Antimicrobial activity of extracts from Crotalaria bernieri Baill. (Fabaceae)

Herizo Lalaina Andriamampianina, Danielle Aurore Doll Rakoto, Thomas Petit, Herinaina Ramanankierana, Hanitra Randrianarivo, Victor Jeannoda

To cite this version:
Antimicrobial activity of extracts from *Crotalaria bernieri* Baill. (Fabaceae)

Herizo Lalaina Andriamampianina¹, Danielle Aurore Doll Rakoto¹, Thomas Petit³,⁴, Heriniaina Ramanankierana², Hanitra Ranjana Randrianarivo¹ and Victor Louis Jeannoda¹*

¹Laboratory of Applied Biochemistry to Medical Sciences, Fundamental and Applied Biochemistry Department, Faculty of Sciences, University of Antananarivo, Antananarivo, Madagascar.
²Centre National de la Recherche pour l’Environnement (CNRE), Antananarivo, Madagascar.
³Laboratoire de Chimie des Substances Naturelles et Sciences des Aliments (LCSNSA), Saint Pierre, La Réunion, France.
⁴UMR Qualisud, IUT de La Réunion, Saint Pierre, La Réunion, France.

Received 27 June, 2016; Accepted 25 July, 2016

This work was designed to study the antimicrobial activity of *Crotalaria bernieri* Baill. (Fabaceae). Extracts from leaf, root, pod and seed using hexane, ethyl acetate and methanol were tested in vitro for their activity against 17 bacteria, 5 fungi (3 yeasts and 2 molds) using disc diffusion and micro dilution methods. At the concentration of 1 mg/disc, all the extracts exhibited antimicrobial activity depending on the plant part and the extraction method used. The most sensitive germs were *Salmonella enteridis*, *Streptococcus pyogenes* and *Candida guilliermondii* with inhibition zone diameter (IZD) of 11 mm, 15 mm and 13 mm respectively. Most of extracts showed, broad activity spectrum varying from one extract to another. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC) of all extracts were recorded. Ten extracts displayed an excellent effect (MIC < 100 µg/ml), 8 a moderate effect (MIC from 100 to 500 µg/ml), 5 a weak effect (MIC from 500 to 1000 µg/ml) and the others were ineffective (MIC > 1000 µg/ml). Leaf methanol extracts were the most efficient and Gram positive bacteria the most sensitive. All extracts had bactericidal (MBC/MIC ≤ 4) or fungicidal action (MFC/MIC ≤ 4) in certain microorganisms and bacteriostatic (MBC/MIC > 4) or fungistatic action (MFC/MIC > 4) in others. Antimicrobial activity might be due to tannins, polyphenols, steroids, triterpenes and flavonoids that were present in most of the plant organs, but alkaloids in leaf and pod and saponosides in root might also be involved. *C. bernieri* with the effectiveness of all its parts, the variety of its secondary metabolites, the great number of sensitive pathogen microorganisms and its ubiquity make this plant species an interesting source of antimicrobial agents.

Key words: *Crotalaria bernieri*, antimicrobial activity, disc diffusion method, microdilution method, minimum inhibitory concentration, minimum bactericidal concentration, minimum fungicidal concentration.

INTRODUCTION

Antimicrobial resistance is one of the world’s most serious public health problems. There is an urgent need...
to find new disposable and affordable remedies to face this problem (Zongo et al., 2011). Many studies led to systematic screening of plant extracts as a source of antibacterial compounds (Dalmarco et al., 2010; Stefanovic and Comic, 2011). Several Crotalaria species have been reported to display antimicrobial properties. For example, Crotalaria madurensis is active against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Candida albicans (Bhakshu et al., 2008), Crotalaria capensis against Salmonella typhimurium (Dzoyem et al., 2014), Crotalaria burhia against B. subtilis and S. aureus (Sandeep et al., 2010; Mansoor et al., 2011), Crotalaria juncea against S. aureus (Chouhan and Sushil, 2010), Crotalaria pallida against E. coli and Pseudomonas sp (Pelegirini et al., 2009), and Cladophora trichotoma against Alternaria solani (Ravikumar and Rajkumar, 2013).

The purpose of this study was to assess the antimicrobial activity of C. bernieri by testing plant part's extracts obtained in different methods on pathogen bacteria and molds. C. bernieri is one of the 53 Crotalaria species growing in Madagascar, an annual herb which is found in open vegetation, grassy places and roadsides in most regions of Madagascar (Peltier, 1959). It flowers on July to October and December to March (Polhill, 1982; Dupuy et al., 2002).

Figure 1. Crotalaria bernieri (a) the whole plant; (b) flower; (c) fruits (Source: the authors).

