization problem for buoyancy-driven flows by in-
troducing new cost functions.

Remark 3 (Comparison between two continua-
tion strategies) We also did numerical simulations
with a continuation strategy with τ ∈ {0.2, 0.4, 0.6}.
This amounts to start with a very sharp interpolation
function. With these values, we obtain roughly the same
monitored quantity as those we get without continuation

strategy and τ = 0.6 which is so-called Case 3 (Com-
pare Case 3 from Table 2 with 3). We emphasize that
the quantity of material is roughly the same as well as
the designs (see Figure 11 for Case 3) and we thus don’t
show them.
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Fig. 4 Interpolation functions for τ = {6 × 10−5, 6 ×
10−4, 0.6}

It is worth noting that the monitored quantities are
slightly the same whatever the parameters used in the

continuation strategy (Compare Case 2 from Table 2
with Table 3). The only real difference is that some
piece of isolated material disappear, namely some zones

where the velocity of the fluid vanishes are filled with
solid, when using the continuation strategy with τ ∈
{0.2, 0.4, 0.6} (Compare Figures 7 and 11). This fact
and since the sigmoid with τ ≥ 0.2 is sharper than with

τ ≥ 6×10−5 actually explain why the quantity of mate-
rial increases in this case and why the monitored quan-
tities does not vary significantly.

Regarding the continuation strategy, since differ-
ences between the monitored quantity for the two set of

τ used does not have significant differences with respect
to those computed with only τ = 0.6 (see Remark 3),
we chose to not use such continuation strategy in the
two next sections. To conclude this section, both in-
terpolation techniques have pros and cons and, since
the results are either slightly the same or can be linked
together, we choose to work with the sigmoid in the
remaining sections of this paper.

6.3 Topology optimization problem for constant
Re = 400 and various Ri

This section presents the solution of the optimization
problem for various Ri. We used the systemic cost func-
tions given in (8) and (9) and chose sigmoid-type func-
tions (11) and (12) for the interpolations. This study
case corresponds to the configuration Case 3.
Figure 10 represents the evolution of J1 and J2 over

iterations for various Ri. One can then see that our al-
gorithm succeeds to minimize/maximize one or other
cost functions for any Ri. We observe that mechanical
power decreases over iterations while thermal power in-
creases. So, our algorithm succeeds to converge to an
optimized solution for this studied case.
It can be observed that optimized design suppresses
the reversal flow (cf. Figure 3) as seen in previous stud-
ied case. Moreover, the domain material at the end of
the optimization corresponds to the reversal flow repre-
sented in Figure 3. Finally, as one can see from Figure
11, adimensional vertical component of the velocity has
a positive value in the channel after optimization and
vanishes or is about 5.5 × 10−5 which is small enough
for this zone to be considered as solid. Our objective
functions give an optimized design with no physical er-
ror as a non-null velocity in the solid regions without
connectivity as mentioned by Kreissl and Maute [37]
and Lee [39].
Concerning the quantity of material added in the chan-
nel, the optimization algorithm tends to add more ma-

terial in the domain (cf. Figure 11-top) when Ri in-
creases. This proportion of material is about 9.6% of
the domain when Ri = 400 and contributes to modi-

fying the circulation of the flow in the channel, as the
fluid is closer to the heated wall. So, in order to min-
imize mechanical power and maximize thermal power,
the strategy of algorithm consists in suppressing the

reversal flow at the end of the channel and adding ma-
terial so as to oblige the fluid flow near the heated wall.
Besides, Table 2 shows that the mean Nusselt number
Nu1 is multiplied by a factor 2.3 after optimization for
Ri = 400. Likewise, the Nusselt number at the end of
the hot plateNu2(3H/2) is multiplied by a factor 1.7 af-

ter optimization for Ri = 400. Therefore, Nusselt num-
bers increased when Ri increased, so the heat transfer
is correctly enhanced in the optimized design obtained.
Nevertheless, this addition of material contributes to
reducing strongly J1 for small improvements of J2 (cf.
Figure 10). This situation has already been observed
by Pietropaoli et al. [53] who noticed in their study
in forced convection some small improvements on the
heat exchange efficiency while pressure drop remains
relatively high.

