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Characteristic trends in landuse and climate highlight critical
challenges in future resource management along the tropical
topoclimosequence (TCS) of the Rungwe Volcanic Province
(RVP), a major headwater biodiversity and food reservoir of
Tanzania. The RVP orography supports a coherent distribution of
agroecosystems and livelihoods, from hot irrigated lowlands to
endangered afromontane forests above 1500 m.a.s.l. Recent
increases in deforestation, land fragmentation and soil
denudation/compaction in the densely populated TCS were
combined with a strengthened need and consumption of water in
the lower, warmer and drier end-member. Consistent with a
regional decline of the long rains, a considerable (up to 30%)
decrease in annual rainfall and a pervasive decline of the Lake
Masoko (LM) aquifer testifies to a strong aridification trend. We
suggest here that current landuse and demographic trends likely
amplified the hydrological response of the TCS to regional and
global warming. Testing such a hypothesis, however, requires
improved local monitoring, to allow scaling and quantification of
local hydrological budgets associated with landuse impacts, and
evaluation ofthe contribution of trees and agroforestry systemsto
mitigating the aridification trend.
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Introduction

Although highland agroecosystems do provide major bio-
diversity, water and food resources in more than 35
tropical countries, the biophysical response of tropical
highlands to climate variability and to economic and
demographic trends remains sparsely documented and
understood. This is especially the case in eastern and
central Africa, where a complex mosaic of highland land-
scapes and agro-ecosytems is nested along contrasted
geological, climate and socioeconomic gradients, from
the southern to the northern summer rainfall zones.

Owing to the availability of long-term hydrological and
ecosystem records reconstructed from small lakes, we use
here the case of the Rungwe Volcanic Province (RVP,
Mbeya region, southern highlands of Tanzania) to
address the impact of interacting climate, ecosystem
and social drivers over highland resources at larger scale
than the instrumental record. We further identify key
questions and challenges to improve the sustainable man-
agement of natural resources and agroecosystems in the
RVP and in other tropical highlands.

A complex hydrological frame

As in most East African highlands, the outstanding diver-
sity and vulnerability of natural resources and ecosystems
of the RVP (Figure 1) originates from a long (20 Ma,
Neogene) history, linked with the swelling and rifting of
East Africa [1], and the formation of internally drained
basins [2]. The N-S topography deflects the lower atmos-
pheric circulation from the Indian Ocean, enhancing
meridional transport of moisture along this barrier,
extending the intertropical convection zone between
25°S and 10°N [3°], and making the climate highly
sensitive to monsoon circulation and low-latitude insola-
tion [4,5]. As a result, strong regional aridity gradients and
well described ‘rain shadow’ effects strongly constrain the
rainfall patterns and amounts. Along with geological
gradients and ecosystem fragmentation related to asyn-
chronous uplift and volcanic activity, the topography has
major consequences for the biosphere, shown by the
contrasted distributions of C3-photosynthesizing and
C4-photosynthesizing plant communities along aridity
gradients [6], and by the characteristic elevational
changes in tree associations and diversity across afroalpine
vegetation belts [7].
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Figure 1
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Elevation model (SRTM90) of the Rungwe topoclimosequence. (a) Map
of East Africa showing the study area (red box). (b) The Rungwe TCS,
north of Lake Malawi (Nyasa), 470-2960 m.a.s.l. (see text for comments).

T'hese features are particularly well observed in the RVP,
~630 km west of the Indian Ocean coast. The rainfall and
hydrology of the region is firstly controlled by the
~3000 m elevated SE-NW rift escarpments, and by the
topographic ‘lock’ posed by three main volcanic centres
(Rungwe, Poroto and Kiejo) at the triple junction be-
tween the Malawi, Rukwa and Usangu rift basins [8].
South of the RVP, the large open water body of Lake
Malawi [9] (478 m.a.s.l.) acts both as a reservoir and
source of moisture for highlands through land/lake breeze
effects and orographic lifting [10].