MATERIALS AND METHODS

Plants

C. bernieri (Figure 1) were harvested in Ibity, District of Antsirabe, Region of Vakinankaratra, 200 km from Antananarivo region. The plant was collected in April and July, 2013 and was identified by Polhill R.M. Voucher specimens (Herizo R. 010) of C. bernieri were deposited in the herbarium of Plant Biology and Ecology Department of the Faculty of Sciences of the University of Antananarivo.

Microorganisms strains

The microorganisms used in this study consisted of 17 strains of bacteria (10 Gram (-) and 7 Gram (+)), 3 yeasts and 2 molds (Table 1). These strains were obtained from the collections of Laboratoire de Chimie des Substances Naturelles et Sciences des aliments (LCSNSA) of La Réunion University. They were maintained on agar slant at 4°C and cultured on a fresh appropriate agar plate during 24 h prior to antimicrobial tests.

Chemicals for antimicrobial assay

Commonly used pre-impregnated discs, from Bio-Rad F 92430 Marnes-la-Coquette were chosen as antimicrobial references
Table 1. Bacterial, yeast and mold strains used to study antimicrobial activities.

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>Strains</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria</td>
<td>Campylobacter jejuni</td>
<td>ATCC 29428</td>
</tr>
<tr>
<td></td>
<td>Enterobacter aerogenes</td>
<td>ATCC 13048</td>
</tr>
<tr>
<td></td>
<td>Enterobacter cloacae</td>
<td>ATCC 13047</td>
</tr>
<tr>
<td>Gram(-)</td>
<td>Escherichia coli</td>
<td>ATCC 25922</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas aeruginosa</td>
<td>ATCC 10145</td>
</tr>
<tr>
<td></td>
<td>Salmonella enteridis</td>
<td>ATCC 13076</td>
</tr>
<tr>
<td></td>
<td>Shigella flexneri</td>
<td>ATCC 12022</td>
</tr>
<tr>
<td></td>
<td>Vibrio parahaemolyticus</td>
<td>ATCC 17802</td>
</tr>
<tr>
<td></td>
<td>Yersinia enterocolitica</td>
<td>ATCC 23715</td>
</tr>
<tr>
<td></td>
<td>Proteus mirabilis</td>
<td>ATCC 35659</td>
</tr>
<tr>
<td>Gram(+)</td>
<td>Bacillus cereus</td>
<td>ATCC 14579</td>
</tr>
<tr>
<td></td>
<td>Clostridium perfringens</td>
<td>ATCC 13124</td>
</tr>
<tr>
<td></td>
<td>Enterococcus faecalis</td>
<td>ATCC 29121</td>
</tr>
<tr>
<td></td>
<td>Listeria monocytogenes</td>
<td>ATCC 19114</td>
</tr>
<tr>
<td></td>
<td>Staphylococcus aureus</td>
<td>ATCC25923</td>
</tr>
<tr>
<td></td>
<td>Streptococcus pneumoniae</td>
<td>ATCC 6305</td>
</tr>
<tr>
<td></td>
<td>Streptococcus pyogenes</td>
<td>ATCC 19615</td>
</tr>
<tr>
<td>Yeasts</td>
<td>Candida albicans</td>
<td>ATCC 10231</td>
</tr>
<tr>
<td></td>
<td>Candida guilliermondii</td>
<td>ATCC 6260</td>
</tr>
<tr>
<td></td>
<td>Candida krusei</td>
<td>ATCC 14243</td>
</tr>
<tr>
<td>Fungi</td>
<td>Aspergillus fumigatus</td>
<td>ATCC 204305</td>
</tr>
<tr>
<td></td>
<td>Aspergillus niger</td>
<td>ATCC 16888</td>
</tr>
</tbody>
</table>

Table 2. Abbreviations designating the different extracts tested.

<table>
<thead>
<tr>
<th>Extracts</th>
<th>Hexane Extract</th>
<th>Ethyl acetate Extract</th>
<th>Methanol Extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaves</td>
<td>LHE</td>
<td>LEA</td>
<td>LME</td>
</tr>
<tr>
<td>Seeds</td>
<td>SHE</td>
<td>SEA</td>
<td>SME</td>
</tr>
<tr>
<td>Pods</td>
<td>PHE</td>
<td>PEA</td>
<td>PME</td>
</tr>
<tr>
<td>Roots</td>
<td>RHE</td>
<td>REA</td>
<td>RME</td>
</tr>
</tbody>
</table>

(Camara et al., 2013; Rakholiya et al., 2014): amoxicillin 25 μg, chloramphenicol 30 μg, penicillin 6 μg as antibiotics and miconazole 50 μg as antifungal.

Preparation of extracts

The dried leaves, seeds, seed pods, and roots of the plant were grounded into powder. The resulting powder (100 g) was extracted successively with 4x500 mL of hexane, ethyl acetate and methanol for 24 h under stirring at room temperature. After filtration using a Whatman filter paper, each combined extract was evaporated under reduced pressure to dryness. The dry residues, dissolved in hexane, ethyl acetate and sterile distilled water, constituted hexane, ethyl acetate and methanol extracts respectively (Table 2).

