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In directed evolution experiments, it is at stake to have
methods to screen efficiently the mutant libraries. We
propose a web-based tool that implements an established
in silico method for the rational screening of mutant li-
braries. The method, known as ProSAR, attempts to link
sequence data to activity. The method uses statistical
models trained on small experimental datasets provided by
the user. These can integrate potential epistatic interac-
tions between mutations and be used in many diverse
biological contexts. It drastically improves the search for
leading mutants. The tool is freely available to non-
commercial users at http://bo-protscience.fr/prosar/.
Keywords: epistatic interactions between mutations/fitness
landscape exploration/protein engineering/rational screening/
sequence–activity relationship

Introduction

In vitro directed evolution, a process that mimics Darwinian evo-
lution (Stemmer, 1994; Ness et al., 2002), is a well-established
strategy for protein optimization (Arnold and Moore, 1997;
Dalby, 2011; Wang et al., 2012), protein design (Jäckel et al.,
2008; Bloom and Arnold, 2009) and dissecting protein stability,
structure and function (Yuen and Liu, 2007; Bloom and Arnold,
2009; Romero and Arnold, 2009; Erijman et al., 2011). It allows
the exploration of both the sequence space (Smith, 1970) and
fitness landscape (Tracewell and Arnold, 2009) of proteins
through iterative cycles of mutagenesis and screening by which
neutral and/or beneficial mutations are accumulated (Arnold,
2009). The resulting libraries contain a few mutants displaying
improved properties compared with the parental wild-type se-
quence that has been subjected to directed evolution (Fig. 1).
Unveiling these mutants among the astronomically large se-
quence space to produce them experimentally is wet-lab inten-
sive and practically limited by the screening capacities.

Cost and time for screening mutant libraries are hence at
stake. It raises a key question: is there a rational way to discover
the leading mutants (Fig. 1)? Here, we propose a tool that
implements an in silico method for the rational screening of
mutant libraries generated during directed evolution cycles to
reduce the efforts devoted to their screening. Among the few in
silico approaches that have been developed towards that goal
(Fox et al., 2003; Barak et al., 2008; Damborsky and
Brezovsky, 2009; Romero et al., 2013), we selected a method
that attempts to link the sequences of a small number of
screened protein variants to their corresponding activities (Fox,
2005). Here, the notion of activity refers to the fitness of a
protein variant for reasons of clarity and symmetry with the
existing literature. This method, termed protein sequence activ-
ity relationship (ProSAR), assumes that phenotypical informa-
tion is encoded either directly or indirectly in the amino acid
sequence of the protein and explore the sequence space using
statistical modeling and sophisticated machine learning algo-
rithms (Fox, 2005). Interestingly, it requires no data derived
from three-dimensional structure. This approach relies on the
availability of a minimal set of experimental data. Sequence
and activity data are provided to a genetic algorithm (GA) that
builds partial least square (pls) regression models where the
contribution of residues and epistatic coupling between residue
pairs are combined. These models can be used to predict high
performing variants from the library that were not sampled ex-
perimentally and thus, drive further directed evolution rounds.

To our knowledge, there is to date no software available to
the community that implements the ProSAR method. Here, we
present the first web-based software that implements the
method and discuss how it can be practically used for the ra-
tional screening of mutant libraries. We further illustrate its
applicability on two different experimental datasets.

Methods

The ProSAR methodology
The ProSAR methodology (Fox, 2005) is composed of three
main steps as illustrated in the Fig. 2. For the method to be ap-
plicable, the mutant library, which was constructed after a mu-
tagenesis strategy, must contain protein variants with multiple
mutations (some of them may be point mutations) and no
insertion/deletion. It relies on the availability of a minimal set
of experimental data, i.e. requires sequencing and phenotyping
of a sample of variants from the mutant library. These
sequences, along with their measured activities, form the train-
ing dataset. In this context, the term activity refers to any quan-
titative criterion representing the protein fitness. It can be, for
example, the optimum temperature or pH, catalytic constant,
affinity, time yield, product inhibition, solvent stability, sub-
strate or product specificity, substrate conversion, regioselec-
tivity, enantioselectivity, etc. The process starts with a data
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Fig. 1. The problem of rational screening of mutant libraries. From a small set of sequenced and characterized variants, in silico methods for rational screening
aim to unveil the leading mutants from the sequence space.

Fig. 2. Illustration of the three main steps of the implemented ProSAR method: (i) data preparation, (ii) learning process and (iii) prediction.

M.Berland et al.