The soil hydrological properties and the soil fertility also
follow the geological and orographic frame. The upper
zone of Precambrian escarpment rocks and volcanoes,
near the wetter and forested areas, strongly contributes to
the recharge of the regional underground aquifer. It is
generally covered by young volcanic soils providing a
highly fertile and favorable environment for agriculture.
The transitional zone consists of older, poorly permeable
and cation-depleted weathered materials prone to desic-
cation (dry season) and flooding (rain season). The lower
alluvial plains of Lake Malawi (southern RVP) or Usangu
(northern RVP) directly depend on water and sediment
inputs from the upper and transitional zones and are
intensively cultivated and irrigated.

Millennial to multi-decennial imprints of

rainfall seasonality over highland ecosystems
The RVP is located in the summer rainfall area of the
southern tropics, with a near-monomodal rainfall season

distributed between November and May. As in other
tropical topoclimosequences (T'CSs) [11°°], strong rainfall
contrasts are observed between the windward southern
RVP and the leeward (drier) northern RVP: for example,
the mean annual rainfall reached 2400 mm yr~' in Tukuyu
(windward, 1550 m.a.s.1.) and only 900 mm yr—' in Mbeya
(leeward, 1720 m.a.s.l.) in the 1990s. Hydrological and
ecological imprints of the regional climate are found in
present-day eco-system and hydro-system, particularly
through the occurrence of small perennial crater lakes
indicating positive [P-E] water balances at decennial scale
[12], and through the control of the vegetation by annual
rainfall, seasonality and temperature [13]. A little rain fall
between June and October contributes to maintain rela-
tively wet conditions and the montane, upper montane and
bamboo forests above 1500 m.a.s.l. [14]. The five months
dry season of the lower zone favors the development of
semi-deciduous ‘miombo’ Zambezian woodlands domi-
nated by Caesalpiniaceae (e.g., Brachystegia) [15].

Multi-decennial to millennial climate variability in the
RVP is first documented by the sedimentary record of
Lake Masoko (LM, 840 m.a.s.l.), where vegetation proxies
(pollen and molecular assemblages, microcharcoal)
[16°°,17,18] and hydrological proxies (diatom assemblages,
magnetic proxies of deposition) [19,20] provide a still
unique continuous paleoclimate record covering the last
45 ka in the region. Several lessons are learned from this
work and its comparison with other paleorecords. The
critical impact of the dry season over the RVP hydrology
and vegetation is clearly evidenced, consistent with pre-
sent-day biome patterns [21] and with other paleorecords
from Lakes Malawi [22°], Tanganyika [23] and Challa [24].
Taken together, these paleorecords indicate a dominant
control of the Intertropical Convergence Zone activity and
radiative forcing over rainfall seasonality, constrained
either by multimillennial orbital frequencies [25] or by
sea surface temperature (SST) patterns in the Indian
Ocean [26], the latter occurring at shorter (millennial to
decennial scales). Peculiarly, the development of drought-
intolerant vegetation during cold intervals (e.g., Last Gla-
cial Maximum, Younger Dryas, Maunder Minimum) in the
Rungwe [27] contrasts with the opposite development of
drought-tolerant trees and arid conditions in the region,
which encompasses the large lake catchments of lakes
Malawi, Rukwa and southern Tanganyika [22°,28]. Such
intervals of opposite climatic trends (‘hydrological rever-
sals’) point to a strong control of tropical air temperature
(and associated shifts of the Intertropical Convergence
Zone, I'TCZ) over rainfall in highlands located windward
of large water bodies, with recurrent wetter (drier) con-
ditions during regionally colder (warmer) intervals, likely
as a result of weakened (strengthened) orographic lift.

Current intraseasonal and seasonal variability
Hydrological and land use studies undertaken in the
Rungwe and in southern Tanzania allow addressing local
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118 Terrestrial systems

and regional controls on the Rungwe landscape dynamics
[29]. Along with a relatively steep temperature gradient
(~7.2°Ckm™ ! in 2011), the seasonal distribution of
temperature and rainfall with altitude is well illustrated
by manual or automated rainfall measurements carried
out in the lower (Kisegesse, 540 m.a.s.l.), mid altitude
(Masoko, 920 m.a.s.l.) and high altitude (Kilasi,
1730 m.a.s.l.) zones. These measurements confirm a
shorter duration of the rain season and lower annual
rainfall amount in the warmer flood plain, where relatively
higher rainfall in the austral autumn (in May) (Figure 2) as
well as weather observations by local communities
strongly support a control of temperature over rainfall
patterns along the T'CS. Daily monitoring of rainfall and
Masoko lake-level for more than ten years by the Rungwe
Environmental Science Observatory Network [29] shows
a systematic and regular decline of the LM level (around
10 cm yrfl), associated with a delay of the rainfall onset,
pointing to a continuous decrease in local water avail-
ability (Figure 3). The LM drop corresponds to a trend
toward drier conditions, illustrated in altitude (Tukuyu)
by an almost ~30% decrease in total rainfall over the last
35 years, along with a longer dry season starting ~25 days

