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Abstract - The characteristics of the dynamic systems 
exerted by discontinuous piecewise constant voltage loading 
are investigated. Compared to the systems under continuous 
voltage exertions, diverse behaviours of the systems with 
discontinuous exertions are found. Responses of t h e  systems 
to various piecewise constant exertions under different initial 
conditions are analyzed theoreticalty and numerically. 
Conditions of oscillation and stability are also presented for 
such piecewise systems. 

Keywords - Energy saving, nonlinear-dynamic loading systems, 
djscontinuous exertions voltage, piecewise constant arguments, 
oscillation, numerical simulation. 

In many electronic systems, loadings acting on the systems 
are discontinuous and can be considered as piecewise 
constants. Numerous mathematical investigations on the 
differential equations with piecewise constant arguments 
of retarded and advanced types such as q ( [ t ] )  or 

q ( [  t f n ] )  were reported [1,2]. The behaviour of the linear 

first-order differential equations involving piecewise 
constant arguments has attracted great attention in the past 
years. However, in the current literature, there is still a 
lack of systematic studies on the properties of charging of 
the dynamic systems subjected to piecewise Ioading 
voltage. In 1997, Dai and Singh [3] introduced a novel 
piecewise constant argument [ ,Vt]/  hi for analytically and 
numerically solving the second order differential equations 
which govem the nonlinear dynamic systems exerted by 
piecewise constant voltages. With this piecewise constant 
argument, the gap between the dynamic systems subjected 
to continuous loadings and the systems under piecewise 
exertions was fitled. Employing the piecewise constant 
argument [Nf]liy , the present work investigates the 

dynamic systems subjected to piecewise constant voltage 
with focus on the extraordinary behaviour of charging 
systems. 
Theoretical analysis of the properties of loading of 
dynamic systems under a piecewise constant exertion 
voltage is to be undertaken. The results of the 
corresponding loadings of the systems will also be studied 
numerically and graphically with various combinations of 
coefficients in the equations of loading and different initial 
conditions so that the behaviour of the systems under 

piecewise constant voltage may be visualized and 
comprehensively understood. Oscillatory Ioading o f  the 
dynamic systems will then be examined with the help of 
the diagrams o f  charge, current and piecewise constant 
voltage exertion against time. The solutions obtained for 
the systems will be compared with those of the 
corresponding continuous systems. 
Due to the characteristics of the discontinuous exertions, 
loading of a dynamic system disturbed by the piecewise 
constant voltage shows an entirely different behaviour 
from that of the corresponding continuous system. For 
instance, the loading of the systems acted by piecewise 
constant loaded voltage can be very sensitive to initial 
conditions even for the linear dynamic systems. The 
peculiar behaviour will be demonstrated for several linear 
and nonlinear dynamic systems under piecewise constant 
exertions. As will be seen in the present work, the 
exponential matrices to be derived characterize the 
oscillatory behaviour of a system subjected to piecewise 
constant voltage. 
Analysis of the properties of loading for these systems 
may therefore be conveniently performed on the basis of 
the attributes of the exponential matrices. The oscillatory 
condition for the loading of the system will be given with 
respect to the eigenvalues of the corresponding 
exponential matrices. Oscillatory and asymptotic 
properties of loading of the dynamic systems subjected to 
piecewise constant voltage will be theoretically analyzed 
in detail on the basis of the exponential matrices derived in 
the present work. 

