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Abstract 25 

In the present work, we study the quality of the statistical calibration of hydraulic and 26 

transport soil properties using an infiltration experiment in which, over a given period, tracer-27 

contaminated water is injected into a laboratory column filled with a homogeneous soil. The 28 

numerical model is based on the Richards
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1. Introduction 45 

The soil parameters that influence water flow and contaminant transport in unsaturated zones 46 

are not generally known a priori and have to be estimated by fitting model responses to 47 

observed data. Several studies have demonstrated that unsaturated soil hydraulic parameters 48 

can be (more or less accurately) estimated from dynamic flow experiments (e.g., Hopmans et 49 

al., 2002; Vrugt et al., 2003a; Durner and Iden, 2011; Younes et al., 2013). Inoue et al. (2000) 50 

showed that both hydraulic and transport parameters can be assessed by the combination of 51 

flow and transport experiments. Indeed, the simultaneous estimation of hydraulic and 52 

transport properties yields smaller estimation errors for model parameters than the sequential 53 

inversion of hydraulic properties from the water content and/or pressure head followed by the 54 

inversion of transport properties from concentration data (Misra and Parker, 1989).  55 

In the present work, we consider the flow and the transport of an inert solute injected into a 56 

laboratory column filled with a homogeneous sandy clay loam soil. The flow-transport model 57 

is described by the Richards
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Soil parameters are usually investigated using multistep outflow experiments (e.g., Eching 69 

and Hopmans, 1993; Eching et al., 1994; van Dam et al., 1994) or continuously changing 70 

time-varying boundary conditions (Durner et al., 1999). Multistep outflow experiments are 71 

among the most popular laboratory methods (Hopmans et al., 2002). However, their 72 

application is limited by expensive measurement equipment (Nasta et al., 2011). 73 

In this work, hydraulic soil parameters are investigated using an infiltration experiment in a 74 

1.2 m long laboratory column, which is the standard scale for these types of experiments. The 75 

column, which is initially hydrostatic and free of solute, is filled with a homogeneous sandy 76 

clay loam soil. Continuous flow and solute injection are performed during a time period injT  at 77 

the top of the column and with a zero pressure head at the bottom. The unknown parameters 78 

for the water flow are sk  [LT
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Synthetic scenarios are considered in the sequel in which data from numerical simulations are 93 

manipulated to avoid the uncontrolled noise of experiments that could bias the conclusions.  94 

The paper is organized as follows. The mathematical models describing flow and transport in 95 

the unsaturated zone are detailed in section 2. Section 3 describes the MCMC Bayesian 96 

parameter estimation procedure used in the DREAM(ZS) sampler. Section 4 presents the 97 

different investigated scenarios and discusses the results of the calibration in terms of mean 98 

parameter values and uncertainty ranges for each scenario. Conclusions are given in section 5. 99 

 100 

2. Unsaturated flow-transport model 101 

We consider a uniform soil profile in the column and an injection of a solute tracer such as 102 

bromide, as described in Mertens et al. (2009). The unsaturated water flow in the vertical soil 103 

column is modeled with the one-dimensional pressure head form of the RE: 104 

 , (1) 105 

where h [L] is the pressure head; q  [LT-1] is the Darcy velocity; z [L] is the depth, measured 106 

as positive in the downward direction; sS  (-) is the specific storage;  and s  [L3.L-3] are the 107 

actual and saturated water contents, respectively;  [L-1] is the specific moisture capacity; 108 

and [L T-1] is the hydraulic conductivity. The latter two parameters are both functions 109 

of the pressure head. In this study, the relations between the pressure head, conductivity and 110 

water content are described by the following standard models of Mualem (1972) and van 111 

Genuchten (1980): 112 
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,

 (2) 113 

where Se (-) is the effective saturation, r  [L3 L-3] is the residual water content, sK  [L T-1] is 114 

the saturated hydraulic conductivity, and 1 1m n ,  [L-1] and n  (-) are the MvG shape 115 

parameters.  116 

The tracer transport is governed by the following convection-dispersion equation:  117 