6.4 Topology optimization problem in case of pure
natural convection for various Rab

This section presents the solutions of the optimization
problem in case of pure natural convection. We used the
sigmoid-type interpolation functions and solve the opti-
mization problem (3) without adding the constraint of
volume. So the proportion of material is just controlled
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θb Nu2(3H/2) Nu1 J1 J2 Qt
Case 2

Ri = 100 Sigmoid 0.01750 12.463 14.176 −5.011 0.0232 1.0%
Ri = 200 Sigmoid 0.01758 15.247 14.622 −9.174 0.0220 4.3%
Ri = 400 Sigmoid 0.01738 17.209 18.533 −15.427 0.0240 9.6%

Table 3 Monitored quantities for configuration cases corresponding to constant Re= 400, ω = 0.5 and Ri= {100, 200, 400},
Case 2 (Sigmoid-type and Ramp-type interpolation functions). We used a continuation strategy with τ ∈ {0.2, 0.4, 0.6}.

with parameters γ0 = 20 of the sigmoid interpolation
functions. We set the Rayleigh number Rab to different
values:

Rab ∈ {3× 105, 4× 105, 5× 105}.

As previously mentioned, the pure natural convection
topology optimization problem is furthermore solved
without optimization process. The references monitored

quantities are showed in Table 4.
Figure 13 represents the evolution of Ĵ over iterations
for various Rab. One can see the convergence of the al-

gorithm for any Rab.
Figure 14 shows the optimized designs obtained at var-
ious Rab. The optimization algorithm adds few quan-
tity of material in the domain, less than 6% (cf. Ta-

ble 4). When no reversal flow exists, in particular for
Rab = 3× 105, the optimization algorithm did not add
material in the domain. Also, as seen with the previ-

ous configuration cases, the fluid flow structure is thus
modified and vertical component of the velocity is not
negative yet (cf. Figure 14-bottom). Moreover, when we
enlarge the top-end of the optimized designs in Figure
15, we can observe the presence of fluid holes without
solid matrix in the material domain acting as isolation
from the fluid. This composite material constitutes an

insulation as its global conductivity tends to the one of
the fluid. The heat transfer in the channel is quite weak
compared to previous studied cases (Case 3 ), less than
2.5% for values of Rab compared to the reference study
case.
Therefore, when Rab increases, which corresponds to an
increase of thermal flux at the hot plate of the channel,

the algorithm adds more material at the top-end of the
channel in order to suppress the reversal flow (which
contributes to reduce J1) and to force the fluid circu-
lation closed the hot plate. Indeed, Figure 15 indicates
material takes up about the half width of the channel,
above the hot plate. This strategy increases the fluid
velocity in this section 14-bottom, and so the Nusselt
number Nu2(3H/2).

7 Conclusion

An optimization problem considering both pressure drop
minimization and heat transfer maximization in the
asymmetrically heated channel has been examined. Af-
ter discussing some limits we identified for classical pres-
sure-drop cost functions, two objective functions are
investigated representing the work of pressure forces
for the mechanical power and heat exchanges with the
thermal power. These functions allow to obtain optimal
designs and they are reduced for all values of Richard-
son number and Rayleigh numbers considered in this
study. Two different types of interpolation function are

applied and compared: Ramp-type and Sigmoid-type.
They have pros and cons and, since the results are either
slightly the same or can be linked together, they can be

freely chosen for dealing with natural-convection topol-
ogy optimization problem. Then, the problem is han-
dled in natural convection for constant Reynolds num-

ber set to 400 and several values of Richardson number
taken in {100, 200, 400}. Second, the problem is handled
in pure natural convection with various values of modi-
fied Rayleigh number taken in {5×103, 5×104, 5×105}.
Several conclusions have been drawn. First of all, the
optimized design suppresses the reversal flow in the
channel. That contributes to reduce pressure losses and