Phytochemical screening

The reactions for the detection of chemical groups were those developed by Fong et al. (1977) and Marini-Bettolo et al. (1981).

Antimicrobial assays

Antimicrobial activity test

The in vitro antimicrobial activity of the extracts was determined using disc diffusion method described by Pyun and Shin (2006) and Ngameni et al. (2009). Two mL of inoculum corresponding to 0.5 MacFarland (10⁸ CFU/ml) was uniformly spread on the surface of Columbia Agar medium (for Streptococcus); Mueller-Hinton Agar (MHA) for the other bacteria and Potato Dextrose Agar (PDA) for yeasts. Sterilized filter paper discs 6 mm diameter (BioMérieux, REF 54991) were impregnated with 10 μL of each extract to the concentration of 100 mg/mL (1 mg/disc). The soaked discs were then placed on the surface of the agar and incubated at 37°C during 24 h for bacteria, or at 25°C for yeasts. The inhibition zone diameter (IZD) was measured and the results were interpreted by
The mixture is ing roots and extraction method.

The results and extraction method -

2009 s concentration ranges each concentration was added in a well.

on controls performed in triplicate. The minimum inhibitory concentration), C for 72 h.

ed the sample concentration that prevented this change and exhibited the yellow dye to a pink color. MIC was defined as the lowest (bacteria) for 30 min (Kuete et al., 2009)

chloride and incubat (bacteria) for 24 h. The MIC of analyzed. The plates were positive con

of 0.024 to This was serially dil

MGH) and 5 of 0.5 MacFarland

then poured into Petri dishes and dried for 15 min

medium surface. IZD were measured after incubation at 25°C for 72 h. Negative controls were prepared by using the same solvents employed to dissolve the plant extract samples while the reference antibiotics were used as positive controls. All the experiments were performed in triplicate. The results were expressed as mean values ± standard deviations (mm ± SD).

MIC, MBC and MFC determination

For extracts showing antibacterial activity in the disc diffusion method (IZD ≥ 8 mm), MIC (minimum inhibitory concentration), MBC (minimum bactericidal concentration) MFC (minimum fungicidal concentration) were determined by microdilution method (Kuete et al., 2009).

The concentration of each extract was adjusted to 25 mg/ml. This was serially diluted two-fold to obtain concentration ranges of 0.024 to 25 mg/ml. Each concentration was added in a well (96-well microplate) containing 95 μl of Mueller-Hinton broth (MHB) and 5 μl of inoculum (standardized at 0.5 MacFarland). A positive control containing bacterial culture without the extract and a negative control containing only the medium, were also analyzed. The plates were covered with sterilized aluminum foil, and then incubated at 25°C (yeasts and molds) or at 37°C (bacteria) for 24 h. The MIC of each extract was detected following addition 40 μl of 0.2 mg/ml p-iodonitrotetrazolium chloride and incubation at 25°C (yeasts and molds) or at 37°C (bacteria) for 30 min (Kuete et al., 2009). Viable bacteria reduced the yellow dye to a pink color. MIC was defined as the lowest sample concentration that prevented this change and exhibited complete inhibition of bacterial growth. For the determination of MBC and MFC, 5 μl from each well that showed no change in color was transferred on MHA or PDA plate and incubated at 25°C (yeasts and molds) or at 37°C (bacteria) for 24 h. The lowest concentration at which no growth occurred on the agar plates corresponded to the MBC or MFC.

The ratios MBC/MIC and MFC/MIC were calculated for each extract, to determine the nature of the effect. The extract is bactericidal or fungicidal for MBC/MIC or MFC/MIC ≤ 4 and bacteriostatic or fungistic when these ratios are >4 (Djeussi et al., 2013; Bouharb et al., 2014; Chamandi et al., 2015).

Statistical analyses

Results were expressed as mean values ± standard deviations of three separate determinations. One-way analysis of variance (ANOVA) which was followed by Newman Keuls comparison test with Static® software was used for statistical analysis. Statistical estimates were made at confidence interval of 95%.

RESULTS

Extraction yields

The extractive yield of different parts of C. bernieri with different solvents varied from 4.2 (PME) to 24.1% (RME) (Table 3).

Table 3. Extraction yields of C. bernieri extracts.