 
,
 (3) 118 

where C  [ML-3] is the concentration of the tracer, D  [L2 T-1] is the dispersion coefficient in 119 

which l mD a q d  and la  [L] is the dispersivity coefficient of the soil and md  [L2 T-1] is 120 

the molecular diffusion coefficient, which is set as 1.04 10-4 cm2/min. 121 

The initial conditions are as follows: a hydrostatic pressure distribution with zero pressure 122 

head at the bottom of the column  and a solute concentration of zero inside the whole 123 

column. An infiltration with a flux injq  of contaminated water with a concentration injC  is 124 

then applied at the upper boundary condition (z = 0) during a period injT . Hence, the boundary 125 

conditions at the top of the column can be expressed as: 126 

1 1 0
0

0

inj

inj inj

injinj inj

h hK q Kz zfor t T for t T
C CD qC q C
z

 (4) 127 

A zero pressure head is maintained at the lower boundary  of the column and a zero 128 

concentration gradient is used as the lower boundary condition for the solute transport. 129 
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  (5) 130 

In the sequel, the infiltration rate and the injected solute concentration are 0.015  cm/min 131 

and 1injC  g/cm3, respectively. The system (1)-(3) is solved using the finite volume method 132 

for both flow and transport spatial discretization. A uniform mesh of 600 cells is employed. 133 

Temporal discretization is performed with the high-order method of lines (MOL) (e.g., Miller 134 

et al., 1998; Tocci et al., 1997; Fahs et al., 2009). Error checking, robustness, order selection 135 

and adaptive time step features, available in sophisticated solvers, are applied to the time 136 

integration of partial differential equations in the MOL (Tocci et al., 1997). The MOL has 137 

been successfully used to solve RE in many studies (e.g., Farthing et al., 2003; Miller et al., 138 

2006; Li et al., 2007; Fahs et al., 2009). 139 

The unknown parameters for the water flow are sk , s , r  and the MvG shape parameters  140 

and n . The only unknown parameter of the tracer transport is the longitudinal dispersivity La141 

. Hence, the total vector of parameters is . A reference solution is 142 

generated using the following parameter values (corresponding to a sandy clay loam soil): 143 

50sk cm day , 0.43s , 0.09r , 10.04cm , 1.4n  and 0.2la cm . Four types of 144 

observations are deduced from the results of the simulation, which include the following: the 145 

pressure head and water content near the surface (5 cm below the top of the column) as well 146 

as the cumulative outflow and the breakthrough concentration at the output of the column. 147 

The vector of observations mesy  is formed by the four data series, which are independently 148 

corrupted with a normally distributed noise using the following standard deviations: 1h cm 149 

for the pressure head, 0.02  for the water content, 0.1Q cm for the cumulative 150 

outflow and 0.01C  g/cm3 for the exit concentration. 151 
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3. Bayesian parameter estimation  152 

The flow-transport model is used to analyze the effects of different measurement sets on 153 

parameter identification. For this purpose, we adopt a Bayesian approach that involves the 154 

parameter joint posterior distribution (Vrugt et al., 2008). The latter is assessed with the 155 

DREAM(ZS) MCMC sampler (Laloy and Vrugt, 2012). This software generates random 156 

sequences of parameter sets that asymptotically converge toward the target joint posterior 157 

distribution (Gelman et al., 1997). Thus, if the number of runs is sufficiently high, the 158 

generated samples can be used to estimate the statistical measures of the posterior 159 

distribution, such as the mean and variance among other measures.  160 

The Bayes theorem states that the probability density function of the model parameters 161 

conditioned onto data can be expressed as: 162 

 , (6) 163 

where  is the likelihood function measuring how well the model fits the 164 

observations mesy , and  is the prior assumption of the parameter before the observations 165 

are made. In this work, a Gaussian distribution defines the likelihood function because the 166 

observations are simulated and corrupted with Gaussian errors. In addition, independent 167 

uniform priors are considered. Hence, the parameter posterior distribution is expressed as: 168 