modify the circulation of fluid in the channel. Then, the
new expressions of cost functions converge over with
a number iterations which is similar for both inter-
polation function while the optimized designs show a
better connectivity of the solid region when using the
sigmöıd. Values of mechanical power and thermal power
are closed for both interpolation function used. More-
over, this approach that consists of dissociating quan-
tities in the expression of cost functions by considering
average quantities is well adapted to natural convec-
tion phenomena. In case of pure natural convection,
when the fluid flow is laminar, the algorithm adds less
than 6% of material and we obtain composite material
which acts as an insulating. Finally, thermal exchanges

are evaluated by the calculation of Nusselt number at
the hot plate and based on the bulk temperature. The
optimization algorithm is able to increase thermal ex-
changes while maintaining the pressure losses due to
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θb Nu2(3H/2) Nu1 J1 J2 Qt
Case 5 : pure natural convection case without optimization

Rab = 5× 103 0.18709 4.275 3.330 −0.028 0.0707 without γ
Rab = 5× 104 0.09002 5.633 4.939 −0.008 0.0222 without γ
Rab = 5× 105 0.06617 5.140 7.273 −5.5e−04 0.0071 without γ

Case 4 : pure natural convection case

Rab = 5× 103 0.18712 4.333 3.311 −0.076 0.0707 0%
Rab = 5× 104 0.08884 5.625 4.969 −0.038 0.0222 2.21%
Rab = 5× 105 0.05072 5.986 7.451 −0.013 0.0070 5.37%

Table 4 Monitored quantities for pure natural convection configuration case at various Rab - Case 4

friction, thanks to the combined objective functions
used. Nevertheless, the reduction of losses of charge is
more significant than the improvement of heat trans-
fer. In conclusion, this study highlights the importance
of the expression of cost functions in a topology op-
timization problem, dominated by natural convection
forces. The influence of the Richardson is observed on
the quantity of material added in the optimized chan-
nel. As future work, we suggest a more complete heat
and mass transfer model to be considered, as pure nat-

ural convection problems in unsteady regime and radi-
ation problems.
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Fig. 5 hτ (γ) and streamtraces (top), adimensional verti-
cal velocity component (bottom) obtained with Sigmoid-type
interpolation functions for various Ri and continuation ap-
proach for τ ∈ {0.6 × 10−5, 0.6 × 10−4, 0.6} - Case 2 with
Sigmoid interpolation functions.

Fig. 6 hτ (γ) and streamtraces (top), adimensional vertical
velocity component (bottom) obtained with Ramp-type in-
terpolation functions, for various Ri - Case 2 with Ramp
interpolation functions.
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Fig. 7 Zoom on the solid domain obtained with Ramp-type
(top) and with sigmoid-type (bottom) interpolation functions
for various Ri - Case 2

Fig. 8 Evolution of J1 (top) and J2 (bottom) over iteration
numbers with Ramp-type interpolation functions - Case 2.

Fig. 9 Evolution of J1 (top) and J2 (bottom) over itera-
tion numbers with Sigmoid-type interpolation functions, for
various Ri, at constant Re = 400. We used a continuation
strategy with τ ∈ {0.6 10−4, 0.6 10−5, 0.6} - Case 2.
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Fig. 10 Evolution of J1 (top) and J2 (bottom) over iteration
numbers with Sigmoid-type interpolation functions - Case 3.

Fig. 11 hτ (γ) and streamtraces (top), adimensional vertical
velocity component (bottom) obtained for various Ri - Case
3.
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Fig. 12 Evolution of Ĵ over iteration numbers for Ri = 100
with Ramp-type (top) and sigmoid-type interpolation func-
tions - Case 2.

Fig. 13 Evolution of Ĵ over iteration numbers with Sigmoid-
type interpolation functions, for various Rab number - Case
4.

Fig. 14 hτ (γ) and streamtraces obtained for various Rab
(top), adimensional vertical velocity component obtained for
various Rab (bottom) - Case 4.
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Fig. 15 Zoom on the solid domain obtained for the configu-
ration case of pure natural convection - Case 4
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