<table>
<thead>
<tr>
<th>Extracts</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHE</td>
<td>14.6</td>
</tr>
<tr>
<td>LEA</td>
<td>22.5</td>
</tr>
<tr>
<td>LME</td>
<td>12.0</td>
</tr>
<tr>
<td>SHE</td>
<td>18.4</td>
</tr>
<tr>
<td>SEA</td>
<td>12.1</td>
</tr>
<tr>
<td>SME</td>
<td>10.0</td>
</tr>
<tr>
<td>PHE</td>
<td>15.1</td>
</tr>
<tr>
<td>PEA</td>
<td>11.2</td>
</tr>
<tr>
<td>PME</td>
<td>4.2</td>
</tr>
<tr>
<td>RHE</td>
<td>13.7</td>
</tr>
<tr>
<td>REA</td>
<td>15.3</td>
</tr>
<tr>
<td>RME</td>
<td>24.1</td>
</tr>
</tbody>
</table>

Qualitative phytochemical analysis

The major secondary metabolites identified in the different organ extracts are presented in Table 4. Tannins, polyphenols, steroids, triterpenes and unsaturated sterols occurred in all the C. bernieri organs. Flavonoids were found in all organs except root. Alkaloids were present only in leaf and pod while saponins only in root. Iridoïds, leucoanthocyanins, and quinones were not detected in all parts of C. bernieri.

Antimicrobial activity

At 1 mg/disc, a concentration generally used for antimicrobial activity assessment in plants (Sandee et al., 2010; Govindappa et al., 2011; Linthoingambir and Mutum, 2013; Marimuthu et al., 2014), the large majority of C. bernieri extracts (16 of 22) inhibited the microorganism growth with IZD ranging from 8 to 15 mm (Tables 5 to 7). However, activity depended on the microorganism, the plant parts and extraction method used. The most sensitive germs were S. enteridis (IZD=11 mm), S. pyogenes (IZD=15 mm) and C. guillermondii (IZD=13 mm) in Gram (-) bacteria, Gram (+) bacteria and yeasts, respectively. Gram (-) strains C. jejuni and E. coli, E. faecalis, Gram (+) L. monocytogenes and the two molds A. fumigatus and A. niger were resistant to all the extracts. REA, with an IZD of 15 mm against S. pyogenes, displayed the highest antibacterial activity.
In yeasts, most of leaf extracts were active against the three Candida strains tested, but seed and pod extracts were active only against C. guilliermondii. Antibiotics used as references in this study (amoxicillin 25 µg, chloramphenicol 30 µg, penicillin 6 µg and miconazole 50 µg) were more effective than most of C. bernieri extracts. MIC, MBC, MFC and MBC or MFC/MIC ratio values are presented in Tables 8 to 10. MIC ranged from 0.048 to 25 mg/mL. MIC maximum values registered was 12.5 mg/mL except for RHE on S. pyogenes (MIC=25 mg/mL). Concerning MBC or MFC, maximum values for all extracts were 25 mg/mL except for root extracts on some Gram (+) bacteria and C. guilliermondii (MBC>25 mg/mL). The ratio MBC or MFC/MIC varied from 1 to more than 100.

The most sensitive microorganism were P. mirabilis in Gram (-) bacteria (MIC=MBC=0.097 mg/mL), B. cereus (MIC=0.048 mg/mL, MBC=0.195 mg/mL) and S. pyogenes (MIC=MBC=0.048 mg/mL) in Gram (+) bacteria and C. guilliermondii (MIC=MFC=0.048 mg/mL) in yeasts.

All methanol extracts were active. This is also the case for ethyl acetate extracts except LEA. As to hexane extracts, PHE and RHE were efficient but not LHE and SHE. Pod extracts had the broadest spectrum of activity with 10 sensitive microorganisms and seed extracts the narrowest ones with 8 sensitive microorganisms.

DISCUSSION

The present study shows that the C. bernieri extracts inhibited the growth of most tested microorganisms, indicating the presence of antimicrobial compounds in all parts of the plant. Phytochemical screening showed the presence of diverse secondary metabolites, reported to have antimicrobial property. At this stage of the work, results did not yet allow to state whether the same or different compounds are involved in the different parts of the plant. However, they suggested that C. bernieri antimicrobial activity might be mainly due to tannins, polyphenols, steroids, triterpenes and flavonoids, which were present in all or most of the plant organs. Alkaloids might also be concerned in leaves and pods and saponosides in root.

C. bernieri extracts showed generally a broad antimicrobial spectrum. They were capable of inhibiting the growth of different Gram (-) and Gram (+) bacterial strains as well as some yeasts. However, each extract...
Table 5. In vitro Antimicrobial Activity (IZD in mm) of extracts (1 mg/disc) on Gram (-) bacteria.