 
,
 (7) 169 

where , ,  and  are the sums of the squared differences 170 

between the observed and modeled data of the pressure head, water content, cumulative 171 

outflow and output concentration, respectively. For instance, , 172 
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which includes the observed and predicted pressure heads  and  at time kt  and the 173 

number of pressure head observations Nh .  174 

Bayesian parameter estimation is performed hereafter with the DREAM(ZS) software (Laloy 175 

and Vrugt, 2012), which is an efficient MCMC sampler. DREAM(ZS) computes multiple sub-176 

chains in parallel to thoroughly explore the parameter space. Archives of the states of the sub-177 

chains are also stored and used to allow a strong reduction of the "burn-in" period in which 178 

the sampler generates individuals with poor performances. Taking the last 25% of individuals 179 

of the MCMC (when the chains have converged) yields multiple sets of parameters, �� , that 180 

adequately fit the model onto observations. These sets are then used to estimate the updated 181 

parameter distributions, the pairwise parameter correlations and the uncertainty of the model 182 

predictions. As suggested in Vrugt et al. (2003b), the posterior distribution becomes 183 

stationary if the Gelman and Ruban (1992) criterion is 1 2. .  184 

4. Results and discussion 185 

In this section, the identifiability of the parameters is investigated for different scenarios of 186 

measurement sets and for two periods of injections. In all cases, the MCMC sampler was run 187 

with 3 simultaneous chains for a total number of 50000 runs. Depending on the scenario, the 188 

MCMC required between 5000 and 20000 model runs to reach convergence. The last 25% of 189 

the runs that adequately fit the model onto observations are used to estimate the updated 190 

probability density function (pdf). 191 

 192 

4.1. Reference solution and data measurements 193 

The reference solutions obtained from solving the flow-transport problems (1)-(3) using the 194 

parameters given above are shown in Fig. 1 to 6. The pressure head at 5 cm, at the top of the 195 

column (Fig. 1), increases quickly from its initial hydrostatic negative value (approximately -196 
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115 cm) and reaches a plateau (-1.75 cm) during the injection period. After the injection is 197 

finished, it progressively decreases due to the drainage caused by the gravity effect. A similar 198 

behavior is observed for the water content at the same location (Fig. 2), where the value of the 199 

plateau is close to the saturation value. The cumulative outflow (Fig. 3) starts to increase at 200 

approximately 1000 min after the beginning of the injection. It shows an almost linear 201 

behavior until 5500 min. It then slowly increases with an asymptotic behavior due to the 202 

natural drainage after the end of the injection. Fig. 4 displays the water saturation as a 203 

function of the pressure head. It is worth noting that only a few parts of this curve are 204 

described during the infiltration experiment. Indeed, only moderate dry conditions are 205 

established because the minimum pressure head reached in the column is -120 cm, which 206 

corresponds to the initial pressure head near the top of the column. 207 

The breakthrough concentration curve (Fig. 5) shows a sharp front, which starts shortly after 208 

3000 min. If the injection of both water and contaminant are stopped once the solute reaches 209 

the output, i.e., after an injection period of 3000 min, the breakthrough curve exhibits a 210 

smoother progression (Fig. 6). 211 

The observed data, which are used as conditioning information for model calibration, are also 212 

shown in Fig. 1to 6. Fig. 2 shows that the water content is more affected by the perturbation 213 

of data than by the pressure head and cumulative outflow because (i) we mimic the relative 214 

importance of the measurement errors of the water content due to time-domain-reflectometry 215 

probes and (ii) the weak variation of the water content during the infiltration experiment. The 216 

perturbation of the breakthrough curve is relatively small because output concentrations can 217 

be accurately measured. The perturbations of the pressure head and cumulative outflow seem 218 

weak because of the large variation of these variables during the experiment. 219 

 220 
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4.2. Results of the parameter estimation  221 

The uncertainty model parameters are assumed to be distributed uniformly over the ranges 222 

reported in Table 1. This table also lists the reference values used to generate data 223 

observations before perturbation. Seven scenarios, corresponding to different sets of 224 

measurements for the estimation of the soil parameters, are considered (Table 2). 225 

The MCMC results of the seven studied scenarios are given in Figs. 8 to 13. The "on-226 

diagonal" plots in these figures display the inferred parameter distributions, whereas the "off-227 

diagonal" plots represent the pairwise correlations in the MCMC sample. If the drawings are 228 

independent, non-sloping scatterplots should be observed. However, if a good value of a 229 

given parameter is conditioned by the value of another parameter, then their pairwise 230 

scatterplot should show a narrow sloping stripe. To facilitate the comparison between the 231 

different scenarios, Fig. 14 to 19 show the mean and the 95% confidence intervals of the final 232 