LOADING OF DYNAMICAL SYSTEMS UNDER PIECEWISE 
CONSTANT VOLTAGE 

For the sake of clarification, we first consider a system 
govemed by the following equation in which a 
sinusoidally varying piecewise constant exertion voltage 
acting on the system is independent of the charge q( t )  

In the equation, L is the inductance of the system, R 
denotes the resistor coefficient, C the capacitance constant, 
A the amplitude of the piecewise constant exertion, [*I 
represents a function of greatest integer and N is an integer 
which controls the size of the time period on which the 
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external exertion is a constant. Assume that A' > 4LC-I 
in equation (I). The value of the piecewise constant 
voltage shown in the goveming equation can be calculated 
for any given time. It is therefore desirable to start the 
analysis of the properties of  loading with initial conditions: 

Within an arbitrary time segment 
[ N t ] / N  $r i f [Nf j+ l ) /N  , the solution of the linear 

system described by equation (1) is readily available. This 
implies that the loading in any time interval represents a 
portion of a linear charging. At the ending point of an 
interval, the charge and current of the system are given by 
q(([Nf]+l) lN) and q ( ( [ N t ] + l ) / N )  respectively. 

These specific results in turn become the starting 
conditions or the local initial conditions for the loading of 
the next time interval. With the local initial conditions, the 
loading in the follow-up intervals can then be 
consequently obtained. Considering that the loading of the 
system is continuous, i.e., q( t )  and q(t) are continuous 
on t E [O,m[ , the following conditions of continuity must 
be satisfied 

q ( t  = t o )  = q, and q( t  = 1,) : i(t = t o )  =io ( 2 )  

With the continuity conditions and the solutions for each 
of the time intervals, the solution of equation ( I )  for the 
entire time range considered can be derived as follows: 

R 
2 L  

where w, = ( L C ) - i ,  a = - and 7 = ,/- 
In equation (4), the matrix B takes the form 

(5  1 r a .  T - 
&N -m---sm- 

t!!~$&'[ k=l 
a [$ + 7) sin- ~ N]icm(Cl([Nt]-k)) 

in which the sguare matrix D has h e  form 

To visualize the loading of the systems govemed by 
equation (I), we study a simple case of loading without 
damping numerically by substituting the values of system 
parameters and time into the analytical solution equation 
(4). Based on the solution of equation ( I ) ,  corresponding 
to this specific case, the diagram of charge versus time is 
plotted in fig. 1 on which the corresponding time plots of 
current and piecewise constant voltage are illustrated 
separately in the figures (a), (b) and (c). It can be seen 
from the figures and the solution in equation (4), the 
curves of charge and current are continuous everywhere 
for t 2 0 under the discontinuous piecewise constant 
exertion. 11 should be noted in the diagram that the charge 
and its slope are continuous, but the current shows slope 
discontinuities at the integer points of time. The 
discontinuities are a consequence of the discontinuous 
piecewise constant voltage acting on the system. 

0.5 

0 

4.6 

-1 

-1.5 J 

(cl 
Fig. 1 : Time plots of charge (a), current (b) and piecewise 

constant voltage (c) acting on a loading system govemed by 

A=l .a = 1 

Fig. 1 also reveals the asymptotically divergent oscillatory 
behaviour of the system. 
Under certain conditions, the dynamic system subjected to 
piecewise constant voltage may behave as a simple 
loading system with stable loading of constant amplitude. 
Consider a similar system as the case shown in fig. 1 with 
a higher C-' . Under the same conditions and after a 
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relatively long time from t=O, this system shows a stable 
osciIlatory loading as exhibited in f i g .  2. It can be seen 
from fig. 2, the waveforms of the charge are repeating 
precisely with a period of 2rr,  although the shapes of the 
stepwise exertions are different from period to period. 
When the external piecewise constant exertion is charge 
related, the complete solution for a time interval of the 
system must first be obtained so that the end conditions for 
this interval, and the starting conditions of the consecutive 
interval, may be determined accordingly. Consider the 
following dynamic system governed by the differentia1 
equation, 
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Fig. 2 : Waveform (a) and the corresponding piecewise 

