
HAL Id: hal-01451690
https://hal.univ-reunion.fr/hal-01451690

Submitted on 9 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Concolic testing in logic programming
Frédéric Mesnard, Etienne Payet, Germán Vidal

To cite this version:
Frédéric Mesnard, Etienne Payet, Germán Vidal. Concolic testing in logic programming. Theory
and Practice of Logic Programming, 2015, 15 (4-5), pp.711-725. �10.1017/S1471068415000332�. �hal-
01451690�

https://hal.univ-reunion.fr/hal-01451690
https://hal.archives-ouvertes.fr

1

Concolic Testing in Logic Programming∗

FRED MESNARD, ÉTIENNE PAYET
LIM - Université de la Réunion, France

(e-mail: {fred,epayet}@univ-reunion.fr)

GERMÁN VIDAL
MiST, DSIC, Universitat Politècnica de València

(e-mail: gvidal@dsic.upv.es)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Software testing is one of the most popular validation techniques in the software industry.
Surprisingly, we can only find a few approaches to testing in the context of logic program-
ming. In this paper, we introduce a systematic approach for dynamic testing that combines
both concrete and symbolic execution. Our approach is fully automatic and guarantees full
path coverage when it terminates. We prove some basic properties of our technique and
illustrate its practical usefulness through a prototype implementation.

KEYWORDS: Symbolic execution, logic programming, testing.

1 Introduction

Essentially, software validation aims at ensuring that the developed software com-

plies with the original requirements. One of the most popular validation approaches

is software testing, a process that involves producing a test suite and then execut-

ing the system with these test cases. The main drawback of this approach is that

designing a test suite with a high code coverage —i.e., covering as many execution

paths as possible— is a complex and time-consuming task. As an alternative, one

can use a tool for the random generation of test cases, but then we are often faced

with a poor code coverage. Some hybrid approaches exist where random generation

is driven by the user, as in QuickCheck (Claessen and Hughes 2000), but then again

the process may become complex and time-consuming.

Another popular, fully automatic approach to test case generation is based on

∗ This work has been partially supported by the EU (FEDER) and the Spanish Ministerio de
Economı́a y Competitividad under grant TIN2013-44742-C4-1-R and by the Generalitat Va-
lenciana under grant PROMETEOII/2015/013. Part of this research was done while the third
author was visiting the University of Reunion; G. Vidal gratefully acknowledges their hospitality.

http://arxiv.org/abs/1507.05454v1

2 F. Mesnard and É. Payet and G. Vidal

symbolic execution (King 1976; Clarke 1976). Basically, symbolic execution consid-

ers unknown (symbolic) values for the input parameters and, then, explores all

feasible execution paths in a non-deterministic way. Symbolic states include now a

path condition that stores the current constraints on symbolic values, i.e., the con-

ditions that must hold to reach a particular execution point. For each final state, a

test case is produced by solving the constraints in the associated path condition.

A drawback of the previous approach, though, is that the constraints in the path

condition may become very complex. When these constraints are not solvable, the

only sound way to proceed is to stop the execution path, often giving rise to a poor

coverage. Recently, a new variant called concolic execution (Godefroid et al. 2005;

Sen et al. 2005) that combines both concrete and symbolic execution has been pro-

posed as a basis for both model checking and test case generation. The main advan-

tage is that, now, when the constraints in the symbolic execution become too com-

plex, one can still take some values from the concrete execution to simplify them.

This is sound and often allows one to explore a larger execution space. Some success-

ful tools that are based on concolic execution are, e.g., SAGE (Godefroid et al. 2012)

and Java Pathfinder (Pasareanu and Rungta 2010).

In the context of the logic programming paradigm, one can find a flurry of static,

complete techniques for software analysis and verification. However, only a few dy-

namic techniques for program validation have been proposed. Dynamic, typically

incomplete, techniques have proven very useful for software validation in other

paradigms. In general, these techniques are sound so that they avoid false positives.

This contrasts with typical static verification methods which may produce some

false positives due to the abstraction techniques introduced to ensure complete-

ness. Therefore, we expect concolic execution to complement existing analysis and

verification techniques for logic programs.

In this paper, we introduce a new, fully automatic scheme for concolic testing

in logic programming. As in other paradigms, concolic testing may help the pro-

grammer to systematically find program bugs and generate test cases with a good

code coverage. As it is common, our approach is always sound but usually incom-

plete. In the context of logic programming, we consider that “full path coverage”

involves calling each predicate in all possible ways. Consider, e.g., the logic pro-

gram P = {p(a)., p(b).}. Here, one could assume that the execution of the goals

in {p(a), p(b)} is enough for achieving a full path coverage. However, in this paper

we consider that full path coverage requires, e.g., the set {p(X), p(a), p(b), p(c)} so

that we have a goal that matches both clauses, one that only matches the first

clause, one that only matches the second clause, and one that matches no clause.

We call this notion choice coverage, and it is specific of logic programming. To the

best of our knowledge, such a notion of coverage has not been considered before.

Typically, only a form of statement coverage has been considered, where only the

clauses used in the considered executions are taken into account. For guaranteeing

choice coverage, a new type of unification problems must be solved: we have to

produce goals in which the selected atom A matches the heads of some clauses, say

H1, . . . , Hn, but does not match the heads of some other clauses, say H ′1, . . . , H
′
m.

We provide a constructive algorithm for solving such unifiability problems.

Concolic Testing in Logic Programming 3

A prototype implementation of the concolic testing scheme for pure Prolog, called

contest, is publicly available from http://kaz.dsic.upv.es/contest.html. The

results from an experimental evaluation point out the usefulness of the approach.

Besides logic programming and Prolog, our technique might also be useful for other

programming languages since there exist several transformational approaches that

“compile in” programs to Prolog, like, e.g., (Gómez-Zamalloa et al. 2010).

Omitted proofs as well as some extensions can be found in the online appendix.

2 Concrete Semantics

The semantics of a logic program is usually given in terms of the SLD relation on

goals (Lloyd 1987). In this section, we present instead a local semantics which is

similar to that of Ströder et al. (2011). Basically, this semantics deals with states

that contain all the necessary information to perform the next step (in contrast

to the usual semantics, where the SLD tree built so far is also needed, e.g., for

dealing with the cut). In contrast to (Ströder et al. 2011), for simplicity, in this

paper we only consider definite logic programs. However, the main difference w.r.t.

(Ströder et al. 2011) comes from the fact that our concrete semantics only considers

the computation of the first solution for the initial goal. This is the way most Prolog

applications are used and, thus, our semantics should consider this behaviour in

order to measure the coverage in a realistic way.

Before presenting the transition rules of the concrete semantics, let us introduce

some auxiliary notions and notations. We refer the reader to (Apt 1997) for the

standard definitions and notations for logic programs. The semantics is defined by

means of a transition system on states of the form 〈B1
δ1
| . . . |Bn

δn
〉, where B1

δ1
| . . . |Bn

δn

is a sequence of goals labeled with substitutions (the answer computed so far, when

restricted to the variables of the initial goal). We denote sequences with S, S′, . . .,

where ǫ denotes the empty sequence. In some cases, we label a goal B both with a

substitution and a program clause, e.g., BH←B
δ , which is used to determine the next

clause to be used for an SLD resolution step (see rules choice and unfold in Fig. 1).

Note that the clauses of the program are not included in the state but considered

a global parameter since they are static. In the following, given an atom A and

a logic program P , clauses(A,P) returns the sequence of renamed apart program

clauses c1, . . . , cn from P whose head unifies with A. A syntactic object s1 is more

general than a syntactic object s2, denoted s1 6 s2, if there exists a substitution

θ such that s1θ = s2. Var(o) denotes the set of variables of the syntactic object o.

For a substitution θ, Var(θ) is defined as Dom(θ) ∪ Ran(θ).

For simplicity, w.l.o.g., we only consider atomic initial goals. Therefore, given

an atom A, an initial state has the form 〈Aid 〉, where id denotes the identity

substitution. The transition rules, shown in Figure 1, proceed as follows:

• In rules success and failure, we use fresh constants to denote a final state:

〈successδ〉 denotes that a sucessful derivation ended with computed answer

substitution δ, while 〈failδ〉 denotes a finitely failing derivation; recording δ

for failing computations might be useful for debugging purposes.

4 F. Mesnard and É. Payet and G. Vidal

(success)
〈trueδ |S〉 → 〈successδ〉

(failure)
〈(fail,B)δ〉 → 〈failδ〉

(backtrack)
S 6= ǫ

〈(fail,B)δ |S〉 → 〈S〉

(choice)
clauses(A,P) = (c1, . . . , cn) ∧ n > 0

〈(A,B)δ |S〉 → 〈(A,B)c1δ | . . . |(A,B)cnδ |S〉
(choice fail)

clauses(A,P) = {}

〈(A,B)δ |S〉 → 〈(fail,B)δ |S〉

(unfold)
mgu(A,H1) = σ

〈(A,B)H1←B1
δ |S〉 → 〈(B1σ,Bσ)δσ |S〉

Fig. 1. Concrete semantics

• Rule backtrack applies when the first goal in the sequence finitely fails, but

there is at least one alternative choice.

• Rule choice represents the first stage of an SLD resolution step. If there is at

least one clause whose head unifies with the leftmost atom, this rule introduces

as many copies of a goal as clauses returned by function clauses. If there is

at least one matching clause, unfolding is then performed by rule unfold.

Otherwise, if there is no matching clause, rule choice fail returns fail so that

either rule failure or backtrack applies next.

Example 1

Consider the following logic program:

p(s(a)). q(a). r(a).

p(s(X))← q(X). q(b). r(c).

p(f(X))← r(X).