MCMC sample that adequately fit the model onto observations for each scenario, and Table 3 233 

summarizes the pairwise parameter correlations. 234 

Fig. 7 shows the inferred distributions of the parameters identified with the MCMC sampler 235 

using only the pressure and cumulative outflow measurements (scenario 1). The parameters 236 

sk ,  and n  are well estimated; their prior intervals of variation are strongly narrowed and 237 

they essentially show bell-shaped posterior distributions. Parameter sk  is strongly correlated 238 

to  (0.94) and n  (-0.97). Because the water retention relationship depends on the difference 239 

between s  and r , these parameters are strongly correlated (0.96) and cannot be identified. 240 

The dispersivity coefficient la  has not been identified.  241 

The MCMC results (Fig. 8) show that r  strongly correlates to sk  (-0.94) and n  (0.98) when 242 

water content measurements are added into the model (scenario 2). The parameter sk  remains 243 

strongly related to  (0.94) and n  (-0.98). Although the water content data are subject to 244 
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relatively high measurement errors, a good estimation is obtained for s  and r . The 245 

parameters sk ,  and n  are estimated with the same accuracy as for the first scenario. 246 

When the concentration measurements are also considered (scenario 3), the results depicted in 247 

Fig. 9 show very significant correlations between sk  and r  (-0.94), sk  and  (0.91), sk  and 248 

n  (-0.97) and n  and r  (0.99). The posterior uncertainty ranges of sk , , n  and r  are 249 

similar to the previous scenarios. Those of s  and la  are strongly reduced, leading to a good 250 

identification of these parameters when using C  measurements (Fig. 15 and 19). A better 251 

estimate of the saturated water content is expected because advective transport is a function of 252 

this variable. 253 

The measurements of the water content are not considered in the inversion procedure of 254 

scenario 4. This scenario leads to the same quality of the estimation for the parameters sk , r , 255 

 and n  (Fig. 14, 16, 17, 18) and similar correlations between the parameters as in the 256 

previous scenario. This result shows that the intrusive water content measurements, which are 257 

subject to more measurement errors than the output concentration, are not required if the 258 

output concentration is measured. Compared with the results of scenario 2, it can be 259 

concluded that better parameter estimations are obtained using h , Q  and C  data than using 260 

h , Q  and  data, especially for s . Therefore, using C  instead of  measurements in 261 

combination with h  and Q  measurements allows the estimation of la  and leads to a better 262 

estimate of s . 263 

The pressure head, cumulative outflow and concentration measurements are used in the 264 

estimation procedure of scenario 5, but the injection period is now reduced to 3000 mininjT . 265 

The obtained results (Fig. 11) show the same correlations between the parameters as for 266 

5000 mininjT . For the parameters sk , s , r ,  and n , almost the same mean estimates are 267 
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obtained as for scenario 4. However, the parameters are better identified (Fig. 14 to 18). 268 

Indeed, the uncertainty of these parameters is smaller because the credible interval is reduced 269 

by a factor of 25% for sk , 8% for s , 26% for r , 10% for  and 25% for n  when compared 270 

to the results obtained for 5000 mininjT . The parameter la  is also estimated much better 271 

than in the previous scenario. Its mean value approaches the reference solution and the 272 

posterior uncertainty range is reduced by approximately 75% (Fig. 19). 273 

The pressure head measurements are removed in scenario 6 and only non-intrusive 274 

measurements (Q  and C  data) are used with an injection period of 5000 mininjT . The 275 

results depicted in Fig. 12 show high correlations only between sk  and n  (-0.95) and r  and 276 

n  (0.95). Compared with the results of scenario 4, which also considers the pressure data, sk  277 

is poorly estimated (the mean value is less close to the reference value and the credible 278 

interval is 27% larger). The mean estimated values for r  and n  also degraded (less close to 279 

the reference solution), although their confidence intervals are similar to those of scenario 4 280 

(Fig. 16, 18). The estimated mean value of parameter  is similar to that in scenario 4. 281 

However, its uncertainty is much larger because the credible interval is 77% larger (Fig. 19). 282 