constant voltage (b) acting on a loading system govemed 
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The charge of such a loading system is graphically 
demonstrated in fig. 3. As displayed, the piecewise 
constant voltage exerting on the system has the same value 
as the charge at the integer point of time, and the 
corresponding loading in this case is asymptotically 
convergent . 
Loading of a dynamic system subjected to a piecewise 
constant voltage of the type shown in equation (7) exhibits, 
in general, a dramatically different behavior from those of 
the corresponding system exerted by continuous voltage. 
Compare a damped loading system subjected to a 
piecewise constant voltage described by the equation of 
charge: 

with a similar linear loading system govemed by the 
following equation of charge 

where R, L, C-] and A are constants of the system’s 
physical properties. R2 > 4LC-l in equations (8) and (9). 
The solution of the linear system in equation (9) is readily 
available and the solution of equation (8) can be derived as 
follows: 

Lq( t )+Rq( t )+C- lq ( t )  = A q ( t )  (9) 

In equation ( 1  0), the constants a and t are the same as 
those defined in equation (4), and the square matrix G 
takes the form 
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A comparison of the continuous system and the system 
with piecewise constant voltage is illustrated in fig. 4 in 
which the loading with the piecewise constant voltage 

-8q[ y] diverges asymptotically and, on the contrary, 

the charge under the continuous voltage - 8 g ( t )  is 
damped out rapidly with time. 

0.2 - 
1 

0. Y 

-0.2 - 5 

-0.4 4 \i 
4.6 J 

Fig. 4 : Comparison of the loading of the system subjected to 
piecewise constant voltage govemed by 

Lij(t) + Rq( t )  + C-'q(t) = A q  [[zl) - and the continuous 

system Lq( t )+Rq( t )+C- ]q ( t )  = A q ( t ) ,  L=I, R=O, N=I,  

C-' = 1.5 , A=% In this case, the thinner solid line illustrates 
the solution of the piecewise constant system, and the thicker line 

is that of the continuous system. 

One may note that the solutions in the form of equations (4) 
and (10) are unique. When a finite value of N is given (say 
N= I), the systems govemed by equation (1 ) or equation (8) 
becomes the specific piecewise constant systems as those 
studied in [1,2]. Solutions for the systems with finite N 
values are readily available as expressed in equations (4) 
and (10). Moreover, the systems expressed in equations (1) 
and (8) may also be continuous systems when N tends to 
infinity as described in 133. As such, the solutions in the 
forms of equations (4) and (10) bridge the gap between the 
piecewise constant systems and continuous systems. 
For the loading systems subjected to known forms of 
piecewise constant and continuous voltage respectively, 

such as Acos a- and Acos(Rt) which are merely 

time dependent, the contrast is also evident. As an 
example, the lading of the system govemed by equation (1) 
is compared with the following system subjected to a 
continuous voltage, 

as shown in fig. 5 .  It can be observed in the figure that the 
loading of the system subjected to the continuous voltage 
becomes a steady-state oscillation with identical shape as 
time increases, whereas the system under the piecewise 
constant voltage oscillates with the waveforms of distinct 
appearances and amplitudes. 

[ ';I) 

L q ( t ) i R q ( t ) + C - ' q ( f )  = Acos(Rt) , (12) 

-2.5 1 
Fig. 5 : Comparison of the loading of the system subjected to 

piecewise constant voltage govemed by 

Lq( t )  + R q ( t )  + C-'q(t )  = A cos 0- and the continuous ( 
system Lq(t)+Rq(t)+C-'q( t )  = Acos(Rr), L=l, R=3,1, 

N=I, C-' = 3 I 1 , A=3 1 I ,  R = 4 . In this case, the thinner solid 
line illustrates the solution of the piecewise constant system, and 

the thicker line is that of the continuous system. 