376



preparation step which consists of a numerical encoding of
mutated residues and positions from a sequence alignment.
Each amino acid residue is encoded as either present (1) or
absent (0) for each variable position in the alignment, resulting
in linear terms. Non-variable positions are not encoded.
Epistatic coupling between residue pairs are numerically
encoded as the product between two linear terms, i.e. between
two residues at variable positions. These new terms are named
interaction terms, or non-linear terms. The question of which
interaction terms and how many should be considered is
addressed further on.

The learning process step aims to set up a statistical model
to link the activities to the mutations and their interactions. A
pls regression is performed. This dimension reduction method
is required for the analysis of large datasets made of many
highly collinear variables (linear and interaction terms) and
few observations (sequences) (Wold, 1985; de Jong et al.,
2001; Damborsky and Brezovsky, 2009). According to the
ProSAR model, the most effective method to obtain the activ-
ity from sequence information would rely on the linear terms
and only the relevant interaction terms (Fox, 2005). Taking all
the interaction terms at the same time decreases the predictive
power of the pls regression (Broadhurst et al., 1997). To com-
pensate the absence of information on the structure and on the
possible interactions between amino acids, the learning
process uses a GA) to compute an optimal subset of inter-
action terms. GA is a widely used search strategy to solve opti-
mization problems (Holland, 1975; Daren, 2001; Hand et al.,
2001). It mimics the search efficiency observed in genetic evo-
lution. The GA implemented in the ProSAR method consists
in the computation of numerous statistical models (pls), each
based on different interaction terms, to preferentially select the
models whose inaccuracy (evaluated by cross-validation) is
the lowest. The inaccuracy is calculated as the root-mean-
square error between the predicted and measured activities.
These details regarding algorithm descriptions were previously
reported in a methodology paper (Fox, 2005).

The prediction step: After the convergence of the GA
towards an optimal set of interaction terms, a pls regression is
performed on the whole training dataset with the selected
terms. This model is used to predict the activity of new
sequences containing a combination of the mutations sampled
in the training dataset. The evaluation of the beneficial and
deleterious mutations is performed by a metric called sensitiv-
ity. The sensitivity determines the relative contribution to the
activity of the amino acids. The sensitivity of a given residue
choice X at a position i is the average change in activity
between the sequences possessing the residue X at position i,
and the sequences possessing another residue at this position.
The sensitivity of the residue X at position i is given by:

SðXiÞ ¼
P

p[P;q[Qðap � aqÞ
#P�#Q

where P is the set of sequences that possess the residue X at
position i, Q is the set of sequences that possess the residue Y
(=X) at position i and ap (respectively, aq) is the predicted ac-
tivity of protein sequence in set P (respectively, Q).

Hence, the sensitivity represents the fitness changes and the
largest sensitivities then correspond to residues choices that
are important for improving protein function. These residues

can be fixed in the next round of directed evolution to focus
the mutagenesis.

Experimental datasets
The performance of the ProSAR model is presented on two ex-
perimental datasets whose combinatorial features are detailed in
Table I. The first dataset (Irague et al., 2012) was created to inves-
tigate the relationship between the specificity of dextransucrase
DSR-S (EC 2.4.1.5) mutants from Leuconostoc mesenteroides
and the structure of their polysaccharide products, i.e. the presence
of a(1!3) or a(1!6) linkages. Semi-rational engineering was
carried out to generate enzyme mutants with altered specificity.
Four amino acids likely to be critical for the enzyme regios-
electivity were targeted from sequence and structural analysis.
The measured activity is the percentage of a(1!3) linkage
found in the synthesized polysaccharides. A total of 79 distinct
mutants were screened and sequenced for this dataset. Their
activity, here the a(1!3) percentage, ranged from 1 to 8.3%.

The second dataset (Li et al., 2007; Romero et al., 2013)
was generated in a study of the sequence–stability–function
relationship related to the cytochrome P450 family, specifical-
ly the cytochrome P450 BM3 A1, A2 and A3. The aim of this
study was to improve the thermostability of cytochromes
P450. New chimera biocatalysts were made up of eight con-
secutive fragments inherited from any of these three different
parents. The measured activity is the T50, i.e. the temperature
at which 50% of the protein is irreversibly denatured after in-
cubation for 10 min. The resulting dataset is composed of 242
sequences of variants and T50, measurements that ranged from
39.2 to 64.48C. Here, the variants were encoded according to
the following scheme: each fragment was encoded by a letter
according to its parental origin (A for parent A1, B for parent
A2 and C for parent A3). For example, a variant where the
second and sixth fragment comes from parent B and the others
from parent A will be encoded as ABAAABAA.