The parameters s  and la  are estimated as well in scenario 4 (in terms of mean estimated 283 

value and credible interval). 284 

The last scenario (scenario 7) is similar to the previous one, but the injection period is reduced 285 

to 3000 mininjT . The results depicted in Fig. 13 show similar correlations between the 286 

parameters as for 5000 mininjT . However, a significant improvement is observed for the 287 

mean estimated values, which approach the reference solution for sk , r , n  and la  (Fig. 14, 288 

16, 18, 19). The uncertainties of sk ,  and la  are also reduced by approximately 40%, 15% 289 

and 70%, respectively. The parameter s  is estimated as well in scenario 6. 290 
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5. Conclusions 291 

In this work, hydraulic and transport soil parameters have been estimated using an infiltration 292 

experiment performed in a laboratory column filled with sandy clay loam soil, which was 293 

subjected to continuous flow and solute injection over a period injT . Parameter estimation was 294 

performed for different scenarios of data measurements in a Bayesian framework using the 295 

DREAM(zs) MCMC sampler (Laloy and Vrugt, 2012).  296 

 297 

The results reveal the following conclusions: 298 

1. All hydraulic and transport parameters can be appropriately estimated from the 299 

described infiltration experiment. However, the accuracy differs and depends on the 300 

type of measurement and the duration of the injection injT , even if the water content 301 

remains close to saturated conditions.  302 

2. The use of concentration measurements at the column outflow, in addition to 303 

traditional measured variables (water content, pressure head and cumulative outflow), 304 

reduces the correlation between the hydraulic parameters and their uncertainties, 305 

especially that of the saturated water content. 306 

3. The saturated hydraulic conductivity is estimated with the same order of accuracy, 307 

independent of the observed variables. 308 

4. The estimation of the dispersivity is sensitive to the injection duration. 309 

5. A better identifiability of the soil parameters is obtained using C  instead of  310 

measurements, in combination with h  and Q  data. 311 

6. Using only non-intrusive measurements (cumulative outflow and output 312 

concentration) allows the satisfactory estimation of all parameters. The uncertainty of 313 

the parameters significantly decreases when the injection of water and solute is 314 

maintained for a limited period.  315 
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 316 

This last point has practical applications for designing simple experimental setups dedicated 317 

to the estimation of hydrodynamic and transport parameters for unsaturated flow in soils. The 318 

setup has to be appropriately equipped to measure the cumulative water outflow (e.g., 319 

weighing machine) and the solute breakthrough at the column outflow (e.g., flow through 320 

electrical conductivity). The injection should be stopped as soon as the solute concentration 321 

reaches the outflow. The accuracy of the estimation of r ,  and n  can be improved by 322 

adding pressure measurements inside the column, close to the injection. 323 

 324 
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 443 

List of table captions 444 

 445 

Table 1. Prior lower and upper bounds of the uncertainty parameters and reference values. 446 

 447 

Table 2. Measurement sets and injection periods for the different scenarios. The pressure head 448 
h  and the water content  are measured at 5 cm from the top of the column. The cumulative 449 
outflow Q  and the concentration C  are measured at the exit of the column.   450 

 451 

Table 3. Summary of the pairwise parameter correlations. 452 

  453 
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 454 

Parameters Lower bounds Upper bounds Reference values 

sk  [cm min-1] 0.025 0.1 0.0347 

s  [-] 0.3 0.5 0.43 

r  [-] 0.05 0.2 0.09 
 [cm-1] 0.01 0.3 0.04 

n  [-] 1.2 5 1.4 

la  [cm] 0.05 0.6 0.2 
 455 

Table 1. Prior lower and upper bounds of the uncertainty parameters and reference values. 456 

 457 

 458 

 459 

 460 

Scenario Measured variables injection period 
 h   Q  C  5000mininjT  3000mininjT  

1 
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Scenario      

1      

2      

3      

4      

5      

6      

7      

Table 3. Summary of the pairwise parameter correlations. 471 

 472 
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List of figure captions 474 

Fig. 1. Reference pressure head at 5 cm from the soil surface. Solid lines represent model 475 
outputs and dots represent the sets of perturbed data serving as conditioning information for 476 
model calibration. 477 

Fig. 2. Reference water content at 5 cm from the soil surface [see Fig. 1 caption ]. 478 