<table>
<thead>
<tr>
<th>Extracts/controls</th>
<th>Cj</th>
<th>Ea</th>
<th>Ec</th>
<th>Esc</th>
<th>Pa</th>
<th>Se</th>
<th>Sf</th>
<th>Vp</th>
<th>Ye</th>
<th>Pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf</td>
<td></td>
</tr>
<tr>
<td>LHE</td>
<td>-</td>
</tr>
<tr>
<td>LEA</td>
<td>-</td>
</tr>
<tr>
<td>LME</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9.33±0.47</td>
<td>-</td>
<td>7.00±0.01</td>
<td>-</td>
<td>8.33±0.47</td>
</tr>
<tr>
<td>SHE</td>
<td>-</td>
</tr>
<tr>
<td>Seed</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10.00±0.01</td>
<td>-</td>
<td>9.00±0.01</td>
<td>-</td>
<td>8.00±0.01</td>
</tr>
<tr>
<td>SME</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.00±0.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PHE</td>
<td>-</td>
<td>9.67±0.47</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pod</td>
<td>-</td>
</tr>
<tr>
<td>PEA</td>
<td>-</td>
<td>-</td>
<td>9.00±0.01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PME</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11.00±0.82</td>
<td>8.00±0.01</td>
<td>9.00±0.82</td>
<td>8.00±0.01</td>
<td>8.00±0.01</td>
</tr>
<tr>
<td>RHE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10±0.01</td>
<td>-</td>
<td>8.00±0.01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Root</td>
<td>-</td>
</tr>
<tr>
<td>REA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9.00±0.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RME</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9.00±0.01</td>
<td>-</td>
<td>-</td>
<td>9.00±1.41</td>
<td>-</td>
</tr>
<tr>
<td>Amx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45.00</td>
</tr>
<tr>
<td>PC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38.00</td>
</tr>
<tr>
<td>Pen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40.00</td>
</tr>
<tr>
<td>Hex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>EtOAc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Sdw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Cj: C. jejuni; Ea: E. aerogenes; Ec: E. cloacae; Esc: E. coli; Pa: P. aeruginosa; Se: S. enteridis; Sf: S. flexneri; Vp: V. parahaemolyticus; Ye: Y. enterocolitica; Pm: P. mirabilis PC: Positive control (Amx: Amoxicillin 25µg; Chlor: Chloramphenicol 30µg; Pen: Penicillin 6µg); NC: Negative control (Hex: Hexane; EtOAc: Ethyl acetate; Sdw: sterile distilled water); −: No activity.

displayed a specific activity spectrum that could be due to difference between the chemical nature and concentration of bioactive compounds in extracts. The results obtained with microdilution method were more reliable than those with disc diffusion. That might be due to the fact that bioactive compounds were in direct contact with germs in liquid medium whereas they diffused little or not at all in solid medium.

There was no consensus on the acceptable level of inhibition for natural products (Benko and Crovella, 2010). For Dalmarco et al. (2010), for crude extracts and fractions, a MIC lower than 100 µg/mL was considered as an excellent effect, from 100 to 500 µg/mL as moderate, from 500 to 1000 µg/mL as weak, and over 1000 µg/mL as inactive. According to Kouitcheu et al. (2013), when a crude extract was used, the MIC values of 8 mg/mL or below against any microorganism tested was considered as active.

If the scale adopted by Dalmarco et al. (2010) was used as a reference, 10 extracts displayed an excellent effect, 8 a moderate effect, 5 a weak effect then the remaining extracts were inactive. Excellent effects were observed on P. mirabilis (RME), S. enteridis (PME), B. cereus (LME, PEA, REA), S. pneumoniae (LME), S. pyogenes (REA), C. albicans (LME) and C. guilliermondii (LME, SEA). Moderate effects, were found against E. aerogenes (SEA), P. mirabilis (LME), P. aeruginosa (LME), C. perfringens (LME), S. aureus (LME), S. pyogenes (RME, PEA, LME) and C. guilliermondii (SME). Weak effects were observed on E. aerogenes (REA), P. aeruginosa (LME), S. aureus (REA) and S. pneumoniae (REA, RME).

The most efficient extracts were RME (MIC=MBC=0.097 mg/ml) against Y. enterolytica in Gram (-) bacteria, REA (MIC=MBC=0.048 mg/ml) against S. pyogenes in Gram (+) bacteria and LME (MIC=MFC=0.048 mg/ml) against C. guilliermondii. Some of the extracts were very effective against some organisms (LME against B. cereus, S. pneumoniae, C. albicans and C. guilliermondii, REA against B. cereus and S. pyogenes) while others were totally inactive (SME against S. pneumoniae and S. pyogenes).

However, if the interpretation of Kouitcheu et al., (2013) was taken into account, only nine extracts had MIC higher than 8 mg/mL on some germs, which means that all the other extracts of C. bernieri used showed...
Table 6. In vitro Antimicrobial Activity (inhibition zone diameter in mm) of extracts (1 mg/disc) on Gram (+) bacteria.