Given the initial goal p(f(X)), we have the following successful computation (for

clarity, we label each step with the applied rule):

〈p(f(X))id 〉 →
choice 〈p(f(X))

p(f(Y))←r(Y)
id 〉 →unfold 〈r(X)id 〉

→choice 〈r(X)
r(a)
id |r(X)

r(c)
id 〉 →unfold 〈true{X/a} |r(X)

r(c)
id 〉

→success 〈success{X/a}〉

Therefore, we have a successful computation for p(f(X)) with computed answer

{X/a}. Observe that only the first answer is considered.

We do not formally prove the correctness of the concrete semantics, but it is an

easy consequence of the correctness of the semantics in (Ströder et al. 2011). Note

that our rules can be seen as an instance for pure Prolog without negation, where

only the computation of the first answer for the initial goal is considered.

3 Concolic Execution Semantics

In this section, we introduce a concolic execution semantics for logic programs that

is a conservative extension of the concrete semantics of the previous section. In this

semantics, concolic states have the form 〈S][S′〉, where S and S′ are sequences of

Concolic Testing in Logic Programming 5

(success)
〈trueδ |S][trueθ |S′〉 ❀⋄ 〈successδ][successθ〉

(failure)
〈(fail,B)δ][(fail,B′)θ〉 ❀⋄ 〈failδ][failθ〉

(backtrack)
S 6= ǫ

〈(fail,B)δ |S][(fail,B′)θ |S′〉 ❀⋄ 〈S][S′〉

(choice)
clauses(A,P) = cn ∧ n > 0 ∧ clauses(A′,P) = dk

〈(A,B)δ |S][(A′,B′)θ |S
′〉 ❀c(ℓ(cn),ℓ(dk))

〈(A,B)c1δ | . . . |(A,B)cnδ |S

][(A′,B′)c1θ | . . . |(A′,B′)cnθ |S′〉

(choice fail)
clauses(A,P) = {} ∧ clauses(A′,P) = ck

〈(A,B)δ |S][(A′,B′)θ |S′〉 ❀c({},ℓ(ck)) 〈(fail,B)δ |S][(fail,B′)θ |S′〉

(unfold)
mgu(A,H1) = σ ∧mgu(A′,H1) = σ′

〈(A,B)H1←B1
δ |S][(A′,B′)H1←B1

θ |S′〉 ❀⋄ 〈(B1σ,Bσ)δσ |S][(B1σ′,B′σ′)θσ′ |S′〉

Fig. 2. Concolic execution semantics

(possibly labeled) concrete and symbolic goals, respectively. In logic programming,

the notion of symbolic execution is very natural: the structure of both S and S′ is

the same, and the only difference is that some atoms might be less instantiated in

S′ than in S.

In the following, we let on denote the sequence of syntactic objects o1, . . . , on.

Given an atom A, we let root(A) = p/n if A = p(tn). Now, given an atom A with

root(A) = p/n, an initial concolic state has the form 〈Aid][p(Xn)id 〉, where Xn

are different fresh variables. In the following, we assume that every clause c has a

corresponding unique label, which we denote by ℓ(c). By abuse of notation, we also

denote by ℓ(cn) the set of labels {ℓ(c1), . . . , ℓ(cn)}.

The semantics is given by the rules of the labeled transition relation ❀ shown in

Figure 2. Here, we consider two kinds of labels for the transition relation:

• The empty label, ⋄, which is often implicit.

• A label of the form c(ℓ(cn), ℓ(dk)), which represents a choice step. Here, ℓ(cn)

are the labels of the clauses matching the selected atom in the concrete goal,

while ℓ(dk) are the labels of the clauses matching the selected atom in the

corresponding symbolic goal. Note that ℓ(cn) ⊆ ℓ(dk) since the concrete goal

is always an instance of the symbolic goal (see Theorem 1 below).

For each transition step C1 ❀c(L1,L2) C2, the first set of labels, L1, is used to

determine the execution trace of a concrete goal (see below). Traces are needed to

keep track of the execution paths already explored. The second set of labels, L2, is

used to compute new goals that follow alternative paths not yet explored, if any.

In the concolic execution semantics, we perform both concrete and symbolic ex-

ecution steps in parallel. However, the symbolic execution does not explore all pos-

sible execution paths but only mimics the steps of the concrete execution; observe,

6 F. Mesnard and É. Payet and G. Vidal

e.g., rule choice in Figure 2, where the clauses labeling the copies of the symbolic

goal are the same clauses cn matching the concrete goal, rather than the set of

clauses dk (a superset of cn).

Example 2

Consider again the logic program of Example 1, now with clause labels:

(ℓ1) p(s(a)). (ℓ4) q(a). (ℓ6) r(a).

(ℓ2) p(s(X))← q(X). (ℓ5) q(b). (ℓ7) r(c).

(ℓ3) p(f(X))← r(X).

Given the initial goal p(f(X)), we have the following concolic execution:

〈p(f(X))id][p(N)id 〉 ❀
choice
c(L1,L′

1
) 〈p(f(X))

p(f(Y))←r(Y)
id][p(N)

p(f(Y))←r(Y)
id 〉

❀
unfold
⋄ 〈r(X)id][r(Y){N/f(Y)}〉

❀
choice
c(L2,L′

2
) 〈r(X)

r(a)
id |r(X)

r(c)
id][r(Y)

r(a)
{N/f(Y)} |r(Y)

r(c)
{N/f(Y)}〉

❀
unfold
⋄ 〈true{X/a} |r(X)

r(c)
id][true{N/f(a)} |r(Y)

r(c)
{N/f(Y)}〉

❀
success
⋄ 〈success{X/a}][success{N/f(a)}〉

where L1 = {ℓ3}, L
′
1 = {ℓ1, ℓ2, ℓ3}, and L2 = L′2 = {ℓ6, ℓ7}.

In this paper, we only consider finite concolic executions for initial goals. This is

a reasonable assumption since one can expect concrete goals to compute the first

answer finitely (unless the program is erroneous). We associate a trace to each

concolic execution as follows:

Definition 1 (trace)

Let P be a program and C0 an initial concolic state. Let E = (C0 ❀l1 . . . ❀lm Cm),

m > 0, be a concolic execution for C0 in P . Let c(L1,L
′
1), . . . , c(Lk,L

′
k), k 6 m,

be the sequence of labels in l1, . . . , lm which are different from ⋄. Then, the trace

associated to the concolic execution E is trace(E) = L1, . . . ,Lk.

Roughly speaking, a trace is just a sequence with the sets of labels of the match-

ing clauses in each choice step. For instance, the trace associated to the concolic

execution of Example 2 is ({ℓ3}, {ℓ6, ℓ7}), i.e., we have two unfolding steps with

matching clauses {ℓ3} and {ℓ6, ℓ7}, respectively. Note that traces ending with { }

represent failing derivations.

The following result states an essential invariant for concolic execution:

Theorem 1

Let P be a program and C0 = 〈p(tn)id][p(Xn)id 〉 be an initial concolic state. Let

C0 ❀ . . . ❀ Cm, m > 0, be a finite (possibly incomplete) concolic execution for C0
in P . Then, for all concolic states Ci = 〈B

c
δ |S][Dc′

θ |S
′〉, i = 0, . . . ,m, the following

invariant holds: |S| = |S′|, D 6 B, c = c′ (if any), and p(Xn)θ 6 p(tn)δ.

4 Concolic Testing

In this section, we introduce a concolic testing procedure for logic programs based

on the concolic execution semantics of the previous section.

Concolic Testing in Logic Programming 7

4.1 The Procedure

As we have seen in Section 3, the concolic execution steps labeled with c(L1,L2)

give us a hint of (potential) alternative execution paths. Consider, for instance, the

concolic execution of Example 2. The first step is labeled with c({ℓ3}, {ℓ1, ℓ2, ℓ3}).

This means that the selected atom in the concrete goal only matched clause ℓ3, while

the selected atom in the symbolic goal matched clauses ℓ1, ℓ2 and ℓ3. In principle,

there are as many alternative execution paths as elements in P({ℓ1, ℓ2, ℓ3}) \ {ℓ3};

e.g., {} denotes an execution path where the selected atom matches no clause, {ℓ1}

another path in which the selected atom only matches clause ℓ1, {ℓ1, ℓ2, ℓ3} another

path where the selected atom matches all three clauses ℓ1, ℓ2 and ℓ3, and so forth.

When aiming at full choice coverage, we need to solve both unification and disuni-

fication problems. Consider, e.g., that A is the selected atom in a goal, and that we

want it to unify with the head of clause ℓ1 but not with the heads of clauses ℓ2 and

ℓ3. For this purpose, we introduce the following auxiliary function alt, which also in-

cludes some groundness requirements (see below). In the following, we let ≈ denote

the unifiability relation, i.e., given atoms A,B, A ≈ B holds if mgu(A,B) 6= fail;

correspondingly, ¬(A ≈ B) holds if mgu(A,B) = fail.

Definition 2 (alt)

Let A be an atom and L,L′ be sets of clause labels. Let V be a set of variables.

The function alt(A,L,L′,V) returns a substitution θ such that the following holds:

Aθ ≈ H1 ∧ . . .∧Aθ ≈ Hn ∧¬(Aθ ≈ Hn+1)∧ . . .∧¬(Aθ ≈ Hm)∧Vθ are ground

where H1, . . . , Hn are the heads of the (renamed apart) clauses labeled by L and

Hn+1, . . . , Hm are the heads of the (renamed apart) clauses labeled by L′\L, re-

spectively. If such a substitution does not exist, then function alt returns fail.

When the considered signature is finite,1 the following semi-algorithm is trivially

sound and complete for solving the above unifiability problem: first, bind A with

terms of depth 0.2 If the condition above does not hold, then we try with terms

of depth 1, and check it again. We keep increasing the considered term depth

until a solution is found. If a solution exists, this naive semi-algorithm will find it

(otherwise, it may run forever). In practice, however, it may be very inefficient.