BEHAVIOUR OF DYNAMlCAL SYSTEMS SUBJECTED TO 
PIECEWISE CONSTANT VOLTAGE 

It has been demonstrated in the previous section that a 
dynamic system subjected to a piecewise constant voltage 
exhibits different oscillatory behaviour from that of the 
corresponding continuous system. In fact, as will be 
shown in the following sections, the loading of a dynamic 
system with piecewise constant exertions voltage may be 
oscillatory, non-oscillatory, stable or unstable with 
different coefficients and initial conditions. 
An interesting phenomenon of a dynamic system subjected 
to a piecewise constant voltage is that its loading may 
asymptotically vanish even when the system is free of 
damping. Because of this, an undamped dynamic system 
under piecewise constant voltage cannot be considered as 
a conservative system. A simple example is shown in fig. 
6 in which the loading of a capacitor disappears under the 
piecewise constant voltage shown. Solution for this 
problem can be obtained from the solution presented in 
equation (10). The fading of the loading of this system 
depends upon the voltage amplitude A, number of iteration 
[ N t ]  and initial conditions. Once the local initial 
conditions become zeros, the loading of the capacitor will 
permanently stay at rest. 
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Fig. 6:  Charge (b) and its corresponding piecewise constant 

voltage (a) acting on a system governed by 

q(1) + Aq[y) = 0, A=-1.5; Initial conditions: qo = I .O and 

In general, when starting perturbation acting on the 
dynamical system is preserved, fundamental loadings of 
linear charging systems subjected to continuous voltage 
are not sensitive to initial conditions. However, under 
certain conditions, a dynamic system subjected to 
piecewise constant voltages may show sensitive 
dependence upon initial conditions. The above system can 
again be taken as an example. The sensitivity of the 
system to the initial conditions is illustrated in fig. 7 by 
starting two loadings from adjacent states. Under the 
piecewise constant exertions voltage, the two adjacent 
starts appear to remain close to each other for a time and 
then rapidly move apart. It may also be pointed out that a 
small perturbation of a parameter of such a system may 
also lead to a greater variation of the loading. 

i, = -1.656 . 

2 '1 
2 4 6 8 

-6 

Fig. 7 : Sensitivity of the solution of the dynamic system 

governed by q(t) + Aq 

for the loading of the thinner solid line: qo = 0.48395 and 

i,, = -1 .O . Initial conditions for the loading of the thicker line: 

qn = 0.48396 and in = -1.0. 
So far, only the loadings with linear piecewise constant 
voltages are investigated. If nonlinear piecewise constant 
voltages are involved in the dynamic systems, the 
corresponding loading will become complex and nonlinear 
properties will be brought into the systems. Replace the 

piecewise constant voltage Acos 

by Aq3[y] and compare its solution with the 

corresponding continuous system governed by the 
following equation of loading: 

Lij( t )+Rq(t)+C-lg( t )= A q 3 ( t ) ,  (13) 

The differential equation is actually the famous Duffing 
equation [4], for which the numerical results are given, 
among others by Fang and Dowell [5] and Christopher [ 6 ] .  
A solution with a cubic piecewise constant exertion 
voltage i s  iIlustrated in fig. 8 in comparison with a 
continuous system presented in equation (1 3). The 
numerical results for the nonlinear systems are calculated 
with Runge-Kutta method of forth order [B]. The step 
length used for the numerical calculations is 0.03. It can be 
seen from f i g ,  8 that the loading of the system with the 
piecewise constant exertion voltage are highly distinct 
from the one under the continuous voltage. 
Quantitatively, the loading under the piecewise constant 
voltage varies much conspicuously in terms of a m p h d e  
and slope in comparison with the oscillation of the 
continuous nonlinear system corresponding to the Duffing 
equation. As may he observed from fig. 8, at t=O and the 
integer points t=l ,  2, 3 the magnitude of the exertion 

Aq' [y) does not vary much during the time period 

0 5 f < 4 due to the small charge q calculated by using the 
solution. However, the charge q is rapidly increased in 
absolute value on 4 5 t < 5 as shown in the figure. 
Corresponding to the increased charge, the magnitude of 

the cubic voltage Ag' [';'I - becomes much greater than 

that of the voltage at t=3, and the sign of the voltage 

A g 3  [ y) at t=4 is opposite to the sign of the voltage 

.4q1(y) at t=3. A sharp rise of the solution is thus 

produced at the integer point t=4, as i s  clearly shown in 
the diagram. Although there is also a cubic term in the 
continuous system of equation (13), oscillation of the 
system is relatively gentle and smooth since all the 
voltages involved are varying continuously. 