Results

The prior requirement for the use of the web server is the avail-
ability of experimental data (sequences and activities) obtained
in the context of a directed evolution experiment. One of the
first question raised by the mining of the untapped libraries of
mutants, as presented on Fig. 1, is the total size of the sequence
space. This information can be obtained by using a tool imple-
mented in the web server (toolbox menu). It is also possible to
calculate the number of theoretical interaction terms from the
number of mutated residue at each position (in practice, some
of them might be null, depending on the mutations sampled in
the sequences). The aim of these tools is to calculate the com-
binatorial complexity of the protein-activity system before the
modeling phase.

Table I. Characteristics of the experimental datasets

Dataset n k NLTthe Sequence space

Dextransucrase 4 [14;14;18;12] 1252 42 336
Cytochrome P450 8 3 252 6561

n is the number of mutated positions and k is the number of residues at each
position. NLTthe is the theoretical total number of interaction terms. Some of
them might be null, depending on the sequences available in the training
dataset.
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Where are the top-ranking mutants located in the total se-
quence space (Fig. 1)? The ProSAR predictions answer this
question in two ways, depending on the additivity of the muta-
tions. The mutations of a protein are called additive if the ac-
tivity of the protein can be predicted from the linear terms
only. If the mutations are additive, there is no need to calculate
interaction terms, and the prediction is straightforward from a
pls regression model. If the mutations are not additive, the cal-
culation of the optimal set of interaction terms requires sophis-
ticated statistical learning methods to be used, and these
methods are also implemented on the web server.

For illustration purpose, we present the application of the
ProSAR method on two experimental datasets (Fig. 3).
Figure 3a and b show the influence of the number of inter-
action terms on the model inaccuracy. The optimal number of
interaction terms cannot be known in advance and depends on
the available dataset since each protein-activity system is
unique. For the dextransucrases (Fig. 3a), 160 interaction
terms were necessary, whereas for the cytochrome P450
(Fig. 3b), 45 interaction terms were sufficient.

The observed difference between the number of interaction
terms needed in the two models can be explained by the differ-
ent level of additivity of either the mutations in the dextransu-
crase case or sequence fragments in the cytochromes P450
case. In the latter case, the fragments function as pseudo-
independent structural modules that make roughly additive
contributions to stability (Li et al., 2007). This may explain the
need for less interaction terms than for the dextransucrase. The
practical consequences of these results are discussed below.

Figure 3c and d illustrate the predicted activity as a function
of the measured activity in 10-fold cross-validation for a
model containing the optimal number of interaction terms

determined previously. The results show that in both cases, the
model is reliable enough to enable the prediction of new
sequences: R2 ¼ 0.60 for the dextransucrase and R2 ¼ 0.94
for the cytochrome P450. For the cytochrome P450, we com-
pared the R2 with the one obtained from Gaussian process
models (Romero et al., 2013): the R2 was 0.90. This confirms
the performance of the ProSAR method. By rendering this
method available through a web server, we thus offer a power-
ful tool for the exploration of mutant libraries. These two
examples raise a number of questions that we address in the
following paragraphs.

How to take into account epistatic interaction of residue
pairs?
Each studied protein-activity system has an optimal number of
interaction terms to be considered. We advise to start with an
initial run of the ProSAR algorithm without interaction terms
to evaluate the additivity of the mutations: by observing the R2

metric (ranging from 0 to 1), the closest it is to 1, the more
additive are the mutations. This calculation is very fast com-
pared with the calculations needed for models including inter-
action terms. Moreover, a linear model is by nature less prone
to overfitting, and thus gives more robust models, especially in
the case of few sequences available.

If the model with only linear terms has poor R2, it means
interaction terms must be integrated in the model. For this and
as a consequence of results presented in Fig. 3a and b, the user
is required to perform several runs of the algorithm with dif-
ferent number of interaction terms with the maximum number
given by the NLTthe value computed with the toolbox avail-
able on the web server. In practice, we recommend increasing

Fig. 3. Evaluation of the performance of the ProSAR method on two experimental datasets. On the left are shown the influence of the number of interaction terms
on the inaccuracy (a) for the dextransucrases and (b) for the cytochrome P450. X-axis represents the number of interaction terms used in each simulation and Y-axis
represents the inaccuracy of the model predictions obtained by cross-validation. Three duplicates have been performed each time. On the right are shown the
correlation between measured and predicted activities for (c) for dextransucrase (R2 ¼ 0.60), and (d) cytochrome P450 (R2 ¼ 0.96). The X-axis represents the
measured activity of the enzymes (regioselectivity for dextransucrase and thermostability for cytochrome P450) and the Y-axis represents the predicted activity in
10-fold cross-validation (dextransucrase: 160 non-linear terms, cytochromes P450: 45 non-linear terms).
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the number of interaction terms step by step until satisfactory
inaccuracy and R2 are obtained.