Observe that, in general, there might be several most general solutions to the

above problem. Consider, e.g., A = p(X,Y), Hpos = {p(Z,Z), p(a, b)} and Hneg =

{p(c, c)}. Then, both p(a, U) and p(U, b) are most general solutions. In principle, any

of them is equally good in our context. We postpone to the next section the intro-

duction of a constructive algorithm for function alt. Here, we present an algorithm

to systematically produce concrete initial goals so that all feasible choices in the

execution paths are covered (unless the process runs forever). First, we introduce

the following auxiliary definitions:

1 Full Prolog and infinite signatures like integers or real numbers are left as future work.
2 The depth depth(t) of a term t is defined as usual: depth(t) = 0 if t is a variable or a constant
symbol, and depth(f(t1, . . . , tn)) = 1 +max(depth(t1), . . . , depth(tn)), otherwise.

8 F. Mesnard and É. Payet and G. Vidal

Definition 3 (conc, symb)

Let C = 〈B1
δ1
| . . . |Bn

δn
][D1

θ1
| . . . |Dn

θn
〉 be a concolic state. Then, we let conc(C) = B1

δ1

denote the first concrete goal and symb(C) = D1
θ1

the first symbolic goal.

Definition 4 (alt trace)

Let P be a program, C0 an initial concolic state, and E = (C0 ❀l1 . . . ❀ln

Cn ❀c(L,L′) Cn+1) be a (possibly incomplete) concolic execution for C0 in P . Then,

the function alt trace denotes the following set of (potentially) alternative traces:

alt trace(E) = {L1, . . . ,Lk,L
′′ | trace(C0 ❀l1 . . . ❀ln Cn) = L1, . . . ,Lk

and L′′ ∈ (P(L′) \ L) }

For instance, given the following (partial) concolic execution E from Example 2:

〈p(f(X))id][p(N)id 〉 ❀
choice
c(L1,L′

1
) 〈p(f(X))

p(f(Y))←r(Y)
id][p(N)

p(f(Y))←r(Y)
id 〉

❀
unfold
⋄ 〈r(X)id][r(Y){N/f(Y)}〉

❀
choice
c(L2,L′

2
) 〈r(X)

r(a)
id |r(X)

r(c)
id][r(Y)

r(a)
{N/f(Y)} |r(Y)

r(c)
{N/f(Y)}〉

where L1 = {ℓ3}, L
′
1 = {ℓ1, ℓ2, ℓ3}, L2 = L′2 = {ℓ6, ℓ7}, we have trace(E) = L1,L2,

P(L′2) \ L2 = {{ }, {ℓ6}, {ℓ7}}, and alt trace(E) = {(L1, { }), (L1, {ℓ6}), (L1, {ℓ7})}.

Now, we introduce our concolic testing procedure. It takes as input a program

and a random —e.g., provided by the user— initial atomic goal rooted by the

distinguished predicate main/n. In the following, we assume that each concrete

initial goal main(tn) is existentially terminating w.r.t. Prolog’s leftmost computa-

tion rule, i.e., either computes the first answer in a finite number of steps or finitely

fails (Vasak and Potter 1986). For this purpose, we assume that main/n has some

associated input arguments, determined by a function input, so that an initial goal

main(tn) existentially terminates if the terms input(main(tn)) are ground. One

could also consider that there are several combinations of input arguments that

guarantee existential termination —this is similar to the modes of a predicate—

but we only consider one set of input arguments for simplicity (extending the con-

colic testing algorithm would be straightforward). As mentioned before, assuming

that concrete initial goals are existentially terminating is a reasonable assumption

in practice.

Definition 5 (concolic testing)

Input: a logic program P and an atom main(tn) with input(main(tn)) ground.

Output: a set TC of test cases.

1. Let Pending := {main(tn)}, TC := {}, Traces := {}.

2. While |Pending| 6= 0 do

(a) Take A ∈ Pending , Pending := Pending\{A}, TC := TC ∪ {A}.

(b) Let C0 = 〈Aid][main(Xn)id 〉 and compute a successful or finitely

failing derivation E = (C0 ❀l1 . . . ❀lm Cm).

(c) Let Traces := Traces ∪ {trace(E)}.

(d) We update Pending as follows:

• for each prefix C0 ❀l1 . . . ❀lj Cj ❀c(L,L′) Cj+1 of E and

Concolic Testing in Logic Programming 9

• for each (possibly partial) trace Lk,Lk+1 ∈ alt trace(C0 ❀l1

. . . ❀lj Cj ❀c(L,L′) Cj+1) which is not the prefix of any trace

in Traces ,

• addmain(Xn)θθ
′ to Pending if alt(A1,Lk+1,L

′, G) = θ′ 6= fail,

where G = Var(input(main(Xn)θ)) and symb(Cj) = (A1,B)θ.
3

3. Return the set TC of test cases

The soundness of concolic testing is immediate, since each atom from TC is indeed

a test case of the form main(sn) with input(main(sn)) ground. Completeness and

termination are more subtle properties though.

In principle, one could argue that the concolic testing algorithm is a complete

semi-algorithm in the sense that, if it terminates, the generated test cases cover all

feasible paths. Our assumptions trivially guarantee that every considered concrete

execution is finite (i.e., step (2b) in the loop of the concolic testing algorithm).

Unfortunately, the algorithm will often run forever by producing infinitely many

test cases. Consider, e.g., the following simple program:

(ℓ1) nat(0). (ℓ2) nat(s(X))← nat(X).

Even if every goal nat(t) with t ground is terminating, our algorithm will still

produce infinitely many test cases, e.g., nat(0), nat(s(0)), nat(s(s(0))), . . . , since

each goal will explore a different path (i.e., will produce a different execution trace:

({ℓ1}), ({ℓ2}, {ℓ1}), ({ℓ2}, {ℓ2}, {ℓ1}), etc). In practice, though, the quality of the

generated test cases should be experimentally evaluated using a coverage tool.

Therefore, in general, we will sacrifice completeness in order to guarantee the

termination of concolic testing. For this purpose, one can use a time limit, a bound

for the length of concolic executions, or a maximum term depth for the arguments

of the generated test cases. In this paper, we consider the last approach. Then,

one can replace the use of a particular function alt in step (2d) of Definition 5 by

a function altk with altk(A,L,L
′, G) = alt(A,L,L′, G) = θ if depth(t) 6 k for all

X/t ∈ θ, and altk(A,L,L
′, G) = fail otherwise. This is the solution we implemented

in the concolic testing tool described in Section 4.3.

For instance, by requiring a maximum term depth of 1, the generated test cases

for the program nat above would be nat(0), nat(1), nat(s(0)) and nat(s(1)), where

1 is a fresh constant symbol, with associated traces ({ℓ1}), ({ }), ({ℓ2}, {ℓ1}), and

({ℓ2}, { }), respectively.

Termination of the algorithm in Definition 5 is then guaranteed since only a finite

number of new atoms can be added in step (2d) —up to variable renaming— and,

moreover, only those (possibly partial) traces which are not a prefix of any trace

already in the set Traces are considered. Observe that these facts suffice to ensure

termination of the algorithm since one cannot have infinitely many traces with a

finite number of atoms.

3 I.e., A1 is the first atom of the symbolic goal symb(Cj) of the concolic state Cj , see Definition 3.

10 F. Mesnard and É. Payet and G. Vidal

4.2 Solving Unifiability Problems

In this section, we present a constructive algorithm for function alt. Let us first

reformulate our unification problem in slightly more general terms than in Defini-

tion 2. Let A be an atom and Hpos , Hneg be two sets of atoms the elements of

which are variable disjoint with A and unify with A, and a set of variables G. The

problem consists in finding a substitution σ such that

∀H+ ∈ Hpos . Aσ ≈ H+ ∧ ∀H− ∈ Hneg . ¬(Aσ ≈ H−), and Gσ is ground (∗)

We introduce a stepwise method that, roughly speaking, proceeds as follows:

• First, we produce some “maximal” substitutions θ (called maximal unifying

substitution below) for A such that Aθ still unifies with the atoms in Hpos .

Here, we use a special set U of fresh variables with Var({A}∪Hpos ∪Hneg)∩

U = {}. The elements of U are denoted by U , U ′, U1. . . Then, in θ, the

variables from U (if any) denote positions where further binding will prevent

Aθ from unifying with some atom in Hpos . In contrast, Aθσ′ still unifies with

all the atoms inHpos as long as σ
′ does not bind any variable from U . Roughly

speaking, we apply some (minimal) generalizations to the atoms in Hpos so

that they unify, and then return their most general unifier.

For this stage, we use well known techniques like variable elimination (Martelli and Montanari 1982)

and generalization (from the algorithm for most specific generalization (Plotkin 1970));

see Definition 6 below.

• In a second stage, we look for another substitution η such that θη is a solution

for (∗). Here, we basically follow a generate and test algorithm (as in the naive

algorithm above), but it is now much more restricted thanks to θ.

4.2.1 The Positive Atoms

Here, we will use the variables from the special set U to replace disagreement pairs

(see (Apt 1997) p. 27). Roughly speaking, given terms s and t, a subterm s′ of s

and a subterm t′ of t form a disagreement pair if the root symbols of s′ and t′ are

different, but the symbols from s′ up to the root of s and from t′ up to the root

of t are the same. For instance, X, g(a) and b, h(Y) are disagreement pairs of the

terms f(X, g(b)) and f(g(a), g(h(Y))). A disagreement pair t, t′ is called simple if

one of the terms is a variable that does not occur in the other term and no variable

of U occurs in t, t′. We say that the substitution {X/s} is determined by t, t′ if

{X, s} = {t, t′}.