861 Chargc 

4 1  i 
2 -  

t 
0 -  I 

7 3 4 5 -2 - 

2 -  
t 

0 -  I 

7 3 4 5 -2 - 
v 4 j  -6 

Fig. 8 : Comparison of the solutions of the nonlinear dynamic 
systems described by the continuous systems 

Lq(t)  + R q ( t )  + C-'q(t) = A q 3  ( f )  and the piecewise constant 

A / L = 2 . O , N = l ,  R / L = 1 . 5  and l/CL=l.O.Initial 
conditions for the loadings of the systems: qn = 1.5 and 

in = 0.0. The thinner solid line is for the piecewise system and 
the thicker solid line for the continuous system. 

Sensitive dependence of a dynamic system upon initial 
conditions may also occur, under certain conditions, in a system 
subjected to piecewise constant voltages. The sensitivity to initial 
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conditions is clear in fig. 9 in which the two loadings of a 
charging system exerted by piecewise constant voltages are 
plotted. The two loadings from nearby states (slightly different 
initial current and the same initial charge) remain close for a time, 
and then diverge from each other and become uncorrelated. 
Sensitivity of a dynamic system to initial conditions is a 
significant measure in nonlinear and chaotic dynamics. 

4 -  
2 
0 -  

-2 ~ 

E 1 Cltaqe 

-/ I 

f 7 

-6 - 
-a - 

-10 - 

system Lij(r) + Rq(t)  + C-'q(t) = Aq' t- to initial [ I;') 
conditions. A / L = - 0 , 4 6 , N = l ,  RIL=O.S2 and 

1 / CL = 0.5 , Initial conditions for the loading of the thicker 
solid line: qo = I .O and io = 2.0. Initial conditions for the 

loading of the thinner solid line: qo = 1 .O and io = 2.01. 

OSCILLATORY PROPERTIES OF THE DYNAMIC SYSTEMS 

As can be seen from the solutions presented in the 
previous sections that the charge and the current of a 
dynamic system subjected to piecewise constant exertions 
voltages are continuous everywhere though the exertions 
applying on the system is discontinuous. An advantage 
that one may take from the continuous solutions is that the 
properties of the loading of a system subjected to 
piecewise constant voltages can be analytically studied. 
Regarding the properties of the solutions given in the 
previous section, the following uoints may be remarked: 

a. 

b. 

C. 

d. 
e. 

f. 

The sq&e matrices in &pations-(b) and (1 1) are 
associated with the local initial conditions. In each 
time interval [Nt  ] / N 5 c < ([ Nr ] + 1) / N , loading of 
the dynamic system is largely affected by the local 
initial conditions q,Nrl and especially in the 

cases that the parameter N is large. 
Independent of the linear loading between the two 
ends of a time interval [ N t ] / N < t < ( [ N f ] + l ) l N ,  

the values of the charge and current at the instants 
of t = [ N t ]  are given by the square matrices. 

In each time interval [ N t ] / N  5 t <([Ab]+ I ) /  N , 
there is a linear loading system corresponding to it. 
The term e-uz vanishes as t increases. 
The absolute values of the sine and cosine functions 
in the solutions lie between 0 and unit. 
qo and io in the solutions are independent of the 
time t. 