Fig. 3. Reference cumulative outflow [see Fig. 1 caption ].  479 

Fig. 4. Reference retention curve for the infiltration experiment [see Fig. 1 caption ]. 480 

Fig. 5. Reference breakthrough output concentration for Tinj = 5000. [see Fig. 1 caption ]. 481 

Fig. 6. Reference breakthrough output concentration for Tinj= 3000 min. [see Fig. 1 caption ]. 482 

Fig. 7. MCMC solutions for the transport scenario 1. The diagonal plots represent the inferred 483 
posterior probability distribution of the model parameters. The off-diagonal scatterplots 484 
represent the pairwise correlations in the MCMC drawing.  485 

Fig. 8. MCMC solutions for transport scenario 2 [see Fig. 7 caption ]. 486 

Fig. 9. MCMC solutions for transport scenario 3 [see Fig. 7 caption ]. 487 

Fig. 10. MCMC solutions for transport scenario 4 [see Fig. 7 caption ]. 488 

Fig. 11. MCMC solutions for transport scenario 5 [see Fig. 7 caption ]. 489 

Fig. 12. MCMC solutions for transport scenario 6 [see Fig. 7 caption ]. 490 

Fig. 13. MCMC solutions for transport scenario 7 [see Fig. 7 caption ]. 491 

Fig. 14. Posterior mean values and 95% confidence intervals of the saturated hydraulic 492 
conductivity for the different scenarios. 493 

Fig. 15. Posterior mean values and 95% confidence intervals of the saturated water content for 494 
the different scenarios. 495 

Fig. 16. Posterior mean values and 95% confidence intervals of the residual water content for 496 
the different scenarios. 497 

498 
different scenarios. 499 

Fig. 18. Posterior mean values and 95% confidence intervals of the shape parameter n for the 500 
different scenarios. 501 

Fig. 19. Posterior mean values and 95% confidence intervals of dispersivity for the different 502 
scenarios. 503 
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 506 
Fig. 1. Reference pressure head at 5 cm from the soil surface. Solid lines represent model 507 
outputs and dots represent the sets of perturbed data serving as conditioning information for 508 
model calibration. 509 
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 510 
Fig. 2. Reference water content at 5 cm from the soil surface [see Fig. 1 caption ]. 511 
 512 
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 513 
Fig. 3. Reference cumulative outflow [see Fig. 1 caption ].  514 
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 515 
Fig. 4. Reference retention curve for the infiltration experiment [see Fig. 1 caption ]. 516 
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 518 
Fig. 5. Reference breakthrough output concentration for Tinj = 5000. [see Fig. 1 caption ]. 519 
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  520 
Fig. 6. Reference breakthrough output concentration for Tinj= 3000 min. [see Fig. 1 caption ]. 521 
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  1 
Fig. 7. MCMC solutions for the transport scenario 1. The diagonal plots represent the inferred posterior probability distribution of the model 2 
parameters. The off-diagonal scatterplots represent the pairwise correlations in the MCMC drawing.  3 
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 1 
Fig. 8. MCMC solutions for transport scenario 2 [see Fig. 7 caption ]. 2 
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 1 
Fig. 9. MCMC solutions for transport scenario 3 [see Fig. 7 caption ]. 2 
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 1 
Fig. 10. MCMC solutions for transport scenario 4 [see Fig. 7 caption ]. 2 
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 1 
Fig. 11. MCMC solutions for transport scenario 5 [see Fig. 7 caption ]. 2 
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 1 
Fig. 12. MCMC solutions for transport scenario 6 [see Fig. 7 caption ]. 2 
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 1 
Fig. 13. MCMC solutions for transport scenario 7 [see Fig. 7 caption ]. 2 
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Fig. 14. Posterior mean values and 95% confidence intervals of the saturated hydraulic 
conductivity for the different scenarios. 
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Fig. 15. Posterior mean values and 95% confidence intervals of the saturated water content for 
the different scenarios. 
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Fig. 16. Posterior mean values and 95% confidence intervals of the residual water content for 
the different scenarios. 
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different scenarios. 
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Fig. 18. Posterior mean values and 95% confidence intervals of the shape parameter n for the 
different scenarios. 
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Fig. 19. Posterior mean values and 95% confidence intervals of dispersivity for the different 
scenarios. 
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