Basically, given an atom A and a set of atoms Hpos , the following algorithm

nondeterministically computes a substitution θ such that Aθσ′ still unifies with all

the atoms in Hpos as long as σ′ does not bind any variable from U .

Definition 6 (maximal unifying substitution)

Input: an atom A and a set of atoms Hpos such that Var({A} ∪ Hpos) ∩ U = {}

and A ≈ B for all B ∈ Hpos .

Output: a substitution θ.

Concolic Testing in Logic Programming 11

1. Let B := {A} ∪ Hpos .

2. While simple disagreement pairs occur in B do

(a) nondeterministically choose a simple disagreement pair X, t (resp.

t,X) in B such that there is no other simple disagreement pair of

the form X, t′ (or t′, X) with t < t′ (i.e., a strict instance);

(b) set B to Bη where η = {X/t}.

3. While |B| 6= 1 do

(a) nondeterministically choose a disagreement pair t, t′ in B;

(b) replace all disagrement pairs t, t′ in B by a fresh variable of U .

4. Return θ, where B = {B}, Aθ = B, and Dom(θ) ⊆ Var(A).

We note that the algorithm assumes that the input atom A is always more general

than the final atom B so that the last step is well defined. An invariant proving

that this is indeed the case can be found in the online appendix (Appendix B).

Observe that the step (2a) is nondeterministic since there may exist several

disagreement pairs X, t (or t,X) for the same variable X . Consider the atom

A = p(X,Y) and the set Hpos = {p(a, b), p(Z,Z)}. Then, both {X/a, Y/U} and

{X/U, Y/b} are maximal unifying substitutions, as the following example illustrates:

Example 3

LetA = p(X,Y) andHpos = {p(a, b), p(Z,Z)}, with B := {p(X,Y), p(a, b), p(Z,Z)}.

The algorithm then considers the simple disagreement pairs in B. From X, a, we

get η1 := {X/a} and the action (2b) sets B to Bη1 = {p(a, Y), p(a, b), p(Z,Z)}.

The substitution η2 := {Y/b} is determined by Y, b and the action (2b) sets B to

Bη2 = {p(a, b), p(Z,Z)}. Now, we have two non-deterministic possibilities:

• If we consider the disagreement pair a, Z, we have a substitution η3 := {Z/a}

and Action (2b) then sets B to Bη3 = {p(a, b), p(a, a)}. Now, no simple dis-

agreement pair occurs in B, hence the algorithm jumps to the loop at line 3.

Action (3b) replaces the disagreement pair b, a with a fresh variable U ∈ U ,

hence B is set to {p(a, U)}. As |B| = 1 the loop at line 3 stops and the

algorithm returns the substitution {X/a, Y/U}.

• If we consider the disagreement pair b, Z instead, we have a substitution

η′3 := {Z/b}, and Action (2b) sets B to Bη′3 = {p(a, b), p(b, b)}. Now, by

proceeding as in the previous case, the algorithm returns {X/U, Y/b}.

4.2.2 The Negative Atoms

Now we deal with the negative atoms by means of the following algorithm which is

the basis of our implementation of function alt:

Definition 7 (PosNeg)

Input: an atom A and two sets of atoms Hpos , Hneg , the elements of which are

variable disjoint with A and unify with A, and a set of variables G.

Output: fail or a substitution θη (restricted to the variables of A).

12 F. Mesnard and É. Payet and G. Vidal

1. Let θ be the substitution returned by the algorithm of Definition 6 with input

A and Hpos .

2. Let η be an idempotent substitution such that Gθη is ground.

3. Check that Dom(η) ⊆ Var(Aθ) and Var(η) ∩ U = {}, otherwise return fail.

4. Check that for each H− ∈ Hneg , ¬(Aθη ≈ H−), otherwise return fail.

5. Return θη (restricted to the variables of A).

The correctness of this algorithm is stated as follows:

Theorem 2

Let A be an atom and Hpos ,Hneg be two sets of atoms such that Var({A}∪Hpos ∪

Hneg) ∩ U = {} and A ≈ B for all B ∈ Hpos ∪Hneg , and a set of variables G. The

algorithm in Definition 7 always terminates and, if it returns a substitution σ, then
∧

H∈Hpos
Aσ ≈ H ∧

∧
H′∈Hneg

¬(Aσ ≈ H ′) holds and Gσ is ground.

Example 4

Let A := p(X), Hpos := {p(s(Y))}, Hneg := {p(s(0))}, and G := {X}. The algo-

rithm of Definition 6 returns θ = {X/s(Y)}. We take η = {Y/s(0)}, it is idempotent

and Gθη is ground. Dom(η) ⊆ Var(Aθ) and Var(η) = {Y } does not intersect with

U . Finally, Aθη = p(s(s(0))) does not unify with p(s(0)). The algorithm thus returns

θη = {X/s(s(0)), Y/s(0)} restricted to the variables of A, i.e., {X/s(s(0))}.

Example 5

Let A := p(X), Hpos := {p(a), p(b)}, Hneg := {p(f(Z))}, and G := {}. The al-

gorithm of Definition 6 applied to A and Hpos returns θ = {X/U}. However, we

cannot find η such that Aθη does not unify with p(f(Z)) without binding U . The

algorithm thus returns fail.

Theorem 2 states the soundness of our procedure for computing function alt. As for

completeness, we claim that binding an atom A with all possible maximal unifying

substitutions for A and Hpos does not affect to the existence of a solution to the

unification problem (*) above (see the online appendix (Appendix B) for more

details).

4.3 A Tool for Concolic Testing

In this section, we present a prototype implementation of the concolic testing

scheme. The tool, called contest, is publicly available from the following URL

http://kaz.dsic.upv.es/contest.html

It consists of approx. 1000 lines of Prolog code and implements the concolic testing

algorithm of Definition 5 with function alt as described in Section 4.2 and a maxi-

mum term depth that can be fixed by the user in order to guarantee the termination

of the process. Moreover, we also introduced a bound for the number of alternatives

when computing function alt trace (see Definition 4). Roughly speaking, when the

Concolic Testing in Logic Programming 13

Table 1. Clause coverage analysis results (SICStus Prolog)

paper 100% paper2 100% nat 100% advisor 100% applast 100%
depth 88% regexp 86% relative 100% rotateprune 100% transpose 100%
mult 100% hanoi 100% automaton 100% qsort 95% inclist 100%
doubleflip 100% recacctype 100% ackermann 100% fibonacci 100% preorder 100%

number of alternatives is too high, we give up aiming at full choice coverage and

return sets with only one clause label (which suffice for clause coverage).

Table 1 shows a summary of the coverage achieved by the test cases automati-

cally generated using contest. The complete benchmarks –including the source code,

initial goal, input arguments and maximum term depth– can be found in the above

URL. We used the coverage analysis tool of SICStus Prolog 4.3.1, which basically

measures the number of times each clause is used. The results are very satisfactory,

achieving a full coverage in most of the examples.

The current version is a proof-of-concept implementation and only deals with pure

Prolog without negation. We plan to extend it to cope with full Prolog. The concrete

semantics can be extended following (Ströder et al. 2011), and concolic execution is

in general a natural extension of the semantics in Figure 2. For relational built-in’s

or equalities, we should label the execution step with an associated constraint, which

can then be used to produce alternative execution paths by solving its negation.

In this context, our tool will be useful not only for test case generation, but also

to detect program errors during concolic testing (e.g., negated atoms which are

not instantiated enough, incorrect calls to arithmetic built-in’s, etc). See the online

appendix (Appendix A) for more details on extending concolic execution to full

Prolog.

5 Related Work and Concluding Remarks

Mera et al. (2009) present a framework unifying unit testing and run-time verifica-

tion for the Ciao system (Hermenegildo et al. 2012). The ECLiPSe constraint pro-

gramming system (Schimpf and Shen 2012) and SICStus Prolog (Carlsson and Mildner 2012)

both provide tools which run a given goal and compute how often program points

in the code were executed. SWI-Prolog (Wielemaker et al. 2012) offers a unit test-

ing tool associated to an optional interactive generation of test cases. It also in-

cludes an experimental coverage analysis which runs a given goal and computes

the percentage of the used clauses and failing clauses. Belli and Jack (1993) and

Degrave et al. (2008) consider automatic generation of test inputs for strongly typed

and moded logic programming languages like the Mercury programming language (Somogyi et al. 1996),

whereas we only require moding the top-level predicate of the program.

One of the closest approaches to our work is the test case generation technique by

(Albert et al. 2014). The main difference, though, is that their technique is based

solely on traditional symbolic execution. As mentioned before, concolic testing may

scale better since one can deal with more complex constraints by using data from

14 F. Mesnard and É. Payet and G. Vidal

the concrete component of the concolic state. Another difference is that we aim at

full path coverage (i.e., choice coverage), and not only a form of statement coverage.

Another close approach is (Vidal 2015), where a concolic execution semantics

for logic programs is presented. However, this approach only considers a simpler

statement coverage and, thus, it can be seen as a particular instance of the technique

in the present paper. Another significant difference is that, in (Vidal 2015), concolic

execution proceeds in a stepwise manner: first, concrete execution produces an

execution trace, which is then used to drive concolic execution. Although this scheme

is conceptually simpler, it may give rise to poorer results in practice since one cannot

use concrete values in symbolic executions, one of the main advantages of concolic

execution over traditional symbolic execution. Moreover, Vidal (2015) presents no

formal results nor an implementation of the concolic execution technique.

