LINEAR EXTENDERS AND THE AXIOM OF CHOICE

Abstract : In set theory without the axiom of Choice ZF, we prove that for every commutative eld K, the following statement D_K : On every non nul K-vector space, there exists a non null linear form implies the existence of a K-linear extender on every vector subspace of a K-vector space. This solves a question raised in [9]. In the second part of the paper, we generalize our results in the case of spherically complete ultrametric valued elds, and show that Ingleton's statement is equivalent to the existence of continuous linear extenders.
Type de document :
Pré-publication, Document de travail
2019
Liste complète des métadonnées

http://hal.univ-reunion.fr/hal-01478241
Contributeur : Marianne Morillon <>
Soumis le : mercredi 16 janvier 2019 - 08:19:35
Dernière modification le : lundi 21 janvier 2019 - 01:15:58

Fichier

linear_extenders_rvst1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01478241, version 2

Collections

Citation

Marianne Morillon. LINEAR EXTENDERS AND THE AXIOM OF CHOICE. 2019. 〈hal-01478241v2〉

Partager

Métriques

Consultations de la notice

22

Téléchargements de fichiers

5