<table>
<thead>
<tr>
<th>Plant parts/controls</th>
<th>Extracts</th>
<th>Bc</th>
<th>Cp</th>
<th>Ef</th>
<th>Lm</th>
<th>Sa</th>
<th>Spn</th>
<th>Spy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf</td>
<td>LHE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7.00±0.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>LEA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10.00±0.01</td>
<td>12.67±1.25</td>
<td>12.33±1.70</td>
</tr>
<tr>
<td></td>
<td>LME</td>
<td>9.00±0.01</td>
<td>8.00±0.01</td>
<td>-</td>
<td>-</td>
<td>7.00±0.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Seed</td>
<td>SEA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9.00±0.82</td>
<td>11.3±0.47</td>
<td>9.00±0.01</td>
</tr>
<tr>
<td></td>
<td>SME</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.3±0.125</td>
<td>8.00±0.01</td>
<td>-</td>
</tr>
<tr>
<td>Pod</td>
<td>PEA</td>
<td>11.33±0.47</td>
<td>8.33±0.47</td>
<td>-</td>
<td>-</td>
<td>7.00±0.01</td>
<td>8.00±0.01</td>
<td>7.00±0.01</td>
</tr>
<tr>
<td></td>
<td>PME</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.3±0.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>RHE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.00±0.82</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Root</td>
<td>REA</td>
<td>11.33±0.94</td>
<td>7.00±0.01</td>
<td>-</td>
<td>-</td>
<td>11.00±0.01</td>
<td>13.00±0.82</td>
<td>15.00±0.01</td>
</tr>
<tr>
<td></td>
<td>RME</td>
<td>9.00±1.41</td>
<td>10.00±0.01</td>
<td>-</td>
<td>-</td>
<td>8.00±0.01</td>
<td>13.00±0.83</td>
<td>12.00±1.41</td>
</tr>
<tr>
<td>PC</td>
<td>Chl</td>
<td>38.00</td>
<td>30.00</td>
<td>30.00</td>
<td>-</td>
<td>30.00</td>
<td>25.00</td>
<td>22.00</td>
</tr>
<tr>
<td></td>
<td>Pen</td>
<td>15.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>35.00</td>
<td>23.00</td>
<td>25.00</td>
</tr>
<tr>
<td></td>
<td>Hex</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>EtOAc</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Sdw</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Bc: B. cereus; Cp: C. perfringens; Ef: E. faecalis; Lm: L. monocytogenes; Sa: S. aureus; Spn: S. pneumoniae; Spy: S. pyogenes. Amx: Amoxicillin 25 µg; PC: Positive control (Amx: Amoxicillin 25 µg; Chlor: Chloramphenicol 30 µg; Pen: Penicillin 6 µg; NC: Negative control (Hex: Hexane; EtOAc: Ethyl acetate; Sdw: sterile distilled water); −: No activity.

Table 7. In vitro Antimicrobial Activity (inhibition zone diameter in mm) of extracts (1mg/disc) on yeasts and molds

<table>
<thead>
<tr>
<th>Plant part</th>
<th>Extract</th>
<th>Yeast</th>
<th>Mold</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ca</td>
<td>Cg</td>
</tr>
<tr>
<td>Leaf</td>
<td>LHE</td>
<td>7.00±0.01</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>LEA</td>
<td>7.00±0.01</td>
<td>7.00±0.01</td>
</tr>
<tr>
<td></td>
<td>LME</td>
<td>8.00±0.01</td>
<td>8.67±0.94</td>
</tr>
<tr>
<td></td>
<td>SHE</td>
<td>7.00±0.01</td>
<td>-</td>
</tr>
<tr>
<td>Seed</td>
<td>SEA</td>
<td>13.00±0.82</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SME</td>
<td>11.00±0.01</td>
<td>-</td>
</tr>
<tr>
<td>Pod</td>
<td>PEA</td>
<td>7.00±0.01</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PME</td>
<td>7.00±0.01</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>RHE</td>
<td>8.00±0.01</td>
<td>-</td>
</tr>
<tr>
<td>Root</td>
<td>REA</td>
<td>7.00±0.01</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>RME</td>
<td>8.00±0.82</td>
<td>-</td>
</tr>
<tr>
<td>PC</td>
<td>Mic</td>
<td>18.00</td>
<td>30.00</td>
</tr>
<tr>
<td></td>
<td>Hex</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>EtOAc</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Sdw</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Ca: C. albicans; Cg: C. guilliermondii; Ck: C. krusei; Af: A. fumigatus; An: A. niger. PC: Positive control (Mic: Miconazole 50µg); NC: Negative control (Hex: Hexane; EtOAc: Ethyl acetate; Sdw: sterile distilled water); −: No activity.
Table 8. MIC and MBC values (mg/mL) of *C. bernieri* extracts (1mg/disc) on Gram(-) bacteria