Summarizing the paper, we have introduced a novel scheme for concolic testing

in logic programming. It offers a sound and fully automatic technique for test case

generation with a good code coverage. We have stated the particular type of unifi-

cation problems that should be solved to produce new test cases. We have proposed

a correct algorithm for such unification problems. Furthermore, we have developed

a publicly available proof-of-concept implementation of the concolic testing scheme,

contest, that shows the usefulness of our approach. To the best of our knowledge,

this is the first fully automatic testing tool for Prolog that aims at full path coverage

(here called choice coverage).

As future work, we plan to extend the scheme to full Prolog (see the remarks

in Section 4.3). Another interesting subject for further research is the definition of

appropriate heuristics to drive concolic testing w.r.t. a given coverage criterion. This

might have a significant impact on the quality of the test cases when the process is

incomplete. Finally, from the experimental evaluation, we observed that the results

could be improved by introducing type information, so that the generated values are

restricted to the right type. Hence, improving concolic testing with type annotations

is also a promising line of future work.

References

Albert, E., Arenas, P., Gómez-Zamalloa, M., and Rojas, J. 2014. Test Case Gener-
ation by Symbolic Execution: Basic Concepts, a CLP-Based Instance, and Actor-Based
Concurrency. In SFM 2014. Springer LNCS 8483, 263–309.

Apt, K. 1997. From Logic Programming to Prolog. Prentice Hall.

Belli, F. and Jack, O. 1993. Implementation-based analysis and testing of Prolog
programs. In ISSTA. 70–80.

Carlsson, M. and Mildner, P. 2012. SICStus Prolog - the first 25 years. Theory and
Practice of Logic Programming 12, 1-2, 35–66.

Claessen, K. and Hughes, J. 2000. QuickCheck: a lightweight tool for random testing
of Haskell programs. In Proc. of (ICFP 2000). ACM, 268–279.

Clarke, L. 1976. A program testing system. In Proceedings of the 1976 Annual Confer-
ence (ACM’76). 488–491.

Degrave, F., Schrijvers, T., and Vanhoof, W. 2008. Automatic generation of test
inputs for Mercury. In Logic-Based Program Synthesis and Transformation, 18th Inter-
national Symposium, LOPSTR 2008. 71–86.

Concolic Testing in Logic Programming 15

Godefroid, P., Klarlund, N., and Sen, K. 2005. DART: directed automated random
testing. In Proc. of PLDI’05. ACM, 213–223.

Godefroid, P., Levin, M., and Molnar, D. 2012. Sage: whitebox fuzzing for security
testing. CACM 55, 3, 40–44.

Gómez-Zamalloa, M., Albert, E., and Puebla, G. 2010. Test case generation for
object-oriented imperative languages in CLP. TPLP 10, 4-6, 659–674.

Hermenegildo, M. V., Bueno, F., Carro, M., López-Garćıa, P., Mera, E.,
Morales, J. F., and Puebla, G. 2012. An overview of Ciao and its design philosophy.
TPLP 12, 1-2, 219–252.

King, J. C. 1976. Symbolic execution and program testing. CACM 19, 7, 385–394.

Lloyd, J. 1987. Foundations of Logic Programming. Springer-Verlag, Berlin. 2nd Ed.

Martelli, A. and Montanari, U. 1982. An Efficient Unification Algorithm. ACM
Transactions on Programming Languages and Systems 4, 258–282.

Mera, E., López-Garćıa, P., and Hermenegildo, M. V. 2009. Integrating software
testing and run-time checking in an assertion verification framework. In 25th Interna-
tional Conference on Logic Programming, ICLP 2009, Pasadena. 281–295.

Pasareanu, C. and Rungta, N. 2010. Symbolic PathFinder: symbolic execution of Java
bytecode. In ASE, C. Pecheur, J. Andrews, and E. D. Nitto, Eds. ACM, 179–180.

Plotkin, G. 1970. A note on inductive generalization. Machine intelligence 5, 153–163.

Schimpf, J. and Shen, K. 2012. ECLiPSe - from LP to CLP. Theory and Practice of
Logic Programming 12, 1-2, 127–156.

Sen, K., Marinov, D., and Agha, G. 2005. CUTE: a concolic unit testing engine for
C. In Proc. of ESEC/SIGSOFT FSE 2005. ACM, 263–272.

Somogyi, Z., Henderson, F., and Conway, T. 1996. The execution algorithm of Mer-
cury, an efficient purely declarative Logic Programming language. The Journal of Logic
Programming 29, 1–3, 17–64.

Ströder, T., Emmes, F., Schneider-Kamp, P., Giesl, J., and Fuhs, C. 2011. A
Linear Operational Semantics for Termination and Complexity Analysis of ISO Prolog.
In LOPSTR’11. Springer LNCS 7225, 237–252.

Vasak, T. and Potter, J. 1986. Characterization of terminating logic programs. In
Proc. of the 1986 Intl. Symp. on Logic Programming. IEEE, 140–147.

Vidal, G. 2015. Concolic Execution and Test Case Generation in Prolog. In Proc. of the
24th International Symposium on Logic-Based Program Synthesis and Transformation
(LOPSTR’14), M. Proietti and H. Seki, Eds. Springer LNCS 8981, 167–181.

Wielemaker, J., Schrijvers, T., Triska, M., and Lager, T. 2012. SWI-Prolog.
Theory and Practice of Logic Programming 12, 1-2, 67–96.

Online appendix for the paper

Concolic Testing in Logic Programming

published in Theory and Practice of Logic Programming

FRED MESNARD, ÉTIENNE PAYET
LIM - Université de la Réunion, France

(e-mail: {fred,epayet}@univ-reunion.fr)

GERMÁN VIDAL
MiST, DSIC, Universitat Politècnica de València

(e-mail: gvidal@dsic.upv.es)

In this appendix we report, for the sake of completeness, some auxiliary contents
that, for space limitations, we could not include in the paper.

Appendix A Towards Extending Concolic Testing to Full Prolog

In this section, we show a summary of our preliminary research on extending con-
colic execution to deal with full Prolog. First, we consider the extension of the
concrete semantics. Here, we mostly follow the linear semantics of (Ströder et al.
2011), being the main differences that we consider built-ins explicitly, we excluded
dynamic predicates for simplicity —but could be added along the lines of (Ströder et
al. 2011)— and that, analogously to what we did in Section 2, only the first answer
for the initial goal is considered.
In the following, we let the Boolean function defined return true when its argu-

ment is an atom rooted by a defined predicate symbol, and false otherwise (i.e., a
built-in). Moreover, for evaluating relational and arithmetic expressions, we assume

a function eval such that, given an expression e, eval(e) either returns the evalua-tion
of e (typically a number or a Boolean value) or the special constant error when the
expression is not instantiated enough to be evaluated. E.g., eval(2 + 2) = 4, eval(3 >
1) = true, but eval(X > 0) = error.
The transitions rules are shown in Figure A 1. In the following, we briefly explain

the novelties w.r.t. the rules of Section 2:

• In rule choice we use the notation c[!/!m] to denote a copy of clause c where

the occurrences of (possibly labeled) cuts ! at predicate positions (e.g., not

inside a call), if any, are replaced by a labeled cut !m, where m is a fresh label.

Also, in the derived state, we add a scope delimiter ?m.

• Rule cut removes some alternatives from the current state, while rule cut fail

applies when a goal reaches the scope delimiter without success.

16

• The rules for call and negation should be clear. Let us only mention that the

notation A[V/call(V), !/!m] denotes the atom A in which all variables X on

predicate positions are replaced by call(X) and all (possibly labeled) cuts on

predicate positions are replaced by !m.

• Calls to the built-in predicate is are dealt with rules is and is error by means

of the auxiliary function eval. Rules rel and rel error proceed analogously with

relational operators like >, <, ==, etc.

Regarding the concolic execution semantics, we follow a similar approach to that of

Section 3. The labeled transition rules can be seen in Figure A 2. Now, we consider

six kinds of labels for ❀:

• The labels ⋄ and c(L1,L2) with the same meaning as in the concolic semantics

of Section 3.

• The label u(t1, t2), which is used to denote a unification step, i.e., the step

implies that t1 and t2 should unify.

• In contrast, the label d(t1, t2) denotes a disunification, i.e., the step implies

that t1 and t2 should not unify.

(success)
〈trueδ |S〉 → 〈successδ〉

(failure)
〈(fail,B)δ〉 → 〈failδ〉

(backtrack)
S 6= ǫ

〈(fail,B) |S〉 → 〈S〉

(choice)
defined(A) ∧ clauses(A,P) = (c1, . . . , cn) ∧ n > 0 ∧m is fresh

〈(A,B)δ |S〉 → 〈(A,B)
c1[!/!m]
δ | . . . |(A,B)

cn[!/!m]
δ | ?mδ |S〉

(choice fail)
defined(A,P) ∧ clauses(A,P) = {}

〈(A,B)δ |S〉 → 〈(fail,B)δ |S〉

(unfold)
mgu(A,H1) = σ

〈(A,B)H1←B1
δ |S〉 → 〈(B1σ,Bσ)δσ |S〉

(cut)
〈(!m,B)δ |S′ | ?mδ′ |S〉 → 〈Bδ | ?mδ′ |S〉

(cut fail)
〈?mδ |S〉 → 〈failδ |S〉

(call)
A 6∈ V ∧m is fresh

〈(call(A),B)δ |S〉 → 〈(A[V/call(V), !/!m],B)δ | ?mδ |S〉

(call error)
A ∈ V

〈(call(A),B)δ |S〉 → 〈errorδ〉

(not)
m is fresh

〈(\+(A),B)δ |S〉 → 〈(call(A), !m, fail)δ |Bδ | ?mδ |S〉

(unify)
mgu(t1, t2) = σ 6= fail

〈(t1 = t2,B)δ |S〉 → 〈Bσδσ |S〉
(unify fail)

mgu(t1, t2) = fail

〈(t1 = t2,B)δ |S〉 → 〈failδ |S〉

(is)
eval(e2) = t2 6= error

〈(t1 is e2,B)δ |S〉 → 〈(t1 = t2,B)δ | S〉
(is error)

eval(e2) = error

〈(t1 is e2,B)δ |S〉 → 〈errorδ〉

(rel)
eval(t1 ⊕ t2) = A ∈ {true, fail}

〈(t1 ⊕ t2,B)δ |S〉 → 〈(A,B)δ | S〉
(rel error)

eval(t1 ⊕ t2) = error

〈(t1 ⊕ t2,B)δ |S〉 → 〈errorδ〉

Fig. A 1. Extended concrete semantics

17

• The label is(X, t) denotes a step where is is evaluated (see below).

