Semirigid Systems of Equivalence Relations.

Abstract : A system \\textbackslashmathcal M\ of equivalence relations on a set \E\ is \textbackslashemph\semirigid\ if only the identity and constant functions preserve all members of \\textbackslashmathcal M\. We construct semirigid systems of three equivalence relations. Our construction leads to the examples given by Z\textbackslash'adori in 1983 and to many others and also extends to some infinite cardinalities. As a consequence, we show that on every set of at most continuum cardinality distinct from \2\ and \4\ there exists a semirigid system of three equivalence relations.
Type de document :
Communication dans un congrès
Miller, D. Michael and Gaudet, Vincent C. IEEE 42nd International Symposium on Multiple-Valued Logic ISMVL-2012, May 2012, Victoria, Canada. pp.293--298, 2012
Liste complète des métadonnées

http://hal.univ-reunion.fr/hal-01188005
Contributeur : Nicolas Alarcon <>
Soumis le : vendredi 28 août 2015 - 12:59:26
Dernière modification le : jeudi 15 mars 2018 - 10:31:31

Identifiants

  • HAL Id : hal-01188005, version 1

Citation

Christian Delhommé, Masahiro Miyakawa, Maurice Pouzet, Ivo G. Rosenberg, Hisayuki Tatsumi. Semirigid Systems of Equivalence Relations.. Miller, D. Michael and Gaudet, Vincent C. IEEE 42nd International Symposium on Multiple-Valued Logic ISMVL-2012, May 2012, Victoria, Canada. pp.293--298, 2012. 〈hal-01188005〉

Partager

Métriques

Consultations de la notice

125