A parameter-free approach for mining robust sequential classification rules

Abstract : —Sequential data is generated in many domains of science and technology. Although many studies have been carried out for sequence classification in the past decade, the problem is still a challenge; particularly for pattern-based methods. We identify two important issues related to pattern-based sequence classification which motivate the present work: the curse of parameter tuning and the instability of common interestingness measures. To alleviate these issues, we suggest a new approach and framework for mining sequential rule patterns for classification purpose. We introduce a space of rule pattern models and a prior distribution defined on this model space. From this model space, we define a Bayesian criterion for evaluating the interest of sequential patterns. We also develop a parameter-free algorithm to efficiently mine sequential patterns from the model space. Extensive experiments show that (i) the new criterion identifies interesting and robust patterns, (ii) the direct use of the mined rules as new features in a classification process demonstrates higher inductive performance than the state-of-the-art sequential pattern based classifiers.
Type de document :
Communication dans un congrès
IEEE International Conference on Data Mining, 2015, Atlantic City, United States. Data Mining (ICDM), 2015 IEEE International Conference on. 〈10.1109/ICDM.2015.87〉
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

http://hal.univ-reunion.fr/hal-01395002
Contributeur : Dominique Gay <>
Soumis le : jeudi 10 novembre 2016 - 11:49:18
Dernière modification le : mercredi 15 février 2017 - 09:07:52
Document(s) archivé(s) le : mercredi 15 mars 2017 - 03:40:15

Fichier

egho_ICDM15.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Elias Egho, Dominique Gay, Marc Boullé, Nicolas Voisine, Fabrice Clérot. A parameter-free approach for mining robust sequential classification rules. IEEE International Conference on Data Mining, 2015, Atlantic City, United States. Data Mining (ICDM), 2015 IEEE International Conference on. 〈10.1109/ICDM.2015.87〉. 〈hal-01395002〉

Partager

Métriques

Consultations de la notice

52

Téléchargements de fichiers

57