• Finally, the label r(A′, A) denotes that the relational expression A′ should be

equal to A ∈ {true, fail}.

In particular, in rules unify and unify fail, the labels store the unification that

must hold in the step. Note that the fact that mgu(t1, t2) = fail does not imply

mgu(t′1, t
′
2) = fail since t′1 and t′2 might be less instantiated than t1 and t2.

(success)
〈trueδ | S][trueθ | S′〉 ❀⋄ 〈successδ][successθ〉

(failure)
〈(fail,B)δ][(fail,B′)θ〉 ❀⋄ 〈failδ][failθ〉

(backtrack)
S 6= ǫ

〈(fail,B) | S][(fail,B′) | S′〉 ❀⋄ 〈S][S′〉

(choice)
defined(A) ∧ clauses(A,P) = cn ∧ n > 0 ∧m is fresh ∧ clauses(A′,P) = dk

〈(A,B)δ | S][(A′,B′)θ | S′〉

❀c(ℓ(cn),ℓ(dk))
〈(A,B)

c1[!/!
m]

δ | . . . | (A,B)
cn[!/!m]
δ | ?mδ | S

][(A′,B′)
c1[!/!

m]
θ | . . . | (A′,B′)

cn[!/!m]
θ | ?mθ | S′〉

(choice fail)
defined(A,P) ∧ clauses(A,P) = {} ∧ clauses(A′,P) = ck

〈(A,B)δ | S][(A′,B′)θ | S′〉 ❀c({},ℓ(ck))
〈(fail,B)δ | S][(fail,B′)θ | S′〉

(unfold)
mgu(A,H1) = σ ∧mgu(A′,H1) = σ′

〈(A,B)H1←B1
δ | S][(A′,B′)H1←B1

θ | S′〉 ❀⋄ 〈(B1σ,Bσ)δσ | S][(B1σ′,B′σ′)θσ′ | S′〉

(cut)
〈(!m,B)δ | S1 | ?m

δ′
| S][(!m,B′)θ | S′1 | ?m

θ′
| S′〉 ❀⋄ 〈Bδ | ?m

δ′
| S][B′θ | ?m

θ′
| S′〉

(cut fail)
〈?mδ | S][?mθ | S′〉 ❀⋄ 〈failδ | S][failθ | S′〉

(call)
A 6∈ V ∧m is fresh

〈(call(A),B)δ | S][(call(A′),B′)θ | S′〉
❀⋄ 〈(A[V/call(V), !/!m],B)δ | ?mδ | S][(A′[V/call(V), !/!m],B′)θ | ?mθ | S′〉

(call error)
A ∈ V

〈(call(A),B)δ | S][(call(A′),B′)θ | S′〉 ❀⋄ 〈errorδ][errorθ〉

(not)
m is fresh

〈(\+(A), B)δ | S][(\+(A′),B′)θ | S′〉
❀⋄ 〈(call(A), !m, fail)δ | Bδ | ?mδ | S][(call(A′), !m, fail)θ | B′θ | ?mθ | S′〉

(unify)
mgu(t1, t2) = σ ∧mgu(t′1, t

′
2) = σ′

〈(t1 = t2,B)δ | S][(t′1 = t′2,B
′)θ | S′〉 ❀u(t′

1
,t′

2
) 〈Bσδσ | S][B′σ′

δσ′
| S′〉

(unify fail)
mgu(t1, t2) = fail

〈(t1 = t2,B)δ | S][(t′1 = t′2,B
′)θ | S′〉 ❀d(t′

1
,t′

2
) 〈failδ | S][failθ | S′〉

(is)
eval(e2) = t2 6= error ∧ sym eval(e′2) = t′2 ∧X is fresh

〈(t1 is e2,B)δ | S][(t′1 is e′2,B
′)θ | S′〉 ❀is(X,t′

2
) 〈(t1 = t2,B)δ | S][(t′1 = X,B′)θ | S′〉

(is error)
eval(e2) = error

〈(t1 is e2,B)δ | S][(t′1 is e′2,B
′)θ | S′〉 ❀⋄ 〈errorδ][errorθ〉

(rel)
eval(t1 ⊕ t2) = A ∈ {true, fail} ∧ sym eval(t′1 ⊕ t′2) = A′

〈(t1 ⊕ t2,B)δ | S][(t′1 ⊕ t′2,B
′)θ | S′〉 ❀r(A′,A) 〈(A,B)δ | S][(A′,B′)θ | S′〉

(rel error)
eval(t1 ⊕ t2) = error

〈(t1 ⊕ t2,B)δ | S][(t′1 ⊕ t′2,B
′)θ | S′〉 ❀⋄ 〈errorδ][errorθ〉

Fig. A 2. Extended concolic execution semantics

18

In rule is, we label the step with is(X, t′2) which means that the fresh variable X

should be bound to the evaluation of t′2 after grounding it. Note that introducing

such a fresh variable is required to avoid a failure in the subsequent step with

rule unify because of, e.g., a non-ground arithmetic expression that could not be

evaluated yet to a value using function sym eval. Note that rule is error does not

include any label since we assume that an error in the concrete computation just

aborts the execution and also the test case generation process.

Finally, in rule rel we label the step with r(A′, A) where A is the value true/fail

of the relational expression in the concrete goal, and A′ is a (possibly nonground)

corresponding expression in the symbolic goal. Here, we use the auxiliary function

sym eval to simplify the relational expression as much as possible. E.g., sym eval(3 >

0) = true but sym eval(3 + 2 > X) = 5 > X .

These labels can be used for extending the concolic testing algorithm of Section 4.

For instance, given a concolic execution step labeled with r(X > 0, true), we have

that solving ¬(X > 0) will produce a binding for X (e.g., {X/0}) that will follow

an alternative path. Here, the concolic testing procedure will integrate a constraint

solver for producing solutions to negated constraints. We find this extension of the

concolic testing procedure an interesting topic for future work.

Appendix B Proofs of Technical Results

B.1 Concolic Execution Semantics

Proof of Theorem 1

Since the base case i = 0 trivially holds, in the following we only consider the

inductive case i > 0. Let Ci = 〈B
c
δ | S][Dc′

θ | S
′〉. By the inductive hypothesis, we

have |S| = |S′|, D 6 B, c = c′ (if any), and p(Xn)θ 6 p(tn)δ. Now, we consider the

step Ci ❀ Ci+1 and distinguish the following cases, depending on the applied rule:

• If the rule applied is success, failure, backtrack or choice fail, the claim follows triv-

ially by induction.

• If the rule applied is choice, let us assume that we have B = (A,B′), D = (A′,D′)

and clauses(A,P) = cj, j > 0. Therefore, we have Ci+1 = 〈Bc1
δ | . . . | B

cj
δ |S][Dc1

θ |

. . . |D
cj
θ |S

′〉, and the claim follows straightforwardly by the induction hypothesis.

• Finally, if the applied rule is unfold, then we have that Bc
δ = (A,B′)cδ, D

c
θ =

(A′,D′)cθ for some clause c = H1 ← B1. Therefore, we have Ci+1 = 〈(B1σ,B
′σ)δσ |

S][(B1σ
′,D′σ′)θσ′ | S′〉, where mgu(A,H1) = σ and mgu(A′, H1) = σ′. First,

c = c′ holds by vacuity since the goals are not labeled with a clause. Also, the

number of concrete and symbolic goals is trivially the same since |S| = |S′| by

the inductive hypothesis. Now, by the inductive hypothesis, we have D 6 B and

thus A′ 6 A and D′ 6 B′. Then, since σ = mgu(A,H1), σ′ = mgu(A′, H1),

Var(H1 ← B1)∩Var(A) = {}, and Var(H1 ← B1)∩Var(A
′) = {}, it is easy to see

that A′σ′ 6 Aσ (and thus D′σ′ 6 B′σ) and σ′ 6 σ when restricted to the variables

ofH1 (and thus B1σ
′ 6 B1σ). Therefore, we can conclude (B1σ

′,D′σ′) 6 (B1σ,B
′σ).

Finally, using a similar argument, we have p(Xn)θσ
′ 6 p(tn)δσ.

19

B.2 Solving Unifiability Problems

First, we prove the following invariant which justifies that the algorithm in Defini-

tion 6 is well defined.

Proposition 1

The following statement is an invariant of the loops at lines 2 and 3 of the algorithm

in Definition 6:

(invariant) (a) A ≈ B for all B ∈ B and (b) A ≤ B′ for some B′ ∈ B.

Proof

Let us first consider the loop at line 2. Clearly, the invariant holds upon initializa-

tion. Therefore, let us assume that it holds for some arbitrary set B and we prove

it also holds for B′ = Bη with η = {X/t} for some simple disagreement pair X, t

(or t,X). Let us consider part (a). Since A ≈ B for all B ∈ B, there exist a sub-

stitution θ such that Aθ = Bθ for all B ∈ B. Consider such an arbitrary B ∈ B. If

X 6∈ Var(B), then part (a) of the invariant holds trivially in B′. Otherwise, θ{X/t}

is clearly a unifier A and B, and it also holds. Consider now part (b). Since A ≤ B′

for some B′ ∈ B, there exists a substitution σ such that Aσ = B′. Using a similar

argument as before, either Aσ = B′ with B′ ∈ B′ or Aσ{X/t} = B′{X/t} with

B′{X/t} ∈ B, and part (b) of the invariant also holds in B′.