The screening effort required to use ProSAR
The number of sequences needed in the training dataset to es-
tablish a reliable model depends on numerous parameters:

(i) The additivity of the mutations. The more additive
are the mutations, the more the combinations of
mutations will be predictable and thus the less
sequences will be needed in the training dataset.

(ii) The precision of the measure. The more the measure
of the activity will be precise, accurate and

Fig. 4. Screenshots of the ProSAR web server input form and output results display for a toy example. (a) ProSAR prediction input form to be completed with the
sequence and activity files, and GA parameters. (b) Output of the best-fitted model. (c) Output of inaccuracy decrease through the generations for all the models
represented with boxplots. (d) Output table of predicted activities of the new mutants. (e) Output of the impact of mutations on protein activity represented as
barplot. The mutations with large sensitivity impact the most the activity.
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reproducible, the more the method will be tolerant
to the small number of sequences. The type of activ-
ity is also important, as it should give the best
picture of the mechanism of the protein.

(iii) The sequence space (number of total sequences
given positions and mutations). The more positions
are mutated, the more sequences will be needed to
capture the relative effect of each mutation. It is pos-
sible to calculate the sequence space with the
toolbox available on the web server.

For a small number of variable positions (e.g. 4–8), we
suggest having a training dataset composed of at least 80–100
sequences to have a proper use of the method. For much larger
libraries (10 variable positions or more), more data will surely
be needed. Based on our benchmarking of the method, we dis-
courage the use of many interaction terms in the case where
limited experimental data are available.

How much time does take a ProSAR modeling?
The computing time may be the major limiting factor of this
approach, especially when the number of interaction terms to
take into account is high. The computing time increases also
with the number of generations needed for convergence, and
the number of protein arrays in the algorithm. For these
reasons, we suggest to increase the number of interaction
terms step by step, especially when the protein-activity system
has a high combinatorial complexity (see above).

Biological interpretation of the regression coefficients
The pls regression is a method that relies on a few latent vari-
ables which are a linear combination of the input variables to
explain the change in activity. Due to this mechanism, it is not
possible to give a biological meaning to the regression coeffi-
cients calculated for each variables (linear and interaction
terms). However, the sensitivity metric compensate the diffi-
cult interpretation of the coefficients by indicating the relative
influence of the mutations on the activity. Positive residue sen-
sitivity means that the residue at this position provides a global
positive effect on the biological activity. This metric enables
to evaluate which mutations are crucial to improve the activity
of the protein.

Required inputs and server outputs
The web server that implements the ProSAR method is avail-
able at http://bo-protscience.fr/prosar/. The aim of this web
server is to be routinely integrated in the process of a directed
evolution experiment. By virtue of its capacity to handle many
diverse protein-activity systems, the ProSAR method can be
quickly used through the user-friendly interface. It is freely
available for academic users.

Prediction of activity change upon multiple mutations
requires providing, on one hand, the list of the protein
sequences, and, on the other hand, the corresponding activities
measured experimentally. Example files of datasets are down-
loadable. Optionally, it is possible to provide a list of sequences
on which the activity prediction will be performed. Otherwise,
a fixed number of new sequences will be generated: they
feature the possible combinations of the mutations observed in
the training dataset. The parameters for the GA are filled by
default to run a quick simulation. However, they are tunable to
fit every dataset (Fig. 4a).

For example, in the case of the dextransucrase, we provided
the 79 sequences (in FASTA format) containing single or mul-
tiple mutations as Training sequences of mutants. All the
sequences contained the same number of residues. The corre-
sponding biological activity (plain text file with the list of
activities —one per line) were provided in the Biological
activity field. We computed several models with different
numbers of non-linear terms until we found the optimal model
(i.e. with the smallest inaccuracy, Fig. 4c). The sensitivity
barplot and the table of predicted activities of new sequences
can help the design of new mutant by identifying relevant
mutations or combination of mutations.

The server outputs are of two types:

(i) The main results are displayed online: impact of the
mutations on the protein activity, table of predicted
activities of the new sequences, best-fitted model in
auto-prediction and in cross-validation, inaccuracy
decrease through generations (Fig. 4b–e).

(ii) Simultaneously, the complete results are sent by
email as a zip archive of 15 files containing among
others the selected interaction terms and the pls re-
gression coefficients to enable the prediction of any
other mutants.
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