<table>
<thead>
<tr>
<th>Gram(-) Bacteria</th>
<th>Extracts</th>
<th>MIC (mg/ml)</th>
<th>MBC (mg/ml)</th>
<th>MBC/MIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterobacter aerogenes</td>
<td>LME</td>
<td>0.195</td>
<td>25</td>
<td>128.21</td>
</tr>
<tr>
<td></td>
<td>SEA</td>
<td>0.781</td>
<td>25</td>
<td>32.01</td>
</tr>
<tr>
<td></td>
<td>PEA</td>
<td>6.25</td>
<td>25</td>
<td>4.00</td>
</tr>
<tr>
<td>Enterobacter cloacae</td>
<td>LME</td>
<td>0.781</td>
<td>25</td>
<td>32.01</td>
</tr>
<tr>
<td></td>
<td>RHE</td>
<td>0.195</td>
<td>25</td>
<td>128.21</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>LME</td>
<td>0.781</td>
<td>25</td>
<td>32.01</td>
</tr>
<tr>
<td></td>
<td>RHE</td>
<td>0.195</td>
<td>25</td>
<td>128.21</td>
</tr>
<tr>
<td>Salmonella enteridis</td>
<td>RHE</td>
<td>12.5</td>
<td>12.5</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>PEA</td>
<td>6.25</td>
<td>25</td>
<td>4.00</td>
</tr>
<tr>
<td>Shigella flexneri</td>
<td>PME</td>
<td>3.125</td>
<td>25</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td>SEA</td>
<td>1.562</td>
<td>6.25</td>
<td>4.00</td>
</tr>
<tr>
<td>Vibrio parahaemolyticus</td>
<td>LME</td>
<td>0.195</td>
<td>0.781</td>
<td>4.01</td>
</tr>
<tr>
<td></td>
<td>SEA</td>
<td>1.562</td>
<td>3.125</td>
<td>2.00</td>
</tr>
<tr>
<td>Yersinia enterolitica</td>
<td>LME</td>
<td>0.195</td>
<td>0.781</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>SEA</td>
<td>1.562</td>
<td>3.125</td>
<td>2.00</td>
</tr>
</tbody>
</table>

antimicrobial activities.

All the extracts had bactericidal action (MBC/MIC ≤ 4) in certain bacteria and bacteriostatic action (MBC/MIC > 4) in other ones. For example LME was bactericidal against *B. cereus* and *C. perfringens* but bacteriostatic against *S. aureus* and *S. pneumoniae*. The comparison of *A. bernieri* extract activities to foreign *Crotalaria* species was not easy because antimicrobial activity was assessed under different conditions (other microorganism strains and extract doses used).

Compared to available data, the IZD of *C. bernieri* extracts were generally of the same order of magnitude as those of leaf ethyl acetate extract from *C. madurensis* against *B. subtilis* and *S. aureus* (IZD=14 mm), *M. luteus* (IZD=12 mm), *E. coli* and *C. albicans* (IZD=10 mm) (*Bhakshu et al., 2008*) and leaf ethanol extract from *C. pallida* against *X. anaxopodis* (IZD=16 mm), *E. coli* (IZD=14 mm) and *C. michiganensis* (IZD=13 mm) (*Govindappa et al., 2011*). Root methanol extract from *C. burhia* was more efficient with an IZD of 18 mm against *B. subtilis* and *P. aeruginosa* (*Sandeep et al., 2010*).

If comparison was based on antimicrobial indexes, LME (MIC=0.195 mg/ml, MBC=25 mg/ml) and REA (MIC=0.195 mg/ml, MBC=25 mg/ml) were more efficient against *P. aeruginosa* than the leaf methanol extract from *C. quartiniana* (MIC=MBC=37.5 mg/ml) (*Omori et al., 2011*). The leaf hexane extract from *C. retusa* (MIC=0.125 mg/ml, MBC=37.5 mg/ml) (*Maregesi et al., 2008*) was less active against *B. cereus* than LME (MIC=0.097 mg/ml, MBC=0.195 mg/ml), PEA and REA (MIC=0.048 mg/ml, MBC=0.195 mg/ml). By contrast, *C. bernieri* extracts were less active on *P. mirabilis* (MIC between 0.097 and 1.56 mg/ml) than a peptide isolated from *C. pallida* seeds (MIC=0.030 mg/ml) (*Pelegrini et al., 2009*). Compared to the antibacterial activities from other plant extracts, several *C. bernieri* extracts were more efficient than methanolic aerial part extracts of *Inula viscosa* against *B. subtilis* (MIC=25 mg/ml, MBC=50 mg/ml) and *S. aureus* (MIC=12.5 mg/ml, MBC=50 mg/ml) (*Larbi et al., 2016*). By contrast, tuber ethyl acetate extract of *Tropaeolum pentaphyllum* against *E. coli* (MIC=0.02 mg/ml, MBC=0.64 mg/ml), *P. aeruginosa* (MIC=0.04 mg/ml, MBC=0.64 mg/ml) (*da Cruz et al., 2016*) and organic extract (aerial parts) of *Rapanea parvifolia* against *E. faecalis* (MIC=0.03 mg/ml, MBC=0.06 mg/ml) (*Suffredini et al., 2006*) were more efficient.
Table 9. MIC and MBC values (mg/ml) of C. bernieri extracts (1mg/disc) on Gram(+) bacteria.