Let us now consider the loop at line 3. Clearly, the invariant holds when the

previous loop terminates. Let t, t′ be the selected disagreement pair. Then t, t′

is replaced in B by a fresh variable U ∈ U , thus obtainining a new set B′. Let

η1 := {U/t} and η2 := {U/t′}. Both η1 and η2 are idempotent substitutions because

U 6∈ Var(t) and U 6∈ Var(t′) since U is fresh. Let B1, B2 be the atoms of B where

t, t′ come from and C1, C2 be the atoms obtained by replacing t, t′ in B1, B2 by U .

Then B1 = C1η1 and B2 = C2η2. Now, we want to prove that the invariant also

holds in B′ = B \ {B1, B2} ∪ {C1, C2}. Part (a) is trivial, since we only generalize

some atoms: if A unify with B1 and B2, it will also unify with C1 and C2. Regarding

part (b), we have that A ≤ B′ for some B′ ∈ B. Clearly, part (b) also holds in B′

if B′ is different from B1 and B2. Otherwise, w.l.o.g., assume that B′ = B1 and

A ≤ B1. Since A ≈ B1 and A ≈ B2, and t, t′ is a disagreement pair for B1, B2,

we have that the subterm of A that corresponds to the position of t, t′ should be

more general than t, t′ (otherwise, it would not unify with both terms). Therefore,

replacing t by a fresh variable U will not change that, and we have A ≤ C1 for some

C1 ∈ B.

The following auxiliary results are useful to prove the correctness of the algorithms

in Definitions 6 and 7.

Lemma 1

Suppose that Aθ = Bθ for some atoms A and B and some substitution θ. Then we

have Aθη = Bηθη for any substitution η with [Dom(η) ∩ Var(B)] ∩ Dom(θ) = {}

and Ran(η) ∩Dom(θη) = {}.

20

Proof

For any X ∈ Var(B),

• either X 6∈ Dom(η) and then Xηθη = Xθη

• or X ∈ Dom(η) and then Xηθη = (Xη)θη = Xη because Ran(η) ∩Dom(θη) = {}.

Moreover, X 6∈ Dom(θ) because [Dom(η)∩Var(B)]∩Dom (θ) = {}, so Xθη = Xη.

Finally, Xηθη = Xθη.

Consequently, Bηθη = Bθη. As Aθ = Bθ, we have Aθη = Bθη i.e. Aθη = Bηθη.

Proposition 2

The loop at line 2 always terminates and the following statement is an invariant of

this loop.

(inv) For each A′ ∈ {A} ∪ Hpos there exists B ∈ B and a substitution θ such that

A′θ = Bθ and Var(B) ∩Dom(θ) = {}.

Proof

Action (2b) reduces the number of simple disagreement pairs in B which implies

termination of the loop at line 2.

Let us prove that (inv) is an invariant. First, (inv) clearly holds upon initialization

of B. Suppose it holds prior to an execution of action (2b). Therefore, for each

A′ ∈ {A} ∪ Hpos there exists B ∈ B and a substitution θ such that A′θ = Bθ and

Var(B) ∩ Dom(θ) = {}. Let t, t′ be the selected simple disagreement pair. Then,

we consider a substitution η determined by t, t′. For any X ∈ Ran(η), we have

X ∈ Var(B). Thus X 6∈ Dom(θ) by (inv). Hence Ran(η)∩Dom(θ) = {}. Moreover,

as t, t′ is a simple pair we have Ran(η) ∩Dom(η) = {}. Hence,

Ran(η) ∩Dom(θη) = {} . (B1)

Since B ∈ B, we have [Dom(η) ∩ Var(B)] ∩ Dom(θ) = {}. Consequently, by (B1)

and Lemma 1 we have

A′θη = Bηθη .

Now, we want to prove that (inv) holds for Bη, i.e., that for each A′ ∈ {A} ∪ Hpos

there exists Bη ∈ Bη and a substitution θ′ such that A′θ′ = Bηθ′ and Var(Bη) ∩

Dom(θ′) = {}. We let θ′ = θη, so A′θη = Bηθη holds. Now, suppose by con-

tradiction that Var(Bη) ∩ Dom(θη) 6= {}, and let X be one of its elements. We

have X 6∈ Dom(η) because Ran(η) ∩ Dom(η) = {}, so X ∈ Dom(θ). Moreover,

X 6∈ Ran(η) by (B1) so X ∈ Var(B). Therefore, X ∈ Var(B) ∩ Dom(θ) which by

(inv) gives a contradiction. Consequently,

Var(Bη) ∩Dom(θη) = {}

and the claim follows.

21

Proposition 3

The loop at line 3 always terminates and the following statement is an invariant of

this loop.

(inv′) For each A′ ∈ {A} ∪Hpos there exists B ∈ B and a substitution θ such that

A′θ = Bθ and Var(B) ∩Dom(θ) ⊆ U .

Proof

Action (3b) reduces the number of disagreement pairs in B which implies termina-

tion of the loop at line 3.

Let us prove that (inv′) is an invariant. By Proposition 2, (inv) holds upon

termination of the loop at line 2, hence (inv′) holds just before execution of the

loop at line 3. Suppose it holds prior to an execution of action (3b), so we have

that, for each A′ ∈ {A} ∪ Hpos there exists B ∈ B and a substitution θ such that

A′θ = Bθ and Var(B) ∩ Dom(θ) ⊆ U . Let t, t′ be the selected disagreement pair.

Then t, t′ is replaced in B by a fresh variable U ∈ U , thus obtainining a new set

B′. Let η1 := {U/t} and η2 := {U/t′}. Both η1 and η2 are idempotent substitutions

because U 6∈ Var(t) and U 6∈ Var(t′) since U is fresh. Let B1, B2 be the atoms of B

where t, t′ come from and C1, C2 be the atoms obtained by replacing t, t′ in B1, B2

by U . Then B1 = C1η1 and B2 = C2η2. Now, we want to prove that (inv′) holds

in B′ = B \ {B1, B2} ∪ {C1, C2}, i.e., that for each A′ ∈ {A} ∪ Hpos there exists

B ∈ B′ and a substitution θ such that A′θ = Bθ and Var(B′) ∩Dom(θ) ⊆ U .

Since (inv′) holds in B, we have A′θ = Bθ. Moreover, A′ = A′η1 = A′η2 because

U does not occur in A′. So if B = B1 then A′η1θ = C1η1θ and if B = B2 then

A′η2θ = C2η2θ. Consequently, let us set

• θ′ := θ and B′ := B if B 6∈ {B1, B2}
• θ′ := η1θ and B′ := C1 if B = B1

• θ′ := η2θ and B′ := C2 if B = B2.

Then we have

A′θ′ = B′θ′ . (B2)

Moreover, Dom(θ′) ⊆ Dom(θ) ∪Dom(η1) ∪Dom(η2) i.e.

Dom(θ′) ⊆ Dom(θ) ∪ {U} . (B3)

As Var(C1, C2) ⊆ Var(B1, B2) ∪ {U} then

Var(C2, C2) ∩Dom(θ′) ⊆ U

because Var(B1, B2) ∩ Dom(θ) ⊆ U by (inv′) and Var(B1, B2) ∩ {U} = {U} ∩

Dom(θ) = {} and {U}∩{U} ⊆ U . Moreover, by (inv′) we have Var(B)∩(Dom(θ)∪

{U}) ⊆ U so by (B3)

Var(B) ∩Dom(θ′) ⊆ U .

Hence, Var(B \ {B1, B2} ∪ {C1, C2}) ∩ Dom(θ′) ⊆ U . With (B2) this implies that

upon termination of action (3b) the invariant (inv′) holds because B1 is set to C1

and B2 to C2.

The correctness of the algorithm in Definition 6 is then stated as follows.

22

Theorem 3

Let A be an atom and Hpos be a set of atoms such that Var({A} ∪Hpos)∩U = {}

and A ≈ B for all B ∈ Hpos . The algorithm in Definition 6 with input A and

Hpos always terminates and returns a substitution θ such that Aθη unifies with all

the atoms of Hpos for any idempotent substitution η with Dom(η) ⊆ Var(Aθ) and

Var(η) ∩ U = {}.

Proof

Proposition 2 and Proposition 3 imply termination of the algorithm. Upon ter-

mination of the loop at line 3 we have |B| = 1. Let B be the element of B

with Aθ = B. Now, we want to prove that Aθη unifies with all the atoms in

Hpos for any idempotent substitution η (i.e., Dom(η) ∩ Ran(η) = {}) such that

Dom(η) ⊆ Var(Aθ) = Var(B) and Var(η) ∩ U = {}. By Proposition 3, we have

that, for all B′ ∈ Hpos , there exists a substitution θ′ such that Bθ′ = B′θ′

and Var(B) ∩ Dom(θ′) ⊆ U . From all the previous conditions, it follows that

[Dom(η) ∩ Var(B)] ∩ Dom(θ′) = {} and Ran(η) ∩ Dom(θ′η) = {}. Therefore, by

Lemma 1, we have Bηθ′η = B′θ′η. Finally, since Aθ = B, we have Aθηθ′η = B′θ′η

and, thus, Aθη unifies with B′.

Proof of Theorem 2

Each step of the algorithm terminates, hence the algorithm terminates. Assume

that the algorithm returns a substitution σ. The set Gσ is ground by construction.