carlier (around mid-May) and ending up ~15 days later
(end of November) (Figure 4). Albeit considerable, such
aridification trend occurs along with a continuous
temperature increase in the region [30-32], consistent
with the long term history of the Rungwe’s sensitivity to
regional temperature.

Landuse trends

Agriculture i1s the main socio-economic activity of the
Rungwe TCS and its rural population of ~570 000, which
increased by ~38% between 1988 and 2012 according to
the 1988, 2002 and 2012 population census of the Rungwe
and Kyela districts (Bureau of Statistics, United Republic
of Tanzania). Cropping is developed from the upper/wet
to the lower/dry end members for subsistence and com-
mercial purposes. Decreasing tree cover and increased
density of farms have been reported along the entire TCS
during the Tanzanian villagization period (1974-1985)
and after [33]. It occurs along with the disappearance of
initially 4-5 yr fallows and the consecutive loss of soil
nutrients and food production [33], with the fragmenta-
tion of land through increasing density of the network of
paths and tracks, and with the development of livestock

Figure 2
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Rainfall patterns across the Rungwe TCS. Cumulative rainfall series (from May 2010 to June 2012) at Kilasi (blue), Masoko, (red) and Kisegesse
(purple). The 2010 and 2011 dry seasons (yellow areas) and the rainfall offset and onset intervals (grey areas, see Figure 4 for calculation details)
evidence a large seasonal variability over the toposequence. An earlier onset of rains is evidenced in altitude (Kilasi). The intensity of rainfall events is
higher in the Masoko and Kisegesse areas. These ‘low altitude’ heavy rainfall events occur in April-May, at the end of the rainfall season,
compensating for an apparent deficit during the warmer November-March interval.
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Figure 3
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Daily rainfall and lake-level at Masoko. A systematic and regular decline of the lake level of around 10 cm/year from January 2002 to April 2013 is
associated with a reduced amount and duration of rains, pointing to a decrease in local water availability.

keeping around lakes, river shores and springs, which
increases soil erosion and the risk of schistosomiasis in-
fection.

Potato, wheat, maize, banana—coffee systems and tea
estates dominate in the upper zone, between ~1300

Figure 4
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Annual rainfall and drought indicators at Tukuyu (1550 m.a.s.l.). The
onset and offset dates of the rain season were calculated following crop
requirements (onset: 20 mm cumulated rainfall over two days not
followed by a drought over the next 15 days, and offset: first dry interval
of 15 days). Despite strong interannual variability a ~30% average linear
decline in total rainfall is suggested at Tukuyu over the last 35 years,
associated with a longer duration of the dry season (from 10 June-15
November in 1975, to 15 May-1 December in 2010).

and 2000 m.a.s.l. Strong expansions of potato and maize
cultivation at the expense of forests located outside
conservation zones are a pervasive trend. It is illustrated,
for the Rungwe district and between 1997 and 2012,
by considerable production increases of 60 000-
124000 tyr " for maize and 27 000-124 000 t yr ' for
potato, respectively. Conversion of forest into cropland
is associated with a devastating loss in carbon [34], redu-
cing soil infiltration and increasing runoff, together with
soil erosion and landslides on the steeper slopes.
Rotational agriculture (maize—bean, maize—groundnut)
is a characteristic of the mid zone (~600-1300 m.a.s.l.)
where coffee—banana crops and the few remaining tea
plantations are progressively abandoned in favor of
rainfed rice, cassava, and cocoa (800—4400 t yr71 between
1997 and 2012 in the Rungwe district). Cassava is becom-
ing more frequent due to increasing drought and to the
recent cultivation of poorly fertile uphill soils.