<table>
<thead>
<tr>
<th>Gram (+) Bacteria</th>
<th>Extract</th>
<th>MIC (mg/ml)</th>
<th>MBC (mg/mL)</th>
<th>MBC/MIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus cereus</td>
<td>LME</td>
<td>0.097</td>
<td>0.195</td>
<td>2.01</td>
</tr>
<tr>
<td></td>
<td>PEA</td>
<td>0.048</td>
<td>0.195</td>
<td>4.06</td>
</tr>
<tr>
<td></td>
<td>REA</td>
<td>0.048</td>
<td>0.195</td>
<td>4.06</td>
</tr>
<tr>
<td></td>
<td>RME</td>
<td>1.562</td>
<td>1.562</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>LME</td>
<td>0.195</td>
<td>0.390</td>
<td>2.00</td>
</tr>
<tr>
<td>Clostridium perfringens</td>
<td>PHE</td>
<td>12.5</td>
<td>25</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>PEA</td>
<td>6.25</td>
<td>12.5</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>RME</td>
<td>6.25</td>
<td>>25</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>LME</td>
<td>0.195</td>
<td>6.25</td>
<td>32.05</td>
</tr>
<tr>
<td></td>
<td>SEA</td>
<td>6.25</td>
<td>12.5</td>
<td>2.00</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>PEA</td>
<td>3.125</td>
<td>25</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td>REA</td>
<td>0.781</td>
<td>25</td>
<td>32.01</td>
</tr>
<tr>
<td></td>
<td>RME</td>
<td>12.5</td>
<td>25</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>LME</td>
<td>0.097</td>
<td>3.125</td>
<td>32.22</td>
</tr>
<tr>
<td></td>
<td>SEA</td>
<td>3.125</td>
<td>12.5</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>SME</td>
<td>12.5</td>
<td>25</td>
<td>2.00</td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>PME</td>
<td>1.562</td>
<td>6.25</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>REA</td>
<td>0.781</td>
<td>>25</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>RME</td>
<td>0.781</td>
<td>>25</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>LME</td>
<td>0.195</td>
<td>1.562</td>
<td>8.01</td>
</tr>
<tr>
<td></td>
<td>SEA</td>
<td>1.562</td>
<td>12.5</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td>SME</td>
<td>12.5</td>
<td>25</td>
<td>2.00</td>
</tr>
<tr>
<td>Streptococcus pyogenes</td>
<td>PEA</td>
<td>0.195</td>
<td>0.781</td>
<td>4.01</td>
</tr>
<tr>
<td></td>
<td>RHE</td>
<td>25</td>
<td>>25</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>REA</td>
<td>0.048</td>
<td>0.048</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>RME</td>
<td>0.195</td>
<td>12.5</td>
<td>64.10</td>
</tr>
</tbody>
</table>

On fungi, LME (MIC=0.097 mg/ml, MFC=0.195 mg/ml) was more efficient than leaf methanolic extract of Myrtus nivellei against C. albicans (MIC=4.5 mg/ml) (Touaibia and Chaouch, 2015) whereas LME, SEA and SME against C. guilliermondii (MIC=0.08 mg/ml, MFC=0.32 mg/ml) were less efficient than ethyl acetate extract of T. pentaphyllum (da Cruz et al., 2016).

Conclusion

This study clearly demonstrates the potential of C. bernieri.
as a source of interesting natural wide spectrum antimicrobial molecules. All its parts were efficient and could be easily found in significant amounts for the plant grows in fields, in the vicinity of homes, on roadsides and can be cultivated. Furthermore, according to our survey of local populations, C. bernieri is consumed by zebras but no cases of poisoning have yet been reported. At present, our works are concerned with the isolation of pure compounds from different extracts of C. bernieri and the elucidation of their structures in order to better evaluate their pharmacological activity. In view of later therapeutic use of C. bernieri, study on various experimental models of animals is also on going to assess the harmful effects it might have.

Conflict of Interests

The authors have not declared any conflict of interests.

ACKNOWLEDGMENT

The authors are grateful to the Laboratoire de Chimie des Substances Naturelles et Sciences des aliments (LCSNSA) Saint Pierre, La Réunion and the Centre National de Recherche sur l’Environnement (CNRE) for their helpful support to this work.

REFERENCES