On accounting the above remarks, the properties of the 
dynamic systems such as that governed by equations (1) 
and (8) are characterized by the matrices with exponents. 
Therefore, in order to find the behaviour of loading for the 

dynamic systems, one needs only finding the properties of 
the exponential matrices. This significantly simplifies the 
investigation on the characteristics of the behaviour of the 
dynamic systems subjected to piecewise constant voltage. 
Designating the square matrices as Q and the 
corresponding eigenvalues as 4 and A, , the square 
matrices can be written in the following form: 

where the matrix M represents a set of linearly 
independent eigenvectors for the corresponding 
eigenvalues and M-' expresses the inverse of M. 
For the real non-symmetrical matrix Q, it is well known 
[3,7] that 

For IAl= 1, the solutions derived for the dynamic 
systems under piecewise constant exertions are 
stable. 
For IAl<1  , with increase of time t, the 
corresponding solutions will be convergent or 
asymptotically convergent, and therefore, can be 
considered as another case of a stable solution. 
For IRI > I , solutions are monotonically or 
asymptotically divergent. 

Through an iterative procedure, the exponential square 
matrix in equation (5) or equation (1 1) can be expressed in 
the following form: 

M and are M-' constant matrices, therefore, only the 
diagonal matrix in equation (1 5 )  varies with argument 
[Nt ]  as time t increases. As such, the following 
conclusions can be stated as 

In the case that the eigenvalues ,+, and A, are both 

negative, the values of and ,$[*'I are both 

positive for even [ N t ) ;  and the signs of AN'] and 

AI*''] are both negative with odd [Nr] . Due to the 
varying signs of the exponential square matrices, 
the corresponding solution will be oscillatory with 
increasing time t. 
In the case that the eigenvalues 4 and .2, are 

positive, the values of and A,["] are always 
positive and the absolute value of the corresponding 
solution will then divergent with increasing time t. 
The eigenvalues may also be complex. In this case, 
the eigenvalues are expressible as a polar form 
,I =pei8 , where p and B are constants. The 
corresponding loadings of the dynamic systems in 
this case are then oscillatory due to the alternating 
signs o f  Ai"'] and with changing time t. 

Based on the above conclusions, the properties of the 
loadings of the dynamic systems subjected to piecewise 
constant voltages can be conveniently analyzed with 
considerations of various values of the coefficients of 
physical properties of the systems, such as L, R, N, C-' , A, 
il as used in those governing differential equations. 
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CONCLUSIONS 

This study is conducted to investigate the characteristics of 
the loading of the linear and nonlinear dynamic systems 
subjected to piecewise constant exertions voltages. 
Solutions for the dynamic systems with piecewise constant 
exertions voltages are developed with the piecewise 

constant argument - “‘I . Loadings of the piecewise 

constant systems are analyzed theoretically and 
numerically. 
Extraordinary behaviours of the dynamic systems are 
found in the study in comparing with the dynamic systems 
under continuous voltages. Based on the results obtained 
in the investigation, it is significant and important to 
summarize the main characteristics of the behaviour of the 
piecewise constant systems as the following: 

Loading of the dynamic systems disturbed by 
piecewise discontinuous exertions voltages i s  
continuous. 
Dynamic systems show greatly different behaviour 
from the regular systems when piecewise constant 
exertions are involved. Solutions of the piecewise 
constant systems can be determined via the 
procedures described in Section 2 with the 

piecewise constant argument - . 

N 

a. 

b. 

Pf 1 
N 

c. The piecewise constant systems may exhibit 
harmonic behaviour even in the cases in which the 
magnitude of the piecewise constant exenions 
varies from period 10 period. 
Loading of dynamic systems subjected to piecewise 
constant exertions shows sensitivity to initial 
conditions under certain conditions. 

d. 

e. Loading of the piecewise constant systems may 
vanish with the piecewise constant exertions. 

Oscillatory and asymptotic properties of the loading of the 
piecewise constant systems are analyzed in the present 
work. The exponential matrices with the exponents [ N I ]  
have a great advantage in theoretically analyzing the 
properties of the piecewise constant systems. Detailed 
processes of the analysis are presented for the solutions 
obtained. 
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