Over the last four decades, the lower altitude alluvial
floodplain of the Rungwe TCS has become an important
area of production (and export) of rice (up to three
harvests per year) and cocoa, cultivated in the flooded
areas and over ridges or ancient river banks, respectively.
Tapping of aquifers from the mid altitude zone of the
T'CS (above 1200 m) is increasingly undertaken to supply
the growing demand in irrigation water during the dry
season.

www.sciencedirect.com
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A positive feedback loop between landuse
and drought?

Taken together, landuse practices and land pressure over
the main end-members most likely contribute to the
depletion of water resources across the Rungwe climose-
quence, amplifying a trend toward drier conditions
observed in East Africa since the 1990s, driven first by
SST changes in the tropical Pacific Ocean [35]. Indeed,
the combined impacts of warming (currently ~0.4 °C per
decade in the Mbeya region [31]), as well as socio-
economic and demographic trends have resulted in a
general fragmentation of agroecosystems, associated with
a shift toward higher altitudes of the main crops. The
latter is especially evidenced by firstly, the replacement,
at 800-1200 m.a.s.l., of coffee and banana crops by
initially lower altitude cocoa and rice crops, secondly,
the development, above 1500 m.a.s.l., of banana, maize
and potato at the expense of the upper montane forest.

The surface export of highland water to the hot flood-
plain lowlands is amplified by deforestation, land
fragmentation and agriculture, which increase runoff
and drainage [36,37°], and by the additional capture of
aquifers for the irrigation of lowland paddies. As a result,
the highland aquifer recharge decreases, while most
likely, increased water consumption and evaporation
under warmer lowland floodplain environments result
in a net deficit of available water in the Rungwe. Recy-
cling of evaporated water into local rainfall is likely to be
less efficient, due to the higher altitude of water vapour
condensation in a warmer atmosphere, and/or to a limited
moisture supply by deforested or compacted soils [38°].
Further, deforested areas in altitude would also decrease
the land rugosity, enabling transportation of moisture
over regional [11°°] or even continental [39] distances.
Exportation of moisture would be especially effective in
the austral spring and summer, contributing to delay of
the onset of the rains and to decrease their total amount
and their duration [40].

Conclusion: a scaling and monitoring
research challenge to unravel climate and
social impacts over resources and food

Given the occurrence of increased deforestation, land and
socio-economic pressure, and an aridification trend in the
Rungwe TCS, this review stresses critical research issues
for sustaining ecosystem resources and food security in
tropical highlands. Owing to the near decennial scale of
global trends (temperature, demography, market globa-
lization, growth of mature trees, residence time of subsur-
face aquifers, landscape management.), an improved
understanding of local land use, land cover and surface
fragmentation impacts over the soil and water budget is
urgently required for further integration at the scale of
TCSs. Given the poor development of agroforestry prac-
tices in the RVP to date, this understanding is especially
required to assess the role of trees in soil moisture

limitation, evaporative demand and effects of orographic
lifting on (local) climate and rainfall [38°] in the future,
and their implications in terms of land and natural
resource management. An improved quantification of
the water budget and its subsurface and groundwater
components across the geoclimatic and agroecosystem
gradient is especially required for firstly, upscaling the
assessment of the environmental impact of local practices
to the entire T'CS, and secondly estimating the economic
value of the different water components of the hydro-
logical cycle [41,42].

Reaching these complementary goals for any TCS, how-
ever, is beyond the capacities of the research for de-
velopment sensu stricto: the amount of currently
unavailable data required to calibrate satellite obser-
vations [43] and to calibrate and validate coupled atmos-
pheric-ecosystem-landuse models of TCSs is indeed
considerable. Given the scales and dynamics involved,
the latter cannot be effective without the involvement of
local rural communities. Hence, new local and sustained
strategies of local resource monitoring and scientific part-
nership with rural communities should be considered.
Strong linkages between poverty level and illiteracy in
one hand, and land degradation, habitat fragmentation
and biodiversity collapse in the other [14,44] would
support immediate participatory and educational
approaches (e.g., with local schools) aiming at increasing
knowledge exchange and capacity building around the
long-term observation and measurement of climatic,
water and agroecosystem resources. This is stressed as
a critical research for development issue.
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