By Theorem 3, we have that Aσ = Aθη unifies with all the atoms in Hpos as long

as η is idempotent, Dom(η) ⊆ Var(Aθ) and Var(η)∩U = {}. Finally, the last check

ensures that Aσ does not unify with any atom of Hneg .

B.2.1 Completeness

For simplicity, we ignore the groundness constraint in this section. Therefore, we

now focus on the completeness of the following unification problem: Let A be an

atom and Hpos ,Hneg be sets of atoms such that A ≈ B for all B ∈ Hpos ∪ Hneg .

Then, we want to find a substitution σ such that

Aσ ≈ B for all B ∈ Hpos but ¬(Aσ ≈ B′) for all B′ ∈ Hneg (∗∗)

We further assume that all atoms are renamed apart.

Let us first formalize the notion of unifying substitution:

Definition 8 (unifying substitution)

Let A be an atom and let B be a set of atoms such that Var(A,B) ∩ U = {} and

A ≈ B for all B ∈ B. We say that σ is a unifying substitution for A w.r.t. B if

Aσ ≈ B for all B ∈ B.

In particular, we are interested in maximal unifying substitutions computed by the

algorithm in Definition 6. The relevance of maximal unifying substitutions is that

variables from U identify where further instantiation would result in a substitu-

tion which is not a unifying substitution anymore. For the remaining positions, we

basically return their most general unifier.

23

Now, we prove that binding an atomA with a maximal unifying substitution forA

w.r.t. Hpos does not affect to the existence of a solution to our unification problem

(**) above. Here, for simplicity, we assume that only most specific solutions are

considered, where a solution σ is called a most specific solution for A andHpos ,Hneg

if there exists no other solution which is strictly less general than σ. Furthermore,

we also assume that the atom A has the form p(X1, . . . , Xn).

Lemma 2

Let A be an atom and Hpos ,Hneg be sets of atoms such that A ≈ B for all B ∈

Hpos ∪Hneg . If there exists a substitution σ such that Aσ ≈ B for all B ∈ Hpos and

¬(Aσ ≈ B) for all B ∈ Hneg , then there exists a maximal unifying substitution θ

and a substitution σ′ such that Aθσ′ ≈ B for all B ∈ Hpos and ¬(Aθσ′ ≈ B) for

all B ∈ Hneg .

Proof

(sketch) Let us consider the stages of the algorithm in Definition 6 with input

Hpos (atom A is not needed since it has the form p(X1, . . . , Xn) and, thus, imposes

no constraint). The first stage just propagates simple disagreement pairs of the

form X, t or t,X . When X only occurs once, it is easy to see that σ is also a

(most specific) unifying substitution for A w.r.t. Hpos{X/t}. Consider, e.g., that σ

contains a binding of the form Xi/C[t′] for some i ∈ {1, . . . , n} and context C[]

and such that t′ corresponds to the same position of X and t in Hpos . Depending

on the terms in the corresponding position of the remaining atoms, we might have

t′ ≤ t or t ≤ t′. Either case, replacing X by t will not change the fact that σ is still

a most specific unifying substitution for Hpos{X/t}.

The step is more subtle when there are several simple disagreement pairs for a

given variable, e.g., X, t1 and X, t2 (we could generalize it to an arbitrary number

of pairs, but two are enough to illustrate how to proceed). In this case, if t1 ≤ t2,

we choose X, t2 and the reasoning is analogous to the previous case. However, when

neither t1 ≤ t2 not t2 ≤ t1, the algorithm in Definition 6 is non-deterministic and

allows us to choose any of them. As before, let us consider that σ contains bindings of

the form Xi/C[t′1] and Xj/C
′[t′2] for some i, j ∈ {1, . . . , n} and contexts C[], C′[]

and such that t′1 and t′2 correspond to the same positions of t1 and t2 in Hpos ,

respectively. Here, assuming there are no further constraints from the remaining

atoms, a most specific unifying substitution might either bind Xi to C[t1] and leave

Xj unconstrained (e.g., bound to a fresh variable) or the other way around: bind

Xi to C[t2] and leave Xj unconstrained. Here, we choose the same alternative as in

the considered solution σ, say Xi is bound to C[t1]. Therefore, σ is still a unifying

substitution for A w.r.t. Hpos{X/t1}. Note that the new (non-simple) disagreement

pair t1, t2 introduced in Hpos{X/t1} will be generalized away in the next stage (and

replaced by a fresh variable from U).

Therefore, when the first stage is completed (i.e., step 2 in Definition 6), we have

propagated some terms from one atom to the remaining ones –as in the computation

of a most general unifier– thus producing a new set H′pos such that σ is still a (most

specific) unifying substitution for A w.r.t. H′pos .

24

By definition, after this stage, there are no simple disagreement pairs in H′pos .

Then, in the second stage (step 3 in Definition 6), we replace every (non-simple)

disagreement pair t1, t2 by a fresh variable U from U . Since σ was a unifying sub-

stitution for H′pos , it should have a binding Xi/C[W] for some i ∈ {1, . . . , n} and

context C[] and such that W corresponds to the same position of t1 and t2 in

H′pos , where W is a variable. Therefore, replacing t, t′ by a fresh variable U will not

change the fact that σ is still a unifying substitution for the resulting set (up to

variable renaming).

Hence, when the second stage is finished, we have a new set H′′pos without any

disagreement pair at all, i.e., H′′pos = {B} with Aθ = B. Moreover, since σ is a most

specific uniyfing substitution for A w.r.t. H′′pos , we have θ ≤ σ [Var(A)]. Therefore,

there exists a substitution σ′ such that Aσ = Aθσ′ such that σ′ is a solution for Aθ

and Hpos ,Hneg , which concludes the proof.

Appendix C Some More Examples on Solving Unifiability Problems

Example 6 (maximal unifying substitution)

Let A = p(X,Y) and Hpos = {p(s(a), s(c)), p(s(b), s(c)), p(Z,Z)}. First the algo-

rithm of Definition 6 sets B := {p(X,Y), p(s(a), s(c)), p(s(b), s(c)), p(Z,Z)}, then

it considers the simple disagreement pairs in B. The substitution η1 := {X/s(a)}

is determined by X, s(a). Action (2b) sets B to Bη1 i.e. to

{p(s(a), Y), p(s(a), s(c)), p(s(b), s(c)), p(Z,Z)} .

The substitution η2 := {Y/s(c)} is determined by Y, s(c). Action (2b) sets B to

Bη2 = {p(s(a), s(c)), p(s(b), s(c)), p(Z,Z)}. The substitution η3 := {Z/s(c)} is de-

termined by Z, s(c). Action (2b) sets B to Bη3 i.e. to

{p(s(a), s(c)), p(s(b), s(c)), p(s(c), s(c))} .

Now no simple disagreement pair occurs in B hence the algorithm skips to the loop

at line 3.

• Action (3b) replaces the disagreement pair a, b with a fresh variable U ∈ U ,

hence B is set to {p(s(U), s(c)), p(s(c), s(c))}.

• Action (3b) replaces the disagreement pair U, c with a fresh variable U ′ ∈ U ,

hence B is set to {p(s(U ′), s(c))}.

As |B| = 1 the loop at line 3 stops and the algorithm returns the substitution

{X/s(U ′), Y/s(c)}.

Note that there are several non-deterministic possibilities for η1, η2 and η3. For

instance, if we consider η3 := {Z/s(a)}, which is determined by Z/s(a), then B is

set to {p(s(a), s(c)), p(s(b), s(c)), p(s(a), s(a))}. The loop at line 3 finally sets B to

{p(s(U), s(U ′))}, so the algorithm returns the substitution {X/s(U), Y/s(U ′)}.

We note that the set B used by the algorithm of Definition 6 may contain several

occurrences of a same, non-simple, disagreement pair.

25

26 F. Mesnard and É. Payet and G. Vidal

Example 7 (maximal unifying substitution)

Let A = p(X,Y) and Hpos = {p(a, a), p(b, b)}. First the algorithm sets B :=

{p(X,Y), p(a, a), p(b, b)}. Then the loop at line 2 considers the simple disagree-

ment pairs in B and, for instance, it sets B to {p(a, a), p(b, b)} (it may also set B to

{p(a, b), p(a, a), p(b, b)} or to {p(b, a), p(a, a), p(b, b)}). As no simple disagreement

pair now occurs in B, the algorithm jumps at line 3. The pair a, b occurs twice in

A. Action (3b) replaces each occurrence with the same variable U ∈ U , so the loop

at line 3 sets B to {p(U,U)} and the algorithm returns {X/U, Y/U}.

Example 8 (maximal unifying substitution)

Let A = p(X,Y) and Hpos = {p(a, b), p(b, a)}. First the algorithm sets B :=

{p(X,Y), p(a, b), p(b, a)}. Then the loop at line 2 considers the simple disagree-

ment pairs in B and, for instance, it sets B to {p(a, b), p(b, a)} (it may also set B to

{p(a, a), p(a, b), p(b, a)} or to {p(b, b), p(a, b), p(b, a)}). As no simple disagreement

pair now occurs in B, the algorithm jumps at line 3. The pairs a, b and b, a occur

once in A and Action (3b) replaces them with two different variables U,U ′ ∈ U . So

the loop at line 3 sets B to {p(U,U ′)} and the algorithm returns {X/U, Y/U ′}.

	1 Introduction
	2 Concrete Semantics
	3 Concolic Execution Semantics
	4 Concolic Testing
	4.1 The Procedure
	4.2 Solving Unifiability Problems
	4.3 A Tool for Concolic Testing

	5 Related Work and Concluding Remarks
	References
	Appendix A Towards Extending Concolic Testing to Full Prolog
	Appendix B Proofs of Technical Results
	B.1 Concolic Execution Semantics
	B.2 Solving Unifiability Problems

	Appendix C Some More Examples on Solving Unifiability Problems

